
On Multilateral Agreements
And

Multidomain Applications
Reggie Cushing

r.s.cushing@uva.nl

Story so far...

● Actors = Containers
● Actors cryptographically

addressed
● Multidomain

communication through MQ
using actor keys as topics.

● Auditor actors give
permission to actors to
carry out actions

● Planner actors encapsulate
the notion of a workflow

○ Planners coordinate with
auditors to execute
workflow

Moving forward...multi-domain coordination

● A multidomain application is a workflow whereby the (data|control)flow
crosses domain boundaries.

● Domain boundaries are controlled through rules/agreements derived from
policies.

● A use case can be considered as having multiple facets.
○ The application functional components (functions)
○ The data assets
○ The coordination logic (controlflow)

● Controlflow is a program in itself that is owned by multiple domains.
● The challenge is:

○ How to execute a control program owned by multiple domains?

ArenA use-case multi-domain process model in

ArenA use-case multi-domain process model in

- Track, control, coordinate
cross-border processes.
- Traditionally a static layer
using API keys etc.
- In a marketplace we propose a
programmable layer.
- We need to capture and
coordinate these set of rules in
a transparent and secure way.
- We propose state machines to
keep track of the state of the
border.
- Each party/domain updates
the state machine thus signaling
the other parties to take action.

Shared state machine

Domain A Domain Bshared state
machine

Functional containers

Process model to infrastructure

Multidomain infra

Use-case BPMN

Graph interpreter

Coordination through smart contract/s

Blockchain layer

Container layer

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

- Generic dataflow/petrinet executor
running on a blockchain i.e. every peer is
running the executor.
- Domains/actors are assigned a set of
tokens.
- Actors define functions as a task with
token input, token outputs and webhooks
to interact with the outside world.
- So actors own tokens and tasks
- A task needs certain amount of tokens
to fire
- Blockchain transactions copy tokens
between actors.
- When a task has enough input tokens it
will fire which in turn generates
blockchain events.
- Containers monitor the ledger to trigger
a process inside a container (the task).
- The container will make blockchain
transactions to signal the task is
completed and move the state machine.

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

- a petrinet that regulates how multi
parties collaborate.
- the rationel is that a party can only
perform a certain task given a certain
context.
- Context is a set of multi domain
preconditions that have to met.
- The movement of tokens within the
graph changes the context.
- Tasks running outside the their agreed
context are deemed as illegal.
- The approach should be generic
enough that it can be applied to event
driven scenarios.
- Petrinets have strong mathematical
foundations.
- Can be analysed for behaviour and
structure properties e.g. reachability,
boundedness liveness, reversibility,
coverability...

Functional containers

Process model to infrastructure

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

Beneath the blockchain buzz words; a computer scientist’s view

● Is a distributed database.
● Instead of storing the DB data, store the transactions the made the data.
● Data ‘asset|token’ is cryptographically signed data struct by users ‘owners’.
● Changing owner’s signature of data is a ‘transaction’.
● Users have pki keys. ‘accounts|wallets’.
● Use a linked list to store the transactions ‘blockchain’.
● Reference(hash) the previous list’s recordset ‘block’ in the new block.
● Multiple nodes need to agree on recordset order ‘consensus’.
● Multiple nodes can rebuild the data from the linked list.
● Since multiple nodes can do something then they can also run scripts ‘smart

contracts’.
● End result is a distributed network that can run deterministic scripts to manipulate a

shared linked list where records are owned by different users.

Blockchain primitives

● Participants
○ Users with an x509 cert given by a CA peer on the network.

● Assets
○ User defined data structs owned by a participant.
○ Cryptographically signed data structs.

● Transactions
○ Move assets between participants

● Chaincode(smart contracts)
○ Javascrip/go/java programs to create programs with these primitives.
○ The chaincode runs on all/multiple peers of the network
○ Transactions are recorded in the DB(Ledger)

● The challenge:
○ How to map the controlflow program to a chaincode.
○ Make it generic.
○ How to interface actors to the chaincode (we want actors to affect state changes in the controlflow)

Petrinet to blockchain mapping
● A place receives is a placeholder for tokens.
● It is owned by a domain.
● Can be represented as an Asset.

Petrinet to blockchain mapping

● Tokens are passed between places.
● They are owned by domains.
● They are represented as assets.
● Tokens change ownership when moved between places.
● As is with web tokens, tokens also represent authorization. A

function can only execute if it has the correct tokens from the
different domains.

Petrinet to blockchain mapping

● Transitions are what move tokens between places.
● They are represented as an asset.
● They are owned by domains.
● They map to container functions.
● A transition fire implies a container function execution.

Petrinet to blockchain mapping

● Arrows show the control flow of the network.
● They indicate the required input tokens for a transition and the

number of output tokens.
● A transition (container function) fires when the required input

tokens are ready.

Petrinet life cycle

Development &
Analyses

Authorization &
Deployment

Activate

Terminate

Develop the petrinets as ‘smart contracts’. Analyse petrinets. We can
only deploy once to a blockchain.

Deployment needs authorization from multiple peers on the network.
This will need an audit layer to authorize deployments.

Once deployed it is in a start state. Moving from the start state activates
the petrinet.

A petrinet can terminate it can not move to any other state.

Functional containers

Architecture

Coordination through smart contract/s

Multidomain infra

Use-case BPMN

Graph interpreter

Architecture

Graph interpreter

Contract layer

Interface layer

Infra layer

ca peer

ca
petrinet
Api
‘contract’

petrinet
Api
‘contract’

peer

interface interface

Message
queue

Message
queue

op op op op op op

Petrinet contract API

● Create|Update|DeleteToken
○ Struct { id, issuer, owner, color }
○ Updates ledger

● Create|Update|DeletePlace
○ Struct { id, issuer, owner, tokens:[] }
○ Updates ledger

● Create|Update|DeleteTransition
○ Struct {id, issuer, owner, functionURI, state}
○ Updates ledger

● Create|Update|DeleteNet
○ Struct {id, issuer, owner, accepts:[], arcs: [] }
○ Updates ledger

● AcceptNet
○ Update net with domain keys that accept the petrinet.

● PutToken
○ Puts a token in a place OR transfers token to place owner AND generate event
○ Checks if transition is ready to fire
○ Generate fire event

Interface application

● Build wallet
○ User keys from domain CA
○ Enroll user as part of domain

● Connect to blockchain node
● Creates domain transitions, places and tokens.
● Creates petrinets
● Moves tokens, updates places.
● Listens for events (transition firing)

○ Call infrastructure operations through message queue
○ Move tokens

org1 org2

Simple Petrinet
● App1: CreateToken,

CreatePlace
● App2: CreateTransition,

CreatePlace
● App1: CreateNet, event
● App2: AcceptNet
● App1: PutToken
● App2: Listen for Fire event
● App2: Message Infra to run foo()
● App2: Wait response
● App2: PutToken

foo(“helloWorld”)

App1 App2

org1 org2

Generalized Webhook interface - 1

T1

Webhook uri
Owner: org2

App1 App2

REST
Service1

2 3
4

1. T1 fires, event generated on blockchain.
2. App2 reads event; is owner of T1 (has keys).
3. Generates a JSON web token using owner private key to sign the web token.
4. Calls the uri encoded in T1 asset, passing the web token in the header.
5. The trusts org2 public key; authorizes call from App2 by validating web token.
6. App2 changes petrinet state.

6
5

org1 org2

Generalized Webhook interface - 2

T1

Webhook uri
Owner: org2

App1 App2

Login
Service

1

2

3 4

1. App2 obtains a JWT (JSON web token) from remote service; saves it locally.
2. T1 fires; event generated on blockchain.
3. App2 read event; is owner of T1 asset.
4. Matches JWT to T1; calls service with JWT in header.
5. Changes petrinet state.

5
REST
Service

org2

org1

Webhook loop example

T1

Webhook uri2
Owner: org2

REST
Service

REST
Service

T2

Webhook uri1
Owner: org1

org2

org1

Webhook loop example

T1

Webhook uri2
Owner: org2

T2

Webhook uri1
Owner: org1

1. CREATE Place asset.
2. CREATE Transition asset.
3. LISTEN for events.
4. ACCEPT Petrinet.
5. EXEC T1.
6. CREATE Token
7. MOVE Token.
8. GOTO 3

1. CREATE Place asset.
2. CREATE Transition asset.
3. CREATE Token asset.
4. CREATE Petrinet.
5. MOVE initial Token.
6. LISTEN for events.
7. EXEC T2.
8. CREATE and MOVE Token.
9. GOTO 6

Data-specific fullstack multi-domain setup
Domain A Domain B

Use-cases - bottom stack

● Programmable networks (multi-domain)
○ Route setup (source routing)

■ Control PCEs in different domains
○ Network Function Chaining

■ Setup chains that span multiple domains
○ Multi-domain P4 setups.

● Overlays
○ Application-specific VPNs

■ Application events that trigger underlying connection setup.
○ P2p setups.

Use-cases - top stack

● Services
○ Application specific network services and endpoint parameter tuning.

■ Gridftp
■ UTD
■ FDT

○ Partner backend integrations
■ Control how bilateral agreements translate to multi-backend access.

○ QoS agreements
■ Scaling services to meet QoS

● Applications
○ DTNs

■ Type of data prioritization between DTNs.
■ Cache reservation setup on DTNs

○ Data quality agreements
■ What is transfered? Data specific quality checks E.g. time-series data quality could be sampling

rate etc.

Data-specific fullstack multi-domain setup

UI - connecting sub petrinets

UI - connecting sub petrinets

DDOS usecase

● Simulate a network using Kathara emulator which uses docker containers as
nodes in the network.

● Create a petrinet to describe the scenario that “when an attack happens in
domain A, notify domains B,C,D”

● Have Kathara router containers listen for the notifications and block IPs of
attacking nodes so that attack is blocked close to the source.

● Undo the block.

Multi-domain application coordination
using Petrinets in smart contracts

Motivation:

Multi-domain applications are characterized by
applications such as workflows that cross domain
boundaries.

The motivation for such applications is in mutual
benefit for all parties to collaborate. For example
airline industries, healthcare, smart cities.

The new set of challenges that this setup introduces
revolve mainly around enforcement of agreed
multilateral contracts and minimizing risks due to
exposure.

In this work we propose to encode the application
agreement as a smart contract using Petrinet as a
model to track state changes.

Motivation:

Multi-domain applications are characterized by
applications such as workflows that cross domain
boundaries.

The motivation for such applications is in mutual
benefit for all parties to collaborate. For example
airline industries, healthcare, smart cities.

The new set of challenges that this setup introduces
revolve mainly around enforcement of agreed
multilateral contracts and minimizing risks due to
exposure.

In this work we propose to encode the application
agreement as a smart contract using Petrinet as a
model to track state changes.

Demo setup

● Collaboration between Internet domains in a DOS attack.
● We emulate a simple Internet with 4 ASs and assign them to 3 domains.
● We create a Hyperledger across the 3 domains.
● The application says that:

“If any domain detects a DOS it will inform the others.The others will inturn
block the IP on their side.”

● This is encoded as a Petrinet using smart contracts.

Network setup using Kathara emulator.
Setup involves 4 ASs, a webserver and 2 clients.

Devices are emulated as containers.
Collision domains as separate networks.

Multi-domain scenario:
Collaborative DOS response,

The web server is attacked by a client and AS
Collaborate to block the IP

Ddos alert!

Block IPs

Block IPs

Block IPs

Block IPs

Attack scenario: web server is being attacked.
Notify other domains so they can block the IPs

Mqtt server

Use message queues to interact with containers

control nets

hyperledger

CA peer petrinet CA peer petrinetorderer

Interface clients talk to blockchain (petrinet) and talk
to message queue which in turn talks to containers

interface
mqtt

interface
mqtt

interface
mqtt

interface
mqtt

Mqtt server

control net

hyperledger

Petrinet
clients

CA peer petrinet CA peer petrinetorderer

Interface clients talk to blockchain (petrinet) and talk
to message queue which in turn talks to containers

Interface to mqtt security

interface mqttcommands

Interface to mqtt security

interface mqttSigned commands

Public keyPub/Priv key

Interface to mqtt security

interface mqttSigned commands

Public keyPub/Priv key

Intercept signed commands Replay commands

Interface to mqtt security

interface mqttSigned commands

Public keyPub/Priv key

Encrypted message queue

Demo ddos defence contract

Demo ddos defence contract

Action on AS bgp routers

Demo ddos defence contract

Data input place

Authorization
place

Control
place

