
Evaluation of virtualization and traffic filtering methods for container networks

Łukasz Makowskia, Cees de Laata, Paola Grossoa,∗

aSystem and Network Engineering Group (SNE), University of Amsterdam, Science Park 904, Amsterdam, The Netherlands

Abstract

Future distributed scientific applications will rely on containerisation for data handling and processing. The question is whether
container networking, and the associated technologies, are already mature enough to support the level of usability required in these
environments. With the work we present in this article we set out to experiment and evaluate three novel technologies that support
addressing and filtering: EVPN, ILA and Cilium/eBPF. Our evaluation shows that different level of maturity, with EVPN more
suitable for adoption. Our work also indicates that to support true multi-tenancy further integration of addressing technologies and
filtering technologies is needed.

Keywords: containers, overlay networks, packet filtering, addressing, multi-tenancy

1. Introduction

Many business applications use containers to perform com-
plex or distributed computational tasks. The use of containers
for scientific applications is also becoming more and more evi-
dent.

This increased adoption goes hand in hand with new techni-
cal challenges for the operations of distributed containers sys-
tems. Some of these new challenges are intrinsic to the nature
of scientific cooperation, which relies on often on communi-
cation and cooperation between different scientists in different
institutions. An area that has started to get significant attention
is container networking[1][2]; a number of shortcomings have
been identified, and they need to be properly addressed before
containers can be heavily deployed by scientists in distributed
settings.

A first challenge relates to addressing. Assuming a container
uses the hosts’ IP address for outside communication, it is fea-
sible to forward needed requests based on a well-known appli-
cation port. Nevertheless, this approach becomes problematic
when multiple containers use the same port number, as it im-
plies the use of techniques such as port-level NAT or proxying
to forward a request to its destination. A way to remove this
overhead would be assigning an IP address to every container
in a system, however, this introduces new problems e.g. IP ad-
dress mobility or exhaustion of addressing space. Another op-
tion is creating a virtual network atop of physical network, com-
monly known as an overlay. In this research we looked at two
new technologies: EVPN (Ethernet VPN) and ILA (Identifier
Locator Addressing) for providing virtual networks. Our focus
has been on assessing their respective capability to support a
flexible environment for container systems. First, we analysed

∗Corresponding author
Email addresses: makowski@uva.nl (Łukasz Makowski),

delaat@uva.nl (Cees de Laat), pgrosso@uva.nl (Paola Grosso)

EVPN and ILA in a side-by-side fashion, in regard to the data
and control plane capabilities supporting multi-tenancy. Next,
using available projects we built rudimentary proof-of-concept
environments utilising EVPN and ILA for container communi-
cation.

A second challenge relates to load balancing and filtering
traffic. EVPN and ILA are not suitable for this more complex
tasks. A new project, Cilium (https://www.cilium.io/),
is addressing these problems, and we looked at its perfor-
mance in regard to filtering compared to a Docker Swarm
(https://docs.docker.com/engine/swarm/) based con-
tainer overlay.

In the following section we will briefly cover the general fea-
tures of container networks, and provide a more detailed in-
troduction to EVPN, ILA and Cilium (Sec. 2). We will first
present the experiments we conducted to compare ILA and
EVPN (Sec. 3); we will follow with the tests made for the per-
formance evaluation of Cilium (Sec. 4). We will present a sum-
mary of our findings (Sec. 5); and then compare our work with
the related work in the area (Sec. 6). In Sec. 7 we identify future
direction of work based on the current results.

2. Background

2.1. Container networking

The concept of overlay networks is not a recent invention, but
in the virtualization era it is getting more and more attention.
The IETF’s Network Virtualization Overlays (nvo3) working
group has produced a number of documents discussing design
and architecture of network virtual overlays (NVOs). Lasserre
et al. [3] provided the NVO fundamental functional compo-
nents, which are illustrated in Fig. 1.

1https://tools.ietf.org/html/rfc7365

https://www.cilium.io/
https://docs.docker.com/engine/swarm/

+--------+ +--------+

| Tenant +--+ +----| Tenant |

| System | | (’) | System |

+--------+ | () +--------+

| +---+ +---+ (_)

+--|NVE|---+ +---|NVE|-----+

+---+ | | +---+

/ . +-----+ .

/ . +--| NVA |--+ .

/ . | +-----+ \ .

| . | \ .

| . | Overlay +--+--++--------+

+--------+ | . | Network | NVE || Tenant |

| Tenant +--+ . | | || System |

| System | . \ +---+ +--+--++--------+

+--------+|NVE|.........

+---+

|

|

=====================

| |

+--------+ +--------+

| Tenant | | Tenant |

| System | | System |

+--------+ +--------+

Figure 1: NVO reference model1

This reference model distinguishes between tree elements:

• Network Virtualization Edge (NVE). The tunnel endpoint,
realizing the features such as encapsulation and providing
so called Virtual Network (VN) context allowing to distin-
guish the traffic of different network instances.

• Network Virtualization Authority (NVA). The component
providing an information about virtual endpoint reacha-
bility in the overlay. Precisely, informing an NVE how a
packet should be addressed so that it will make its way
through an underlay network.

• Tenant System (TS). An entity belonging to the network
tenant, attached to one or more VN instances e.g. VM.

Narten et al. [4] emphasize multitenancy as a major feature for
a modern NVOs. The important attribute of virtual network is
the ability to isolate particular VN instances from each other,
while being TS addressing agnostic.

As we said in the Introduction we are interested in assessing
the use of containers for scientific applications. Consequently,
our focus is specifically on NVO built for the purpose of using
containers. Important network functionalities that we expect to
find in this environment are:

• Service discovery (SD). As the services reside on various
IPs and ports, an application has to consult a broker service
to discover (IP, port) tuple before it communicates with
others.

• Service function chaining (SFC) and load-balancing. A
container network, as any network, requires a generic set
of features such as load-balancing, firewalling etc. So that
an NVO could natively support steering traffic through,
without the need to modify application workflow.

• Traffic policies. Maintaining consistent and accurate fil-
tering rules has always been a challenge for complex com-
puter systems. Evidently, within a system which has a
potential for spawning multiple endpoints across many
servers, it only gets more significant.

Fig. 2 illustrates the container network components and fea-
tures we discussed. It also shows how some of the technologies
we have investigated fit in this schema.

+ +------+---------+--------+-------+

| | Load | Orch. | | |

| | bala-| integr- | SD/SFC | ACL |

| | ncing| ation | | |

Cilium | +------+---------+--------+-------+

| | |

| | NVO (ILA, EVPN, VXLAN) |

| | |

+ +---------------------------------+

Figure 2: Container network components. An NVO itself, should have also fea-
tures such as load-balancing, orchestrator integration, service discovery (SD)/
service function chaining (SFC) and access control lists (ACL).

In the upcoming sections we will give a short overview of the
three technologies we have investigated.

2.2. EVPN

EVPN is a mature standard which evolved from the family
of MPLS based L2VPN [5], L3VPN [6] solutions for provid-
ing ISP-grade technology of L2 and L3 virtual private networks
(VPNs) spanning multiple customer locations.

The concept of EVPN has been introduced and formalized
in [7]. EVPN cuts down on its predecessors’ concepts reduc-
ing its scope to Ethernet and IP protocols family only. This
allows reduced complexity while still enabling the creation of
scalable Ethernet networks. A notable change is that it permits
the usage of other packet encapsulation techniques. By intro-
ducing VXLAN [8] into EVPN, the latter has opened itself a
way to the mid and low range devices not supporting MPLS
format. Additionally, the standard is flexible enough to be used
with other encapsulation standards as long as there is a way to
embed a VNID into a packet. Hence there are existing EVPN
variations (e.g. in OpenContrail1) employing MPLS-in-UDP
[9] or MPLS-in-GRE [10]. The RFC draft [11] aims to be more
specific and discusses the scenarios of how EVPN can be used
to build an NVO network, going over available encapsulations,
multi-homing scenarios and multicasting support.

2.3. ILA

ILA is an NVO approach proposed by Herbert and Lapukhov
[12]. It has been designed to satisfy two requirements:

• Unique addressing. ILA provides a unique IPv6 address
for every container/task running in the overlay.

• Address mobility. In specific, when a network endpoint
gets restarted on a different physical node, it is still able to
maintain its virtual address.

1http://www.opencontrail.org/opencontrail-architecture-
documentation/#section1 4

2

ILA is inspired with other Identifier/Locator protocols such
as ILNP [13] and LISP [14]. Nonetheless, the ILA creators ar-
gue that unlike ILNP it is easier to deploy in existing infrastruc-
tures as it does not require new encapsulation and compatibility
with existing network equipment.

ILA does not use any encapsulation, instead, it uses left 64
bits of an address as a Locator (identifying physical node) and
the remaining 64 bit part (Identifier) to uniquely address an end-
point.

+---+

+--->| SIR prefix |Reserved| Identifier |

| +---+

| | |

| SIR prefix to locator |

| V V

| +---+

| +>| Locator |Reserved| Identifier |

| | +---+

| |

| + On-wire repre-

| sentation

|

+ Tenant-system

view

Figure 3: ILA address translation overview. A SIR prefix in packet’s destination
address is replaced with a Locator before it is transmitted across an NVO.

The endpoints (e.g. containers) in ILA network are unaware
of the Locator part of an address. While they still use IPv6
addresses to communicate, ILA packet destination address is
a subject to a translation. From endpoint’s perspective the ad-
dress, consists of the SIR prefix concatenated with the Identi-
fier. The SIR remains virtual, getting replaced with the Locator
every time the actual ILA packet enters the wire (Fig. 3). Hence
to this process, the endpoint mobility is possible as the address
is not tied to an underlay and can be placed anywhere (within
ILA network).

The ILA authors also published more deployment focused
document [15]. They discuss the approaches to integrate ILA
with a multiple Linux kernel namespaces which is useful con-
sidering our goal of using ILA as a container network. Al-
though, ILA standard definition does not enforce any particular
solution to be used as an NVA, there is a recent draft document
[16] defining required MP-BGP [17] extensions, showing that
ILA could follow the approach known from EVPN.

2.4. Cilium
Cilium leverages eBPF as technology for traffic filtering and

policy definition. The eBPF [18] Linux kernel mechanism has
a potential to enhance a traditional way of packet filtering with
the aid of netfilter [19][20]. The eBPF’s predecessor — clas-
sical BPF (cBPF) [21] was created to improve on the ability
to filter packets implemented by embedding an in-kernel VM
interpreting machine-level filtering instructions. eBPF has fur-
ther extended the available instruction set enabling the creation
of more sophisticated programs. Since that time, it has been
used for various purposes such as system performance analysis
[22] or DDoS protection [23].

Currently, a single eBPF program has a limitation of 4096
instructions, however, as it can tail-call (maximum 32 times)
another program it is not a functionality blocking restriction.
Because eBPF code is stateless by design, a special construct
(maps) has been created to allow saving desired information to

be accessed by further program invocations. eBPF maps work
in key/value fashion and can also be accessed from user-space.
A single program can use 64 maps at maximum. In Fig. 4 we
illustrate how an eBPF program can be used. The common way
of creating eBPF programs is using languages like C or P4,
which with the aid of LLVM2 can be compiled into ELF for-
mat. Once compiled, an eBPF program can be used in-kernel
by using a bpf() system call. Basically, after the program passes
the verification it might be attached to a hook point e.g. Linux
traffic control (TC) sub-system.

Figure 4: Overview of BPF kernel injection.

TC as a point of attachment allows performing actions on
packets before entering the kernel’s networking stack. The
available actions are: content rewrite; size trimming/extension
and redirection to other network devices.

Cilium heavily relies on eBPF technology for performing
packet related operations, significantly reducing code-path net-
work packet structure traverses in the kernel. Cilium generates
eBPF programs which are further hooked to Linux traffic con-
trol (TC) sub-system, which results in an eBPF program acting
in place of network interface packet queueing sub-routine (List-
ing 1).

~# tc filter show dev lxc20156 ingress

filter protocol all pref 41159 bpf

filter protocol all pref 41159 bpf handle 0x1 bpf_lxc.o:[from -container]

direct -action

~# tc filter show dev cilium_vxlan ingress

filter protocol all pref 49152 bpf

filter protocol all pref 49152 bpf handle 0x1 bpf_overlay.o:[from -overlay]

direct -action

Listing 1: Cilium generated eBPF programs (bpf lxc.o, bpf overlay.o) are
used to handle the container-overlay communication path.

Cilium decouples addresses from policies, using the concept
of labels and identifiers. Every container connected to Cilium
is assigned with a label, which makes it part of a group of con-
tainers. Later on, an operator may decide to specify rules (pol-
icy) how those groups (identified by a label) can communicate.
Such rule is being automatically assigned with an ID called an
identity, which is allocated to any container affected by it (List-
ing 2).

2https://llvm.org/
2http://wiki.osdev.org/ELF6

3

root@cilium -master :~# cilium endpoint list

ENDPOINT IDENTITY LABELS (source:key[=value]) IPv6 IPv4 STATUS

14594 291 cilium:id.service1 fd02::c0a8 :210b:0:3902 10.11.20.8 ready

20084 291 cilium:id.service1 fd02::c0a8 :210b:0:4 e74 10.11.58.218 ready

Listing 2: Listing of endpoints (containers) connected to Cilium overlay.
Both endpoints (14594, 20084) are assigned with the same label
(cilium:id.service1) and share the same identity (291).

In its VXLAN flavor, Cilium uses VNID field to a network
packet with identity it belongs to. This enables the receiving
container host to ignore incoming packets’ characteristics (pro-
tocol, port or address) and conduct matching only on a

3. ILA and EVPN comparison

The first step of our work has been a comparison of the tech-
nologies based on the documentation available (see Sec. 3.1).
A second step has been the creation of two distinct test environ-
ments (see Sec. 3.2 and Sec. 3.3) to assess the ease of use of the
two technologies, which we describe in Sec. 3.4

3.1. Multitenancy comparison
The result of this analysis are shown in Fig. 5.

Feature EVPN ILA
type L2/L3 L3
data-plane VXLAN, MPLS IPv6 address Locator/Identifier
control-plane MP-BGP not defined
VN context VNID, RT/RD3 SIR4, VNID

Figure 5: EVPN-ILA feature comparison

To be able to create multiple virtual networks the packet for-
mat should provide information (in the form of VNID) which
context a given packet belongs to. The size of the VNID space
which is considered to be feasible to meet the majority of de-
mands is one million values (20 bits) [24]. Both, EVPN with
VXLAN and ILA fulfill this requirement. In the VXLAN case
this is quite straightforward as it uses its dedicated packet field
(20 bits) for that purpose, however, ILA (given its specifics) is
less intuitive. It dedicates 28 bits of Identifier part to be used as
a VNID, which can be further used in the process of translation
between ILA’s tenant virtual prefix and on-the-wire representa-
tion (see Fig. 6).

+--+-----------------+

| TS virtual prefix (SIR) | Identifier |

+---+--------+

^ |

| |

+-prefix <-> VNID-+ |

translation | |

v v

+---------------------------+--------+---------+-----------------+

| Locator |Reserved| VNID | Identifier |

+--+

Figure 6: ILA multitenancy concept. For every packet a VNID can be translated
to tenant virtual prefix.

Such approach enables the possibility to host tenants and pro-
viding the means to isolate the traffic in a scope of a single
VNID. However, it does not provide the flexibility in regard to
tenant system virtual prefix selection. As the VNID field is used

to map traffic to a particular client, colliding TS virtual prefix
would result in ambiguity. For example, if VNID1 points to
SIR1, another tenant’s VNID2 to SIR1 mapping is conflicting.

In contrast, EVPN is capable of providing both the isola-
tion, as well as freedom in tenant’s address selection. As the
VXLAN VNID tag does not interfere with a packet it encap-
sulates, there is no issue with having overlapping addresses as
long as those are put within distinct VXLAN segments.

3.2. EVPN test environment
To prototype a EVPN network we used the components and

the general idea described in [25].

+----------------------+ +-----------------------+

|+------+ | | +------+|

||cont- | +----+| VXLAN tunnel |+----+ |cont- ||

||ainer +--+ +--+vtep|<------------------------->|vtep+--+ +---+ainer ||

|| | | | +----+| |+----+ | | | ||

|+------+ ++--+--+ | | +-+--+-+ +------+|

| |bridge| | | |bridge| |

| +------+ +----------+ +-----------+ +------+ |

+----------------------+ +-v--v-+ +-----------------------+

Container host VM1 |bridge| Container host VM2

+--^---+

|

|

+--v---+

|route |

|server|

+------+

Figure 7: EVPN environment topology

As shown in Fig. 7, the topology consisted of two VMs op-
erating as a container hosts and an additional one running as a
route-server. Each container host was running a BGP daemon
(bagpipe-bgp5) peering with a route-server (GoBGP6). Once a
container was started, bagpipe-bgp created EVPN route Type-2
(Listing 3) containing its IP and MAC addresses. Upon pro-
cessing the BGP update the receiving container host was able to
set-up its side of a VXLAN tunnel using ”Route Distinguisher”
(line 24; containing IP of a container host originating the up-
date) and ”MPLS Label Stack: 136” (line 31; in this case, rep-
resenting VXLAN tunnel ID) parameters.
Border Gateway P r o t o c o l − UPDATE Message

2 Marker : f
Length : 107

4 Type : UPDATE Message (2)
Withdrawn Routes Length : 0

6 T o t a l Pa th A t t r i b u t e Length : 84
Pa th a t t r i b u t e s

8 Pa th A t t r i b u t e − ORIGIN : IGP
Pa th A t t r i b u t e − AS PATH : empty

10 Pa th A t t r i b u t e − LOCAL PREF : 100
Pa th A t t r i b u t e − EXTENDED COMMUNITIES

12 Pa th A t t r i b u t e − MP REACH NLRI
F l a g s : 0x80 , O p t i o n a l : O p t i o n a l , Non− t r a n s i t i v e , Complete

14 Type Code : MP REACH NLRI (1 4)
Length : 48

16 Address f a m i l y i d e n t i f i e r (AFI) : Layer −2 VPN (2 5)
S u b s e q u e n t a d d r e s s f a m i l y i d e n t i f i e r (SAFI) : EVPN (7 0)

18 Next hop ne twork a d d r e s s (4 b y t e s)
Number o f Subnetwork p o i n t s o f a t t a c h m e n t (SNPA) : 0

20 Network l a y e r r e a c h a b i l i t y i n f o r m a t i o n (39 b y t e s)
EVPN NLRI : MAC A d v e r t i s e m e n t Route

22 AFI : MAC A d v e r t i s e m e n t Route (2)
Length : 37

24 Route D i s t i n g u i s h e r : 0001 c0a8320b0094 (1 9 2 . 1 6 8 . 5 0 . 1 1 : 1 4 8)
ESI : 00 00 00 00 00 00 00 00 00

26 E t h e r n e t Tag ID : 0
MAC Address Length : 48

28 MAC Address : 5 2 : da : 4 6 : 1 3 : 7 e : 7 d (5 2 : da : 4 6 : 1 3 : 7 e : 7 d)
IP Address Length : 32

5https://github.com/Orange-OpenSource/bagpipe-bgp
6https://osrg.github.io/gobgp/

4

30 IPv4 a d d r e s s : 1 0 . 1 . 2 . 8
MPLS Labe l S t a c k : 136 (bot tom)

Listing 3: EVPN route Type-2 update indicating presence of a container with
IP 10.1.2.8 (line 30) and MAC 52:da:46:13:7e:7d (line 28).

3.3. ILA test environment
The ILA environment (Fig. 8) consisted of two container host

VMs interconnected with a bridge. To provide the ability to
create ILA tunnels we configured three types of IPv6 addresses
(Listing 4):

• address configured directly on container host interface
used for external communication (providing regular IPv6
reachability)

• ILA locator prefix (e.g. /64), which needed be reachable
across the whole ILA environment

• ILA SIR address residing within a container namespace
(used for container to container communication)

+----------------------+ +-----------------------+

|+------+ | | +------+|

||cont- +-----+ | ILA tunnel | +------+cont- ||

||ainer + +--+------+ <-------------------------> +------+--+ +ainer ||

|| | |lwtunnel | | | |lwtunnel | | ||

|+------+ |routing | | | |routing | +------+|

| |rules | | | |rules | |

| +---------+ +----------+ +-----------+ +---------+ |

+----------------------+ +-v--v-+ +-----------------------+

Container host VM1 |bridge| Container host VM2

+------+

Figure 8: Test topology

r o o t @ i l a −1 : / v a g r a n t / # i p −6 a l
(o u t p u t o m i t t e d f o r b r e v i t y)
3 : enp0s8 : <BROADCAST, MULTICAST, UP , LOWER UP> mtu 1500 s t a t e UP q l e n 1000

i n e t 6 2 8 0 3 : 6 0 8 2 : 1 9 5 0 : 4 0 1 : 2 5 5 5 : 0 : 1 : 0 / 6 4 scope g l o b a l d e p r e c a t e d
+−−−Loca to r −add r .−−−−−−−−−−−−−−+

v a l i d l f t f o r e v e r p r e f e r r e d l f t 0 s e c
i n e t 6 2 0 0 1 : 6 1 0 : 1 5 8 : 2 6 0 0 : : 1 / 6 4 scope g l o b a l

+−−−Regula r −add r .−−−−−+

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
i n e t 6 f e80 : : a00 : 2 7 f f : f e45 : 5 ebb /6 4 scope l i n k
v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r

5 : ve th0@if4 : <BROADCAST, MULTICAST, UP , LOWER UP> mtu 1500 s t a t e UP q l e n 1000
i n e t 6 f a c e : b00c : : 2 5 5 5 : 0 : 0 : 1 / 6 4 scope g l o b a l

+−−−−−SIR−add r .−−−−−+

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r

Listing 4: ILA addressing setup

To provide the actual ILA functionality we used
Linux kernel’s ”ila” module (source version 7FDBACF-
BFD562604DFB0735). Although ILA does not use encapsu-
lation, conceptually it also utilizes tunneling approach for the
communication. Authors of Linux kernel module implemented
this with the aid of lightweight tunnel (lwtunnel) feature.
Lwtunnel does not create a special tunnel device as it happens
in case of VXLAN, instead, the tunnel can be used by creating
an IP route and supplying the ”encap ila”” keyword. As a
regular IP route is matched against packet’s destination, for the
actual bi-directional ILA tunnel operations needed to be two
routes present: one for egress and second for ingress packet
flow (Listing 5).
e g r e s s r o u t e
r o o t @ i l a −1 : / v a g r a n t # i p −6 r o u t e show | g rep i l a
f a c e : b00c : : 2 5 5 5 : 0 : 2 : 0 encap i l a 2 8 0 3 : 6 0 8 0 : 8 9 6 0 : 4 4 7 3 csum−mode no− a c t i o n \

#+−Remote SIR add r .−+ +−−Remote− l o c a t o r −+

v i a 2 0 0 1 : 6 1 0 : 1 5 8 : 2 6 0 0 : : 2 dev enp0s8 m e t r i c 1024 p r e f medium
#+−−Gateway ’ s−IP−−−−−−−+

i n g r e s s r o u t e
r o o t @ i l a −1 : / v a g r a n t # i p −6 r o u t e show t a b l e l o c a l | g rep i l a
2 8 0 3 : 6 0 8 2 : 1 9 5 0 : 4 0 1 : 2 5 5 5 : 0 : 1 : 0 encap i l a f a c e : b00c : 0 : 0 csum−mode no− a c t i o n \

#+−−−−−Remote−SIR−add r .−−−−−+ +−−−SIR−−−−−+

v i a f a c e : b00c : : 2 5 5 5 : 0 : 1 : 0 dev v e t h 0 m e t r i c 1024 p r e f medium
+−−Dst−SIR−addr−−−−−+

Listing 5: ILA tunnel routes

3.4. Ease-of-use

Our efforts to create two working environment for EVPN and
ILA provided us a good insight in the current status of these two
technologies.

To build an operational EVPN set-up we were able to use
standard components to realize data and control planes. This al-
lows to concentrate our focus on configuring BGP sessions, as
well as on the actual components integration and not the modi-
fications to the code.

In contrast, creating an operational ILA set-up consumed
much more effort and resources than EVPN one. First, there
was no actual documentation of the used kernel module. This
resulted in an attempt to recreate the configuration presented by
one of the authors [26]. We also had to discover by trail-and-
error that there are a number of side effect of ILA such as:

• disabling packet checksumming on a container interface
for UDP/TCP communication

• removing kernel created local Locator route breaking
ingress ILA translation

In essence with ILA we did not reach the stage of getting this
programmatically integrated, which is a pre-requisite to using a
control-plane. This resulted in a need to manually create ILA
tunnels between the containers.

4. Cilium filtering performance

We decided that using physical servers in the role of con-
tainer hosts can potentially provide close to real world results
regarding network performance. For the purpose of analyzing
Cilium we built a set-up (Fig. 9) consisting of two Supermicro
X8DTT-H servers equipped with Intel Xeon CPUE5620 with
24G DDR3 1066 MHz of RAM. Servers were installed with
Ubuntu 17.04 operating system, Docker container engine ver-
sion 17.05.0-ce (build 89658beand) and Cilium version 0.9.90
(build 08c1e0c4).

The MTU of the link interconnecting the servers was set to
9000 bytes. Furthermore, we also adjusted virtual components
settings:

• MTU of virtual bridges and VXLAN/veth interfaces was
set to 8950 bytes

• we enabled the Generic Segmentation Offload (GSO),
Generic Receive Offload (GRO), TCP Segmentation Of-
fload (TSO) features of veth and VXLAN devices

• on physical network interfaces, we enabled GSO and
GRO, while disabling TSO

5

+----------------------+ +-----------------------+

|+------+ xx +------+|

||cont- + x x +cont- ||

||ainer +------>x Docker Swarm/Cilium overlay x<------+ainer ||

|| | x x | ||

|+------+ xx +------+|

| | | |

| <--10Gbps,-VXLAN-encap.---> |

+----------------------+ +-----------------------+

Physical server1 Physical server2

Figure 9: Netfilter/Cilium topology

We decided to compare two possible approaches one could
take to enforce policies in a container overlay:

1. Docker Swarm overlay and netfilter. Using Docker Swarm
‘overlay‘ driver for creating a virtual network and using
netfilter as a packet filter.

2. Cilium overlay. Interconnecting containers with Cilium’s
provided overlay capability combined with usage of Cil-
ium’s traffic policies.

For each of those setups we created two scenarios. The first
one was targeted to observe the baseline performance of the en-
vironments. Specifically, we measured the performance with-
out any policy/filtering rules applied. Secondly, we conducted
the experiments filtering the incoming packets based on des-
tination TCP port. In Listing 6 we present the way we im-
plemented this with netfilter, whereas Listing 7 illustrates the
Cilium case.

ip netns exec 1-s8idcnjdiq iptables -t filter -A FORWARD -m state --state

ESTABLISHED ,RELATED -j ACCEPT

ip netns exec 1-s8idcnjdiq iptables -t filter -A FORWARD -m tcp -p tcp --dport

5201 -j ACCEPT

ip netns exec 1-s8idcnjdiq iptables -t filter -P FORWARD DROP

Listing 6: Netfilter filtering policy applied withing the namespace of Docker
overlay network (1-s8idcnjdiq).

[{

"endpointSelector": {"matchLabels":{"id":"service1"}},

"ingress": [{

"fromEndpoints": [

{"matchLabels":{"id":"service1"}}

],

"toPorts": [{

"ports": [{"protocol": "tcp", "port" : "5201"}]

}]

}]

}]

Listing 7: Cilium filtering policy JSON file.

In total, we performed 4 different types of measurements.
The common element was that we performed 60 seconds long
”iperf3” TCP bandwidth measurements (N=100) between two
containers placed on distinct hosts.

4.1. Filtering comparison

In our experiments we measured the bandwidth speed of a
TCP stream between two containers interconnected with an net-
work overlay. The results of conducted performance tests are
depicted in Fig. 10. There are four bars in total, each for one
type of measurement performed:

• ipt no rules, Docker Swarm overlay without any filter in
place

• cilium no rules, Cilium overlay without any filter in place

• ipt tcp5201, Docker Swarm overlay with iptables/netfilter
rules

• cilium tcp5201, Cilium with its policies in place

Figure 10: Iptables and Cilium based filtering comparison.

For two first cases (ipt no rules, cilium no rules) we mea-
sured the average speed of 7.22 Gbps, whereas for Cilium an
equivalent test scored 8.22 Gbps on average. That shows that
Cilium based network performed noticeably better than Docker
Swarm created one.

In the scenario with the filtering (ipt tcp5201, cil-
ium tcp5201), we observed that there was no noticeable filter-
ing performance effect on the speed for the corresponding tests.
In specific, we reached 7.20 Gbps for Docker Swarm overlay
and 8.24 Gbps with Cilium.

5. Discussion

EVPN and ILA evaluation

The EVPN and ILA test environments we created were capa-
ble of performing basic operations, however, we consider them
to be still in a preliminary stage. The EVPN and ILA setups
lack the integration with a container orchestrator so that mul-
tiple virtual networks spanning over many container hosts can
be deployed. Moreover, ILA requires also a control-plane solu-
tion, making this technology even less suitable for widespread
adoption.

Cilium performance advantage

As our results showed in Sec. 4.1 the eBPF-accelerated Cil-
ium demonstrates noticeably higher bandwidth than an overlay
setup based on Docker Swarm. Interestingly, the filtering ca-
pabilities of the former are not playing the key role in those
results. We believe instead that the fact Cilium implements the
packet’s path mainly in eBPF, as we described in Sec. 2.4, is the
main source of the observed performance benefit.

Moving to the filtering impact itself, there was no noticeable
effect of the policies we implemented. Arguably, the prevail-
ing majority of the traffic we generated in our experiment was
matched against the first entry in the defined netfilter rule-set.

6

Thanks to that we avoided the need for per-packet sequential
rule evaluation, which it is in turn known to lead to the perfor-
mance degradation. A further exploration on this topic should
include the use of parallel streams between multiple containers,
while using higher capacity physical links between the servers.
Such a setup could reveal more border conditions which we did
not reach with the established design.

6. Related work

Del Piccolo et al. [27] conducted a comprehensive study over
the available solutions enabling mobility and multi-tenancy in
a data-center. The study compares fifteen different approaches
in regard to complexity, overhead, resiliency, scalability and the
ability to span multiple sites. EVPN is mentioned in the context
of empowering VXLAN or NVGRE tunnels creation, however,
there is no discussion over its actual use for creating a data-
center fabric. Moreover, due to its novelty ILA is not included
at all in the analysis presented in the article. Lastly, the central
point of discussion is about VM-oriented connectivity, whereas
in our work we specifically look at the use of containers as cus-
tomer endpoints.

Guenender et al. [28] propose a new overlay approach called
NoEncap. The authors discuss about the disadvantages and
redundant data intrinsic to the traditional encapsulation based
overlays. They identify the major design principles for NoEn-
cap; after that they compare the performance of their imple-
mentation with VXLAN encapsulation. The presented experi-
ments consist of throughput and latency measurements between
pairs of virtual machines residing on physical servers intercon-
nected with a 40 Gbps link. The results show that the proposed
approach outperforms the software VXLAN overlay for both
of the collected metrics, oscillating relatively close to a native
(non-overlay) communication performance. Based on this re-
search, we see a solid motivation for evaluating ILA technology
and enriching the landscape of encapsulation-less overlays with
this new approach.

Although the performance of various netfilter scenarios and
the effect of a number of rules has been studied [29] [30], there
was not such evaluation performed in the context of overlay net-
works for containers. Although Jouet et al. [31] used BPF to
enhance on the packet matching in OpenFlow, we thought more
instructive and worthwhile to look at a side-by-side compari-
son of netfilter and eBPF when they are applied to an identical
workload.

7. Conclusions and future work

The adoption of containers for distributed and multi-domain
scientific applications will require the creation of suitable con-
tainer networks. This will require to solve problems related to
addressing and filtering that emerge in these multi-tenants en-
vironment.

Our work, presented in this article, initiates a through eval-
uation of a number of emerging technologies that can help to
solve these problems. We have focused on EVPN and ILA for

addressing, and on Cilium/eBPF for filtering. Our experimen-
tations have allowed us to draw some general conclusion that
we think are interesting for the networking community looking
to support containers networks for science.

First, we believe that EVPN can be adopted to be used as a
container network. Data and control plane options defined by
the standard are commonly available, which significantly short-
ens time required to bootstrap. Whereas, ILA has only data-
plane implementations which make it practically unusable as
a virtual network at the current stage. Nevertheless, both so-
lutions we presented will require extra work to integrate them
with a container orchestration platform of choice.

After our analysis we find EVPN to have more potential
regarding multi-tenancy than ILA. The former can host end-
points with conflicting addressing spaces without any con-
straints, whereas ILA requires unique SIR and Identifier com-
ponents across all tenants.

Second, our Cilium network evaluation shows that eBPF
technology can deliver a better performance while still main-
taining the functionality of a regular VXLAN based overlay. In
our performance evaluation, we did not observe notable effect
of filtering performance for either Cilium or netfilter.

In the coming months we will continue to work on extend-
ing our EVPN and ILA setups with additional focus on multi-
tenancy in such virtual networks. Furthermore, we will draw
from the lessons learned from our Cilium analysis in order to
integrate the above with performance-effective traffic filtering.

Lastly, we believe that container networks will be effective
for supporting science if they will exhibit Service Function
Chaining (SFC)-like behaviour. We will work on expanding
current container networking approaches with solutions allow-
ing the above. Specifically, we aim at easing the interaction be-
tween different VN instances in such a way that load-balancing
and filtering could be achieved. We see the route advertisement
methods that has been recently been proposed in the IETF [32]
as a promising and scalable way of approaching this problem.

8. Acknowledgments

This work is funded by a grant from SURFnet in the program
Research on Networks (2017). Special thanks go to Ronald van
der Pol and Marijke Kaat for their support during this work.
We are also indebted to Tako Mars and Nick de Bruijn that
paved the way for this reseearch during their master graduation
projects.

[1] J. Claassen, R. Koning, P. Grosso, Linux containers networking: Perfor-
mance and scalability of kernel modules, in: Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP, IEEE, 2016, pp.
713–717.

[2] T. Yu, S. A. Noghabi, S. Raindel, H. H. Liu, J. Padhye, V. Sekar, Freeflow:
High performance container networking., in: HotNets, 2016, pp. 43–49.

[3] M. Lasserre, F. Balus, T. Morin, N. Bitar, Y. Rekhter, Framework for Data
Center (DC) Network Virtualization, rFC7365 (October 2014).
URL http://tools.ietf.org/rfc/rfc7365.txt

[4] T. Narten, E. Gray, D. Black, L. Fang, L. Kreeger, M. Napierala, Prob-
lem Statement: Overlays for Network Virtualization, rFC7364 (October
2014).
URL http://tools.ietf.org/rfc/rfc7364.txt

7

http://tools.ietf.org/rfc/rfc7365.txt
http://tools.ietf.org/rfc/rfc7365.txt
http://tools.ietf.org/rfc/rfc7365.txt
http://tools.ietf.org/rfc/rfc7364.txt
http://tools.ietf.org/rfc/rfc7364.txt
http://tools.ietf.org/rfc/rfc7364.txt

[5] K. Kompella, Virtual Private LAN Service (VPLS) Using BGP for Auto-
Discovery and Signaling, rFC4761 (January 2007).
URL https://tools.ietf.org/html/rfc4761

[6] E. Rosen, BGP/MPLS IP Virtual Private Networks (VPNs), rFC4364
(February 2006).
URL https://tools.ietf.org/html/rfc4364

[7] A. Sajassi, BGP MPLS-Based Ethernet VPN, rFC7432 (February 2015).
URL https://tools.ietf.org/html/rfc7432

[8] M. Mahalingham, Virtual eXtensible Local Area Network (VXLAN): A
framework for overlaying virtualized layer 2 networks over layer 3 net-
works, rFC7348 (August 2014).
URL https://tools.ietf.org/html/rfc7348

[9] X. Xu, N. Sheth, L. Yong, R. Callon, D. Black, Encapsulating MPLS in
UDP, rFC7510 (April 2015).
URL http://tools.ietf.org/rfc/rfc7510.txt

[10] T. Worster, Y. Rekhter, E. Rosen, Encapsulating MPLS in IP or Generic
Routing Encapsulation (GRE), rFC4023 (March 2005).
URL http://tools.ietf.org/rfc/rfc4023.txt

[11] A. Sajassi, A Network Virtualization Overlay Solution using EVPN,
draft-ietf-bess-evpn-overlay-08 (March 2017).
URL https://tools.ietf.org/html/

draft-ietf-bess-evpn-overlay-08

[12] T. Herbert, Identifier-locator addressing for IPv6, draft-herbert-nvo3-ila-
04 (March 2017).
URL https://tools.ietf.org/html/

draft-herbert-nvo3-ila-04

[13] R. Atkinson, Identifier-Locator Network Protocol (ILNP) Architectural
Description, rFC6740 (November 2012).
URL https://tools.ietf.org/html/rfc6740

[14] D. Farinacci, The Locator/ID Separation Protocol (LISP), rFC6742 (Jan-
uari 2013).
URL https://tools.ietf.org/html/rfc6742

[15] P. Lapukhov, Deploying Identifier-Locator Addressing (ILA) in datacen-
ter networks, Internet-Draft draft-lapukhov-ila-deployment-01, Internet
Engineering Task Force, work in Progress (Oct. 2016).
URL https://datatracker.ietf.org/doc/html/

draft-lapukhov-ila-deployment-01

[16] P. Lapukhov, Use of BGP for dissemination of ILA mapping information,
draft-lapukhov-bgp-ila-afi-02 (October 2016).
URL https://tools.ietf.org/html/

draft-lapukhov-bgp-ila-afi-02

[17] T. Bates, Multiprotocol Extensions for BGP-4, rFC4760 (January 2007).
URL https://tools.ietf.org/html/rfc4760

[18] A. Starovoitov, The Berkeley packet filter, https://www.kernel.org/
doc/Documentation/networking/filter.txt.

[19] P. Ayuso, Netfilter’s connection tracking system, LOGIN: The USENIX
magazine 31 (3).

[20] P. Russel, H. Welte, Netfilter Hacking How-to.
URL https://www.netfilter.org/documentation/HOWTO/

netfilter-hacking-HOWTO.txt

[21] S. McCanne, V. Jacobson, The BSD Packet Filter: A New Architecture
for User-level Packet Capture, http://www.tcpdump.org/papers/

bpf-usenix93.pdf, visited on: 07-06-2017 (December 1992).
[22] IOVisor community, BPF-based Linux IO analysis, networking, monitor-

ing, https://github.com/iovisor/bcc.
[23] G. Bertin, XDP in practice: integrating XDP into our DDoS mitigation

pipeline.
[24] D. Black, J. Hudson, L. Kreeger, M. Lasserre, T. Narten, An Architecture

for Data-Center Network Virtualization over Layer 3 (NVO3), rFC8014
(December 2016).
URL http://tools.ietf.org/rfc/rfc8014.txt

[25] M. Mukhtarov, Experiments with container networking: Part 2 (2016).
URL http://murat1985.github.io/kubernetes/cni/2016/05/

15/bagpipe-gobgp.html

[26] P. Lapukhov, Internet-scale Virtual Networking using ILA,
https://www.nanog.org/sites/default/files/20161018_

Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf, re-
trieved on: 05-06-2017 (October 2016).

[27] V. D. Piccolo, A. Amamou, K. Haddadou, G. Pujolle, A survey of net-
work isolation solutions for multi-tenant data centers, IEEE Commu-
nications Surveys Tutorials 18 (4) (2016) 2787–2821. doi:10.1109/

COMST.2016.2556979.
[28] S. Guenender, K. Barabash, Y. Ben-Itzhak, A. Levin, E. Raichstein,

L. Schour, Noencap: Overlay network virtualization with no encapsula-
tion overheads, in: Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15, ACM, New York,
NY, USA, 2015, pp. 9:1–9:7. doi:10.1145/2774993.2775003.
URL http://doi.acm.org/10.1145/2774993.2775003

[29] D. Hoffman, D. Prabhakar, P. Strooper, Testing Iptables, in: Proceedings
of the 2003 Conference of the Centre for Advanced Studies on Collabo-
rative Research, CASCON ’03, IBM Press, 2003, pp. 80–91.
URL http://dl.acm.org/citation.cfm?id=961322.961337

[30] D. Hartmeier, Design and Performance of the OpenBSD Stateful Packet
Filter (Pf), in: Proceedings of the FREENIX Track: 2002 USENIX An-
nual Technical Conference, USENIX Association, Berkeley, CA, USA,
2002, pp. 171–180.
URL http://dl.acm.org/citation.cfm?id=647056.713848

[31] S. Jouet, R. Cziva, D. P. Pezaros, Arbitrary packet matching in Open-
Flow, in: 2015 IEEE 16th International Conference on High Performance
Switching and Routing (HPSR), 2015, pp. 1–6. doi:10.1109/HPSR.

2015.7483106.
[32] R. Fernando, S. Mackie, D. Rao, B. Rijsman, M. Napierala, M. Morin,

Service chaining using virtual networks with bgp vpns, draft-ietf-bess-
service-chaining-03 (July 2017).
URL https://tools.ietf.org/html/

draft-ietf-bess-service-chaining-03

8

https://tools.ietf.org/html/rfc4761
https://tools.ietf.org/html/rfc4761
https://tools.ietf.org/html/rfc4761
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc7432
https://tools.ietf.org/html/rfc7432
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
http://tools.ietf.org/rfc/rfc7510.txt
http://tools.ietf.org/rfc/rfc7510.txt
http://tools.ietf.org/rfc/rfc7510.txt
http://tools.ietf.org/rfc/rfc4023.txt
http://tools.ietf.org/rfc/rfc4023.txt
http://tools.ietf.org/rfc/rfc4023.txt
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-08
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-08
https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-08
https://tools.ietf.org/html/draft-herbert-nvo3-ila-04
https://tools.ietf.org/html/draft-herbert-nvo3-ila-04
https://tools.ietf.org/html/draft-herbert-nvo3-ila-04
https://tools.ietf.org/html/rfc6740
https://tools.ietf.org/html/rfc6740
https://tools.ietf.org/html/rfc6740
https://tools.ietf.org/html/rfc6742
https://tools.ietf.org/html/rfc6742
https://datatracker.ietf.org/doc/html/draft-lapukhov-ila-deployment-01
https://datatracker.ietf.org/doc/html/draft-lapukhov-ila-deployment-01
https://datatracker.ietf.org/doc/html/draft-lapukhov-ila-deployment-01
https://datatracker.ietf.org/doc/html/draft-lapukhov-ila-deployment-01
https://tools.ietf.org/html/draft-lapukhov-bgp-ila-afi-02
https://tools.ietf.org/html/draft-lapukhov-bgp-ila-afi-02
https://tools.ietf.org/html/draft-lapukhov-bgp-ila-afi-02
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc4760
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.txt
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.txt
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.txt
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf
https://github.com/iovisor/bcc
http://tools.ietf.org/rfc/rfc8014.txt
http://tools.ietf.org/rfc/rfc8014.txt
http://tools.ietf.org/rfc/rfc8014.txt
http://murat1985.github.io/kubernetes/cni/2016/05/15/bagpipe-gobgp.html
http://murat1985.github.io/kubernetes/cni/2016/05/15/bagpipe-gobgp.html
http://murat1985.github.io/kubernetes/cni/2016/05/15/bagpipe-gobgp.html
https://www.nanog.org/sites/default/files/20161018_Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf
https://www.nanog.org/sites/default/files/20161018_Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf
http://dx.doi.org/10.1109/COMST.2016.2556979
http://dx.doi.org/10.1109/COMST.2016.2556979
http://doi.acm.org/10.1145/2774993.2775003
http://doi.acm.org/10.1145/2774993.2775003
http://dx.doi.org/10.1145/2774993.2775003
http://doi.acm.org/10.1145/2774993.2775003
http://dl.acm.org/citation.cfm?id=961322.961337
http://dl.acm.org/citation.cfm?id=961322.961337
http://dl.acm.org/citation.cfm?id=647056.713848
http://dl.acm.org/citation.cfm?id=647056.713848
http://dl.acm.org/citation.cfm?id=647056.713848
http://dx.doi.org/10.1109/HPSR.2015.7483106
http://dx.doi.org/10.1109/HPSR.2015.7483106
https://tools.ietf.org/html/draft-ietf-bess-service-chaining-03
https://tools.ietf.org/html/draft-ietf-bess-service-chaining-03
https://tools.ietf.org/html/draft-ietf-bess-service-chaining-03

	Introduction
	Background
	Container networking
	EVPN
	ILA
	Cilium

	ILA and EVPN comparison
	Multitenancy comparison
	EVPN test environment
	ILA test environment
	Ease-of-use

	Cilium filtering performance
	Filtering comparison

	Discussion
	Related work
	Conclusions and future work
	Acknowledgments

