Network Research Exhibition: the Future of Networking and Computing with Big Data Streams November 11th, 2022

Demonstrating PolKA routing approach to support traffic engineering for data-intensive science

<u>Magnos Martinello</u>², Cristina Klippel Dominicini¹, Rafael S. Guimarães¹, Everson Borges², Moises R. N. Ribeiro², and Edgard Cunha²

¹Federal Institute of Espírito Santo, ²Federal University of Espírito Santo

Motivation

• Scientific Applications:

- High-speed WAN networks & Multiple domains
- Massive data transfer & Large number of flows
- E2E reliability

• Table-based forwarding bottlenecks:

- Large number of states
- Set of shortest paths
- Latency for path configuration
- Alternative: Source Routing (SR)
 - A source specifies a path and adds a route label to the packet header.

Major Research and Development Challenges

• A Source Routing approach that meets the requirements:

open source/	no tables in	support in	fixed length	topology agnostic
interoperable	the core	prog. switches	header	multipath routing

- PolKA: Polynomial Key-based Architecture for Source Routing
 - Polynomial Residue Number System (RNS)
 - Chinese Remainder Theorem (CRT)
 - Packet forwarding based on mod operation: remainder of division

portID = < routeID > nodeID

• mod computation reuses CRC operation (custom in Tofino switch)

How does PolKA work?

- The **Controller** chooses a **path** for a specific flow:
 - A set of switches: **nodeIDs**: {0011,0111,1011}
 - and their output ports: **portIDs**: {1, 10, 110}

nodeID polynomials $s_1(t) = t + 1 = 11$ $s_2(t) = t^2 + t + 1 = 111$ $s_3(t) = t^3 + t + 1 = 1011$ portID polynomials $o_1(t) = 1$ $o_2(t) = t = 10$ $o_3(t) = t^2 + t = 110$ Calculate routeID with CRT $t^4 \equiv 1 \mod (t+1)$ $t^4 \equiv t \mod (t^2 + t + 1)$ $t^4 \equiv (t^2 + t) \mod (t^3 + t + 1)$ $t^4 = 10000$ portID = < routeID > nodeID <10000>0011 1 <10000>₀₁₁₁ 10

110 = <10000>₁₀₁₁

Innovations to be demonstrated

- Data plane
 - Source Routing with Stateless Core
 - Forwarding at line rate by **reusing CRC in P4** programmable switches
- Control plane
 - Easy to configure tunnels
 - Integrated in the Freerouter platform
- Potential to support:
 - Transfer of big data streams with aggregation of multiple flows
 - Big pipes/tunnels dynamically configured in the underlay network

Come to see our demonstrations !!

• Big data streams at 100 Gbps

- PolKA@ Caltech P4 lab testbed
- Multiple aggregated TCP flows steered to pre-configured tunnels
 - A route label represents paths in the underlay network
- Comparison with Segment Routing: Both achieving line rate (100 Gbps)
- Dynamic Traffic Steering at Intercontinental Testbed
 - PolKA@ Global P4 lab testbed
 - Tunnel Setup for Traffic Engineering
 - Stateless Core
 - Define a explicit path at the Edge (route label)
 - Migration to another tunnel requires a single update at the Edge

Thank you for attention !

<u>Magnos Martinello</u> <u>magnos.martinello@ufes.br</u>

* This work was a recipient of the 2021 Google Research Scholar and the 2022 Intel Connectivity Research Grant (Fast Forward Initiative) Awards, and Received funds from CAPES, CNPq, FAPESP, FAPES, CTIC, and RNP.

