
Speeding Up GPU Graph Processing Using Structural Graph
Properties
Merijn Verstraaten

University of Amsterdam
m.e.verstraaten@uva.nl

1 PROBLEM STATEMENT
Due to its flexibility and wide applicability, graph processing is an
important part of data science. With the prevalence of “big data”,
scaling increasingly complex analytics to increasingly large datasets
is one of the fundamental problems in graph processing.

At the same time, hardware platforms are becoming increas-
ingly parallel and heterogeneous. Distributed systems and accelerator-
based architectures (e.g., based on Graphical Processing Units —
GPUs, or Xeon Phi) are frequently cited as solutions for handling
large compute workloads, even for graph processing [1, 11].

Both partitioning the data and efficient execution of graph oper-
ations on parallel and distributed systems remain hard problems.
The heterogeneity of the available platforms makes matters worse,
because different types of platforms require different approaches
to perform in their “comfort zone”.

I focus on the performance of graph operations on GPUs, seen
as representative massively parallel HPC architectures. In this con-
text, I start from the following observations:

(1) Speeding up graph processing by using GPUs requires effi-
cient exploitation of the fine-grained parallelism of graph
problems [6, 12].

(2) The efficiency in using the massive hardware parallelism
(hundreds of cores) is highly dependent on the data local-
ity and the regularity of both operations and data access
patterns [14, 15].

(3) The data locality, the regularity of operations and data ac-
cess patterns are highly dependent on both the in-memory
representation of the data and the structure of the underly-
ing graph.

(4) Most high-level graph operations support different imple-
mentations, with different memory representation and ac-
cess patterns [4].

In summary, given a high-level graph processing operation, there
are multiple ways to implement it. Which implementation is the
most efficient on a given platform is highly dependent on the struc-
ture of the graph being processed [15].While this is common knowl-
edge, there has been little work on how to predict the right imple-
mentation for a given input. Selecting the right implementation for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the workload and hardware at hand is important because the per-
formance gap between implementations can be of orders of mag-
nitude.

The focus ofmy research has been on the following topics: 1)Mod-
elling the sequential workload of graph algorithm implementations
and finding a parallel execution model for them, 2) identifying
which structural properties1 of graphs impact implementation per-
formance and quantifying this impact, 3) identifying heuristics for
algorithm implementation selection, 4) determining the feasibility
of dynamically switching between implementations during a com-
putation.

2 MAJOR RESEARCH HIGHLIGHTS
2.1 Performance Impact of Parallelisation

Strategy
The fact that runtime performance of irregular algorithms is depen-
dent on the structure of input data is commonly accepted in HPC
communities. However, there has been little work quantifying the
size of this effect.

In [15] I’ve investigated how the underlying hardware platform
affects the performance of different parallelisation strategies, and
shown that there is no single best implementation for a given hard-
ware platform, nor for a given input graph. The best implementa-
tion is dependent on both the hardware and input data.

In [16] I presented a case study on different parallelisation strate-
gies for the pagerank [13] algorithm. The results show that the rel-
ative performance of the parallelisation strategies can fluctuate by
orders of magnitude across different input datasets. One surprising
and noteworthy outcome of these experiments was the viability of
edge-based parallelisation. As show in Figure 1

Figure 1: Normalised runtimes of different PageRank imple-
mentations on selected KONECT [9] and R-MAT [5] graphs.
See Table 1 for the details of the input graphs.

1Properties such as: degree distribution, diameter, clustering coefficient, etc.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Merijn Verstraaten

No. Graph # Vertices # Edges
1 actor-collaboration 382,219 30,076,166
2 ca-cit-HepPh 28,093 6,296,894
3 discogs_affiliation 2,025,594 10,604,552
4 opsahl-ucsocial 1,899 20,296
5 prosper-loans 89,269 3,330,225
6 web-NotreDame 325,729 1,497,134
7 wikipedia_link_en 12,150,976 378,142,420
8 wikipedia_link_fr 3,023,165 102,382,410
9 zhishi-hudong-internallink 1,984,484 14,869,484
10 R-MAT 24 8,870,942 260,379,520
12 R-MAT 25 17,062m472 523,602,831

Table 1: Details for the input graphs shown in Figure 1, Fig-
ure 2, Figure 3, and Figure 4.

Some CPU-based implementations, such as PGX.D [7], use edge-
based parallelisation, but the state-of-the-art in GPU processing
frameworks use on vertex-based parallelisation strategies, work-
lists, or Gather-Apply-Scatter (GAS) approaches. This is, perhaps,
due to the assumption that edge-based parallelisation creates too
many tasks with not enough computation.

Our experiments show that edge-based parallelisation outper-
forms these other approaches on the GPU for a majority of the
graphs in the public data sets from SNAP [10] and KONECT [9].
As we scale our input graphs to larger sizes, such as RMAT-25 [5]
the edge-based parallelisation loses its edge over the other strate-
gies, so it remains an open question how to predict the best per-
forming implementation. These results show that we should not
pre-emptively rule out edge-based strategies.

2.2 Systematic Benchmarking
In [16] I also created a sequential workload model for each of the
PageRank implementationswe have. Thismodelmatched thework
observed from profiling accurately, but I was unable to create an
adequate model for the parallel execution. My difficulty in creat-
ing a parallel execution model stems from the data dependence
of the parallelisation strategies and the un(der)documented details
of the GPU hardware. Due to this lack of an analytical model for
parallel speed-up, the models were not useful for predicting actual
runtimes. Implementations performing more work often ended up
faster than more efficient implementations as a result of the paral-
lelisation.

Instead, I decided to perform series of systematic benchmarks to
try and correlate the parallel speed-up with structural properties
of the input graph. However, there is no established dataset for
such systematic benchmarking. As such, I proposed a novel graph
generator [17] that can generate graphs withmore control over the
properties of the generated graphs.

The idea behind this generator was to use evolutionary com-
puting to generate random graphs the most closely approximates
the desired values for each structural property. Evolutionary al-
gorithms are good at optimisation problems that where the con-
straints correlate with each other, as is the case with structural
properties of graphs.

This evolutionary generator works well for the generation of
small graphs, but does not scale to graphs of 10,000 or more ver-
tices. At that size the correlation between the properties becomes
to complex, as a result it takes 10s of hours to find a single graph
that matches the desired criteria. If it finds a solution at all. This is
too slow to be useful for any form of systematic benchmarking.

In the absence of a suitable dataset, I settled for benchmarking
existing real world graphs and using other techniques to determine
the impact of different structural properties. I used graphs from
KONECT and SNAP for this benchmarking, running my 15 differ-
ent implementations of PageRank and BFS on these graphs, as well
as the BFS implementations of Gunrock [18] and Lonestar [8]. Fig-
ure 2 shows some of the results, illustrating how the runtime of
different BFS implementations varies across graph.

This effort resulted in detailed performance data for BFS and
pagerank. In total we have timing data for 1,728,090 levels of BFS
on 248 graphs, from multiple BFS implementations and multiple
starting vertices per graph.

1 2 3 4 5 6 7 8 9 10 11
Graph

No
rm

al
ise

d
ru

nt
im

e

BFS on KONECT & R-MAT
Edge List Push Warp Vertex Pull Vertex Push

Figure 2: Normalised runtimes of different BFS implemen-
tations on selected KONECT [9] and R-MAT [5] graphs. See
Table 1 for the details of the input graphs.

2.3 Model Generation Case Study: BFS
Using the corpus of runtime data described above, I further focused
on the BFS analysis. As Figure 3 shows, the timings of the individ-
ual BFS levels show that the performance varies even more on the
individual levels than it does for the overall BFS. Thus, it should
be possible to dramatically speed up BFS, if we can predict which
of the implementations is fastest for a given level. This allows us
to dynamically switch to the predicted/best implementation for
each level (this generalises the work done on direction-optimising
BFS [2] by Beamer et al., to more than two implementations).

2.3.1 Decision Tree Model. The noisiness of real world datasets
rules out evaluating the impact of individual structural properties.
Therefore, I used machine learning to model the relation between
structural properties of input graphs and the performance of the
individual implementations. The method I used were binary deci-
sion trees [3]. The two main reasons for using decision trees are: 1)
the fact that predictions are cheap to compute, which is important
if we want to switch between implementations for different levels
of BFS, and 2) the fact that decision trees can output the “predictive
power” of the input parameters, which means that we can use the
results of trained decision trees to improve and guide our analyti-
cal modelling efforts.

Speeding Up GPU Graph Processing Using Structural Graph Properties Conference’17, July 2017, Washington, DC, USA

0 1 2 3 4 5 6 7 8 9 10
BFS Level

Ru
nt

im
e

BFS Performance Across Levels
Edge List Push Warp Vertex Pull Vertex Push

Figure 3: Absolute runtimes at different BFS levels of BFS im-
plementations on a single graph. See Table 1 for the details
of the input graphs.

2.3.2 Dynamic Switching. The decision trees are accurate enough
to provide a significant performance increase. Figure 4 compares
our results against the state-of-the-art GPU graph processing frame-
work Gunrock [18] and the slightly older BFS benchmark Lon-
estarGPU [4], across a selection of KONECT graphs. We bench-
marked both Gunrock and LonestarGPU on the same hardware, us-
ing 148 different KONECT graphs. On average, Gunrock achieves
a performance of 2.9× of our theoretical optimum. LonestarGPU
manages 21× of optimal. Our model’s 1.4× of optimal means that
we are, on average, 2× faster than Gunrock.

In the worst case, the time to compute a prediction is about 1%
of the time of a single level of BFS, meaning the prediction over-
head is negligible. These times do assume we do not perform any
data loading/transfer during the algorithm. In other words, if im-
plementations require different in memory data representations,
we will have to keep all of these in memory, making a dynamic
switching BFS a classic time-space trade-off.

1 2 3 4 5 6 7 8 9
Graph

No
rm

al
ise

d
ru

nt
im

e

BFS Comparison
Gunrock Lonestar Non-switching Best Predicted

Figure 4: Comparison of normalised runtimes of different
BFS implementations, predicted performance, and existing
optimised BFS implementations onKONECT [9] graphs. See
Table 1 for the details of the input graphs.

2.4 On-going Work
I’m working on turning the ad hoc data processing pipeline used
for the analysis and model generation for BFS into an automated
pipeline for training predictors for other algorithms. That is, a tool
where implementers can provide their own implementations and/or
measured runtimes for an algorithm, feed them into this pipeline,

and get a decision tree prediction model back out that predicts the
best implementation to use for a given input graph.

I’m also investigating howmuch data we require to train predic-
tors that are accurate enough to be useful without losing generality
or overfitting for the training set. This includes establishing rough
figures for how many graphs/measurements we need for accurate
models, and how varied the input graphs should be to ensure ade-
quate generality of the trained model.

REFERENCES
[1] Graph500. http://graph500.org.
[2] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first

search. Scientific Programming, 21(3-4):137–148, 2013.
[3] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regres-

sion Trees. CRC press, 1984.
[4] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular pro-

grams on gpus. In Workload Characterization (IISWC), 2012 IEEE International
Symposium on, pages 141–151. IEEE, 2012.

[5] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph
mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

[6] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu. On graphs, gpus,
and blind dating: A workload to processor matchmaking quest. In IPDPS, pages
851–862, 2013.

[7] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten, and H. Chafi.
PGX.D: A fast distributed graph processing engine. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, page 58. ACM, 2015.

[8] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. Lonestar: A suite of
parallel irregular programs. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pages 65–76. IEEE, 2009.

[9] J. Kunegis. Konect: The koblenz network collection. In Proceedings of the 22Nd In-
ternational Conference on World Wide Web, WWW ’13 Companion, pages 1343–
1350, 2013.

[10] J. Leskovec. Stanford Network Analysis Platform (SNAP). Stanford University,
2006.

[11] D. Merrill, M. Garland, and A. S. Grimshaw. Scalable GPU graph traversal. In
PPOPP 2012, New Orleans, LA, USA, pages 117–128, February 2012.

[12] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus topology-driven ir-
regular computations on gpus. In Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on, pages 463–474. IEEE, 2013.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, Novem-
ber 1999. Previous number = SIDL-WP-1999-0120.

[14] A. Penders. Accelerating GraphAnalysis with Heterogeneous Systems. Master’s
thesis, PDS, EWI, TUDelft, December 2012.

[15] A. L. Varbanescu, M. Verstraaten, A. Penders, H. Sips, and C. de Laat. Can Porta-
bility Improve Performance? An Empirical Study of Parallel Graph Analytics. In
ICPE’15, 2015.

[16] M. Verstraaten, A. L. Varbanescu, and C. de Laat. Quantifying the performance
impact of graph structure on neighbour iteration strategies for pagerank. In
Euro-Par 2015: Parallel Processing Workshops, pages 528–540. Springer, 2015.

[17] M. Verstraaten, A. L. Varbanescu, and C. de Laat. Synthetic graph generation for
systematic exploration of graph structural properties. In European Conference
on Parallel Processing, pages 557–570. Springer, Cham, 2016.

[18] Y.Wang, A. Davidson, Y. Pan, Y.Wu, A. Riffel, and J. D. Owens. Gunrock: A high-
performance graph processing library on the gpu. In Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, page 11.
ACM, 2016.

	1 Problem Statement
	2 Major Research Highlights
	2.1 Performance Impact of Parallelisation Strategy
	2.2 Systematic Benchmarking
	2.3 Model Generation Case Study: BFS
	2.4 On-going Work

	References

