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Abstract

To address increasing problems caused by cyber attacks, we leverage Software Defined networks and Network Function Virtu-
alisation governed by a SARNET-agent to enable autonomous response and attack mitigation. A Secure Autonomous Response
Network (SARNET) uses a control loop to constantly assess the security state of the network by means of observables. Using a
prototype we introduce the metrics impact and efficiency and show how they can be used to compare and evaluate countermeasures.
These metrics become building blocks for self learning SARNET which exhibit true autonomous response.
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1. Introduction

Computer networks are constantly being attacked. Cyber
crime directed to network infrastructures and network protocols
is increasing. The economic and societal consequences of such
attacks are reaching front pages in the news leading to dimin-
ished trust in the Internet. Not surprisingly, an entire industry
emerged to create an ecosystem of tools and devices that are
marketed to prevent, stop, or to mitigate the negative effects of
such malicious behaviours. We can install off the shelf Intru-
sion Detection Systems to identify the existence of attacks and
we can deploy specialised firewalls to prevent malicious traffic
from entering a specific network domain.

However, in the era of the new Software Defined Networks
(SDN), the following crucial and interesting question comes
up: To which level, can we rely on software based solutions
for providing defence services? Concretely we ask ourselves if
there are novel ways to utilise SDNs and Virtual Network Func-
tions (VNF) to counter attacks. If we can do this, is it possible
to use Artificial Intelligence (AI) to coordinate the actions of
these VNFs and SDNs in such a way that responses to attacks
are autonomously taken, ultimately without external (human)
intervention?

We are convinced that SDNs and VNFs are suitable for such
response mechanisms. In this paper we will use our architecture
for Secure Autonomous Response Networks (SARNET)[1].
We present the new components to our VNET[7] framework
to enable automatic autonomous response. Using these compo-
nents we apply SDN-based countermeasures that can be used
for protection of networks and ultimately for guaranteed de-
livery of services. We argue that, in order to select the best
countermeasure for an attack, the most useful element of our
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solution, or for that matter any other SDN-based network, is a
proper characterisation of the countermeasure’s efficiency. In
this article we will, therefore, lay the foundation for a standard-
ised manner to define and measure efficiency of SDN-based cy-
ber attack mitigation measures.

2. Secure Autonomous Response Networks

Nowadays, software can efficiently support the instantiation
of network topologies as an overlay network on physical de-
vices. Virtual switches, virtual links and virtual network func-
tions, together, are the building elements for software-defined
overlay networks. Companies increasingly rely on overlay net-
works for both the delivery of services to their customers, or for
the establishment of inter-company services. An example is the
creation of virtual networks between instances of cloud based
virtual machines or containers. While these virtual networks
are technically feasible their robustness during attacks and the
assessment thereof require novel approaches to both detection
of attacks as well as the implementation of defence strategies.

In the SARNET project we are researching how to ultimately
enable autonomy of network response to attacks. SDN-based
mitigation techniques are one of the essential components in
this vision, as they allow to create networks that are able to au-
tonomously respond and recovery when attacked. A SARNET
uses control loops to monitor and maintain the desired state re-
quired by the security observables. The SARNET control loop
is similar to the OODA loop (observe, orient, decide, and act).
Lenders et al. successfully applied the OODA loop to cyber
security [2]. The SARNET loop shown in Fig. 1 has an added
step, compared to the OODA loop, which increases the granu-
larity. In the explicitly added learn phase data is collected and
stored to improve response times for future attacks.

The SARNET control loop traverses the following steps:

Detect – the default state of a SARNET during normal opera-
tion. Whenever the SARNET detects an anomaly on the



Figure 1: The SARNET control loop

network it triggers the control loop.

Analyse – analyses the characteristics of the particular attack.
Analyse determines where the attacks originate, which
path they take in the network and what the target is.

Decide – evaluates past decisions and policies and determines
the suitable countermeasure for the attack.

Respond – executes the countermeasure.

Learn – stores data containing results and execution parame-
ters for future reference.

The various steps in the control loop are carried out in the
SARNET-agent component. This component receives informa-
tion from one or more external monitoring systems for Detect;
it relies on a network controller for the execution of the Re-
spond stage. The SARNET-agent, monitoring system and net-
work controller work closely together to maintain the network’s
security state.

2.1. Attack detection and analysis
Several techniques exist to detect known attacks. The first

technique relies on intrusion detection systems; these systems
can, when updated regularly, detect most known attacks. Flow
analysis is another established way of detecting anomalies in
the network. Flow analysis can help to detect both known and
unknown attacks, but requires security experts to identify the
anomalies and to collect attack details. Finally, machine learn-
ing can be applied for attack detection. Sommer et. al [3] re-
searched the use of machine learning in intrusion detection sys-
tems and note some challenges. The paper states that Machine
learning is much better at detecting similarities than detecting
outliers. To use use machine learning one requires one needs
to train the algorithm with data from the network during un-
der normal operation and during attacks. The latter dataset is
often difficult to obtain since this is a collection of network be-
haviour during anomalous events. Even if one manages to train
the algorithm with sufficient data, there is a risk of register-
ing false positives, so further investigation by a security expert
is necessary when the network under attack is critical to the
business. False positives can be reduced by correlating events
in the dataset to events from other detection methods. These
events can be collected and correlated in Security Information

and Event Management (SIEM) systems or correlated using an
attack correlation pipeline such as CoreFlow[4].

Existing methods, such as the one described in [5], can be
used to classify an attack. The author proposes to use a cascad-
ing chain of elements to formally describe an attack, starting
from the tools used by the attackers, the vulnerability they ex-
ploit, the action they perform, the intended target and the results
they accomplish. This approach seems promising and we will
investigate its suitability in the SARNET context. When the at-
tack is classified, the exact characteristics of the attack need to
be analysed. Analyse obtains the additional information such
as: origin, target, entry points, traffic type and other character-
istics. Analyse also provides information on the scale of the
attack which can then be used to calculate the risk of the attack.

2.2. Decide

Decide looks at the cost and efficiency of the possible reac-
tions. To make a decision Decide takes the following aspects
into account:

• Attack class

• Attack characteristics

• Risk of applying the countermeasure

• Knowledge of the network

• Costs of executing responses

• Efficiency of the countermeasure in similar situations (pre-
vious results from Learn)

Effective reaction depends on the flexibility of the SARNET
under attack, e.g. whether the SARNET is redundant or multi-
homed, and depends on the location in the network to apply the
countermeasures. In some cases machines or network elements
can be added and link capacity can be increased. Dynamically
changing link properties are possible thanks to NFV and the
cloud services available to the SARNET. A modification will
have monetary costs, dependent on the service provider the in-
frastructure is running on, as well as costs in implementation
times, e.g. VM startup times. These costs are parameters that
Decide accounts for.

2.3. React and Learn

Software defined networks give the required flexibility re-
quired for SARNET to change traffic flows and re-route impor-
tant traffic away from overloaded parts of the network towards
other parts dedicated to traffic analysis. Combining the flexibil-
ity of SDNs with both Network Function Virtualisation and ma-
chine virtualisation is an even more powerful solution. Service
Function Chaining (SFC), an emerging standard for network
control plane operations [6], provides a suitable solution to con-
nect these NFVs together. By using SFC one can specifically
target and re-route suspicious traffic towards network functions
that do more intensive processing e.g. deep packet inspection,
filtering, or sanitation. Exclusively processing suspicious flows
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lowers the cost of the response and is less disruptive to regu-
lar traffic. Once the reaction is in place, the network evaluates
whether or not the applied countermeasure has the desired ef-
fect.

The Learn step records the effect of the chosen actions. The
data recorded by learn can be used to respond more quickly
to similar attacks in the future. It is essential to properly de-
fine the efficiency of a countermeasure. One possible way to
express efficiency using the monetary costs of the response; ef-
ficiency is in this case the difference between revenue recovered
thanks to the reaction and cost of the reaction itself. This paper
elaborates on this measure of efficiency by quantifying impact,
the performance degradation of the network from the moment
of detection until the moment of recovery. What constitutes an
effective countermeasure depends on this efficiency metric but
will differ between SARNETs and furthermore depends on non-
technical rules and policies. When the attack characteristics and
efficiency values are recorded and learned by an algorithm they
will be used next time to optimise the Respond phase. Never-
theless, it may be desirable to override the automatic execution
of a specific countermeasure from the ones recorded previously.
Therefore, we provide a way to override learned behaviour and
implement a self defined response during Respond.

3. Towards an estimate of efficiency

Given a system like SARNET which uses control loop mech-
anisms to counter attacks the interesting part is to determine the
efficiency of countermeasures. We argue that efficiency needs
to be evaluated as a complex value, which has dependencies
on the footprint of the attack, as well as on the timings of the
response. With the former we mean that even if an attack has
a specific signature and is recognised as belonging to a known
type, the efficiency of the countermeasure will depend on the
specific characteristics of the attack. When focusing on the time
dimension of a countermeasure we define three main intervals:

• Time to detect: td
The time to detect is the time from the moment the attack
starts (tsa) until the moment the attack is detected (tthr−up),
that is the time when the service metrics threshold(s) is
crossed. td = tthr−up − tsa.

• Time to implement: ti
The time to implement is the time elapsed from the mo-
ment the attack is detected until the moment the imple-
mentation of the countermeasure is completed (tcm−impl).
ti = tcm−impl − tthr−up.

• Time to recover: tr
The time to recover is the time elapsed from the moment
the countermeasure is implemented to the moment un-
til the service metrics are recovered, and the threshold is
passed in the other direction (tthr−down).
tr = tthr−down − tcmimpl.

In terms of the control loop, td is the time it takes in the De-
tect phase from the moment there is a trigger to the moment the

control loop moves to the next phase. ti is the time that the con-
trol loop spends in the Analyze and the Decide phases plus the
time spent in the Respond phase until the moment the counter-
measure is in effect. Finally tr is the time spent in the Respond
phase until the moment the attack is stopped or mitigated.

Once more, the efficiency considerations are not relevant
purely for our SARNET architecture; the results are generaliz-
able in other SDN-based systems. They, in essence can provide
the basis for a standardised and agreed upon set of metrics when
comparing different SDN-based response systems.

4. The SARNET prototype

To perform our study we further developed our VNET
prototype[7]. VNET provides an orchestration and visualisa-
tion system for a SARNET which we currently deploy as an
overlay network. It displays network topology information,
flows and application metrics in an intuitive way. Additionally,
it allows the creation of observables based on the current state
of the network.

In our previous paper we described the major components of
VNET as depicted in Fig. 2. We summarise:

• Infrastructure controller talks to the IaaS platform
to instantiate the virtual infrastructure, in this case
ExoGENI[8].

• Monitoring system receives monitoring information from
the virtual infrastructure.

• Network controller controls the network and hosts in the
virtual infrastructure.

• VNET-agent collects monitoring data on the network ele-
ments and sends them to the monitoring system and to the
network controller for dynamic configuration of the ele-
ments.

• VNET coordinates the interaction between the different
components.

• UI controller and VNET visualisation UI display the net-
work information and handle user interactions with VNET.

For autonomous defence we developed a SARNET-agent
(Sec. 4.4) that receive real-time monitoring data and observ-
able states from VNET and instructs VNET to alter the virtual
network infrastructure when action is required. VNET provides
SARNET-agent the information and the tools it requires for au-
tonomous network defence.

In order to accommodate our automated defences and new
attacks we updated VNET to support the processing of network
flow information. Network flow information is collected by all
network routers and SDN switches in the virtual infrastructure
using host-sflow1 and subsequently sent to the VNET monitor-
ing system. Additionally, we added virtual network functions
and the infrastructure (SDN switch and a NFV host) to create
VNFs that perform certain countermeasures. The next sections
will describe these additional components in more detail.

1host-sflow: https://github.com/sflow/host-sflow
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Figure 2: Software components in the VNET prototype.

4.1. SDN switch
The VNET prototype uses software defined networking in or-

der to apply virtual network functions on traffic entering the do-
main it protects. The network component that provides the SDN
functionality is a Linux host that provides switching through a
Linux Ethernet bridge.

In order to redirect traffic flows on this switch, ebtables2 is
used to rewrite destination MAC addresses on incoming pack-
ets. For example: The destination MAC address on all traffic
coming from the switch interface connected to the local router
can be rewritten to be destined for a virtual network function,
cluster, or host, for processing. After processing the packets
can then be returned to the switch with the original destination
MAC address restored. This results in ‘external’ packets being
redirected through the NFV host, while leaving all other local
area network communication unmodified.

4.2. Network function virtualisation
Network function virtualisation allows VNET to deploy spe-

cific security functions on traffic flows as needed. The network
function virtualisation host is currently implemented as a Linux
host with a number of Docker3 containers. Each container im-
plements a specific network function. A Docker Registry in-
stance is used to store a catalog of container images.

All containers on the NFV host are attached to a Linux
bridge. Using ebtables traffic to rewrite the destination MAC
address, traffic can be forced into a specific container. By redi-
recting traffic leaving a container towards a next container var-
ious network functions can be chained together. This chaining
can be limited to specific IP addresses or IP ranges, allowing
only specific traffic to be manipulated.

2ebtables: http://ebtables.netfilter.org
3docker: http://www.docker.io

4.3. virtual network functions
Three different containers were made to run on the Docker

host: an intrusion detection system (IDS), a CAPTCHA injec-
tor, and a honeypot.

The IDS container performs packet inspection using PCAP
to capture packets. A rule-based engine reports back attacker
IP addresses based on known attack signatures.

The CAPTCHA network function acts as a proxy between
the external user and the web service. It will inject a web page
containing a mandatory challenge which needs to be solved be-
fore the session is allowed through to the web service it pro-
tects. This challenge prevents automated clients from submit-
ting a potentially malicious request. These CAPTCHAs are
normally easy to solve by humans but expensive to solve by au-
tomated processes. This effectively blocks automated requests
such as attacks to pass through. Because in the proof of concept
all clients are fully automated, only non-malicious clients can
solve the challenge.

The honeypot function simulates a legitimate version of the
web service. However, any interaction with this honeypot will
not affect the actual service. The honeypot can be used to cap-
ture additional details during an attack. For example, in the
case of a password brute force attack, the honeypot can capture
information on the accounts being attacked and the passwords
being tried.

4.4. SARNET-agent
The SARNET-agent implements the SARNET control loop

described in Sec. 2 which, based on the topology and the data
streamed from the monitoring controller, can make autonomous
decisions on how to best defend the network. This data is gath-
ered during the detect phase.

During the analyze phase any changes in service and network
state are processed. For example, service transactions per sec-
ond, CPU usage, and the number of succesful and failed logins
are monitored. If any of the predefined thresholds for these val-
ues are violated a flag is raised.

In the next phase a decision is made based on the currently
active flags and any other additional data (e.g. the presence
of certain network flow types, data from an intrusion detection
system, et cetera). Specific combinations of flags and data indi-
cate certain attack signatures for which a set of predefined so-
lutions can be applied. If there is insufficient information about
the attack, e.g. the attacking IP address or origin domains are
not known, an intrusion detection system can be deployed dy-
namically to gather this information. In addition to applying
new solutions, the decide phase also determines whether cur-
rently active solutions need to be retained or removed.

In the final phase, the chosen response is applied to the net-
work. Possible responses include introducing traffic filters at
cooperating upstream routers to block attack traffic, rerouting
traffic to the NFV host using an SDN switch, and choosing the
chain of network functions to apply and to which IP addresses.

4.5. SARNET-agent UI
To show the state of the SARNET-agent and the information

it uses to make its decisions we use an extra visualisation UI
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Figure 3: The user interface of the SARNET-agent, it visualises the metrics the agent uses, the control loop and the decisions taken. A video of the user interface is
published at: https://youtu.be/PDrRQkvIERo.

(Fig. 3) besides the one that is provided by VNET. The first
column shows network metrics such as network flows and total
bandwidth usage. The second column shows application met-
rics such as CPU usage, transaction rate, and successful versus
failed login attempts. The final column shows the control loop
itself. Each stage of the control loop is highlighted as it is ex-
ecuted, and any decision or result produced by such a phase is
displayed in an information block.

5. Scenarios

To illustrate the SARNET operation of our prototype we have
identified three attack scenarios and executed them in a virtual
network.

• UDP DDoS attack.

• CPU utilisation attack.

• Password attack

Fig. 4 shows the topology of the virtual network on which
we execute the attack scenarios. On the virtual network, traffic
passes the virtual routers R1–R4 and the SDN switch S2 switch
described in the previous section. Under normal circumstances
simulated users in the network domains D1–D3 send regular re-
quests to the web services W1–W2. The amount of successful
requests will generate the Revenue value we use in our mea-
surements. In our attack scenarios, attacks originate from the
external domains D1–D3 and target the web services W1–W2.

R1
R3

R4
R2

W1

W2

D1

D3

D2 S2 NFV

Figure 4: Topology of the virtual network: Three domains (D1–D3) are con-
nected via multiple routers (R1–R4) and a switch (S2) to two web services (W1–
W2). NFV is a host that runs our security VNFs.

This virtual network is under constant monitoring. We mon-
itor the following metrics: 1) revenue, the amount of successful
transactions to the web services, 2) logfail, the amount of failed
logins, 3): cpu, the CPU load on the web services, and 4) traf-
fic mix, the ratio between TCP and UDP traffic on the network.
New data for these metrics are asynchonously collected by the
SARNET-agent with a sample rate of approximately 1 second.
From these metrics we define the following observables that are
monitored for health:

• ddos observable; fails when the metric revenue passes its
threshold and traffic mix shows excessive UDP traffic.

• bruteforce observable; fails when the metric logfail passes
its threshold

• load observable; fails when both metric cpu and revenue
passes their threshold
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When one of these observables fails the SARNET-Agent
launches the associated countermeasure.

5.1. UDP attack
Here a number of attackers residing in the same domains

(D1–D3) as legitimate users send large amounts of UDP traf-
fic toward the servers in order to starve the legitimate connec-
tions. The SARNET-agent recognises the type of attack due to
the excessive amount of UDP traffic and the simultaneous drop
in revenue. The SARNET has two possible countermeasures
to apply: increasing the bandwidth of the core links or filtering
the malicious traffic at the edges (routers R2–R3). Sec. 6 will
evaluate both countermeasures in to this attack scenario.

5.2. CPU utilisation attack
In this attack, malicious users in one of the domains D1–D3

request content from the servers W1–W2 which requires com-
putation on the server’s side before the request can be satisfied.
By requesting computationally expensive pages at a high fre-
quency the CPU utilisation on the servers is increased. The
increase in turn affects the capability to answer legitimate re-
quests. Since these resource requests happen at the application
layer, the network layer will not clearly show indication of an
attack. Therefore, SARNET will first deploy an IDS that per-
forms Deep Packet Inspection in the same domain as the servers
to classify and further analyse the requests and to identify at-
tack sources. As second step, it redirects all requests from the
domains where the bad traffic originates, i.e. IP ranges, to a
container running a CAPTCHA. Fig. 5 shows how the traffic is

R1
R3

R4
R2

W1

W2

D1

D3

D2 S2

Figure 5: The mixed (red) traffic (attack + normal requests) from D1 is redi-
rected to the NFV host which has two VNFs chained, first an IDS that monitors
the traffic, finally an CAPTCHA blocker that prevents malicious requests to
pass and normal traffic (green) to continue to web services (W1–W2).

redirected by S2 to the NFV host NFV which in this case has
started both the IDS and CAPTCHA VNFs. After filling in the
CAPTCHA regular traffic is redirected to the web servers while
the automated malicious traffic is blocked.

5.3. Password attack
Here malicious users are trying to log in on the servers by

attempting logins with dictionary generated passwords. This
again takes place on the application layer.

As can be seen in Fig. 6, similar to the CPU utilisation attack,
the SARNET again responds by first deploying an IDS on the
NFV host to identify the attackers in D1. However, in this case,
the SARNET starts a honeypot VNF and unlike the CPU attack
scenario, the SARNET-agent now uses the intel gathered from
the IDS to let the SDN switch S2 only redirect the identified

R1
R3

R4
R2

W1

W2

D1

D3

D2 S2

Figure 6: The mixed (red) traffic (attack + normal requests) from D1 is redi-
rected to the NFV host which has two VNFs chained, first an IDS that monitors
the traffic, finally an honeypot that can monitor attack behaviour. In this case
normal requests (green) pass through untouched to (W1–W2).

malicious users to the honeypot that is deployed dynamically
on the container host.

Now that the attackers are routed to the honeypot, the web
servers W1-W2 can resume normal operations. The honeypot
gives the possibility to further analyse the passwords that the
attackers use and to gain additional intelligence. Currently we
do not use the honeypot intelligence to improve the SARNET
detection systems; we consider this future work.

6. Results

As we have explained in Sec. 5 we have considered three
types of attacks. In the following paragraphs we will present
the results for the time to detect, time to implement and time to
recover in the three scenarios.

6.1. UDP DDoS results

A UDP DDoS attack can be described as a function of the in-
jected malicious traffic, resulting in varying degrees of stress on
the system. We looked at how our SARNET system responds
as a function of the attack traffic. In our emulation the three
attackers can produce a different rate of UDP traffic, ranging
from 20mbps each to a maximum of 80mbps. We apply two
responses: filtering on UDP traffic and changing the maximum
amount of bandwidth on the link.

When we look at the recovery time this scenario we can see
that the type of software-defined response we apply in the over-
lay network has an influence. Fig. 7 presents this time for the
two types of responses we had implemented, namely the in-
crease of the available bandwidth in the core links or the appli-
cation of filters at the edges close to the attackers. In the first
case (rate change) we observe that at a certain point there is
no recovery possible, indicated in the figure with the missing
boxplot. This means that this type of solution efficiency has
a strong relation to the attacker footprint. On the other hand,
the application of filters provides a speedy recovery and fairly
predictable recovery time.

6.2. CPU attack results

In the CPU attack scenario we simulate a varying the number
of attackers; we start with 3 and we move on to 5, 10 and 15
respectively. The time to detect a CPU attack does not have
a dependency on the number of attackers, as it can be seen in
Fig. 8.
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Figure 7: Time to recover after the implementation of a countermeasure (in
seconds) as a function of each individual attacker UDP rate. Top plot shows
the results when applying a rate increase in the core; bottom plot refers to the
application of filters
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Figure 8: Time to detect a CPU attack (in seconds) as function of the number
of attackers.

The implementation of the countermeasure has two steps:
first we deploy an IDS to classify the requests and secondly
we redirect all suspicious connections to a container running a
CAPTCHA function. The duration of these two steps is also
independent of the number of attackers. This is because these
steps are purely related to the software execution times and they
take on average 1.73 seconds in our set-up.

Differently from the DDoS attack in this case there is clear
dependency in the recovery time as function of the number of
attackers. Fig. 9 shows that the recovery time goes from an
average of 6.55 seconds for 3 attackers to 23.5 seconds when
there are 15 malicious nodes. This can be explained by observ-

ing that a larger number of attackers will bring the amount of
successful transactions much further down from the threshold,
consequently it will take longer to reach and pass the threshold
again once the countermeasure is in place.

●

●

●

●

●

●

●
●

●

3 5 10 15

5
10

15
20

25
30

Number of attackers

R
ec

ov
er

y 
tim

e 
(s

ec
)

Figure 9: Time to recover from a CPU attack (in seconds) as function of the
number of attackers.

6.3. Password attack results

When we analysed the performance of our system under a
password attack we see that the detection time is independent
of the number of attackers, as shown in Fig. 10. Also, we see
that the mean time to detect an attack in this case is lower than
the time it took us to detect a CPU attack, namely 1.65 seconds
versus 5.26. This depends on the way we evaluate the value for
the thresholds: a CPU attack requires a separate process that
polls the CPU usage on a specified interval while a password
attack relies on a counter that is continuously updates as failed
logins occur.
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Figure 10: Time to detect a password attack (in seconds) as function of the
number of attackers.

The implementation times of the two step defence are shown
in Fig.11.
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Figure 11: Time (in sec) to implement the two step defence in a CPU attack
(top) and a password attack (bottom) as function of the number of attackers.

Fig.12 presents the time the system takes to recover after the
successful implementation of the countermeasures in a pass-
word attack. In this case there is no dependency on the number
of attackers. This is because the redirect to the honeypot hap-
pens instantly.
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Figure 12: Time (in sec) to recover in a password attack as function of the
number of attackers.

7. Discussion

Drawing from the results we now provide a way towards the
assessment of the efficiency of countermeasures. Our gener-
alised approach is meant to allow an easy comparison of differ-
ent solutions in various implementations. This is particularly
useful when assessing traditional, non SDN based solutions and
comparing them to SDN-based solutions, as well as comparing
SDN-based solutions to each other.

Efficiency of a countermeasure is given by taking the sum of
impact of the attack and the costs of the reaction to it. The im-
pact of an attack can be seen as the integral of one or more of the
metrics described in Sec. 5. For example, we can take the inte-
gral of the revenue between the detection time and the recovery

time and compare this to what the revenue should have been
according to the baseline. This gives you the loss in revenue or
the impact of the attack on the revenue metric. Fig.13 shows
a simplified graphical representation of this concept. Once the
thresholds are passed at the detection time the revenue might
continue to decrease until the moment the countermeasures are
in place; after that time the revenue starts to move toward the
baseline until it reaches full recovery at the recovery time. The
shape of the loss of revenue depends on the attacks characteris-
tics.

Attack Start

Detect
Baseline

Revenue
Recovered

Implement

Attack Stop

Figure 13: Impact: the amount of lost revenue between the recovery time and
the detection time (blue)

The cost of a reaction is the integral of the (monetary) invest-
ments made to counter attack and the same reasoning made for
the impact in terms of the shape of this function applies.

Two possible countermeasures are then comparable by look-
ing at their performance values in terms of impact and costs
and calculating the sum of these values. The solution with the
lowest value is the more efficient.

In realistic scenarios the efficiency evaluation might be more
complicated than just described. For instance, it is possible that
even after the implementation of countermeasures there is no
full recovery such as depicted in Fig. 14.

Attack Start

Detect
Baseline

Revenue
Recovered

Implement

Attack Stop
Max Recovery

Figure 14: Impact: the amount of lost revenue between the recovery time and
the maximum recovery (blue) in the case of a countermeasure that isn’t capable
of fully recovering. The delta between maximum recovery and the baseline can
be used as a measure to select the best countermeasure when full recovery is
not an option.

In that case one could decide to finetune or change the re-
sponse, until again the recovery is achieved. However, there
are cases in which the thresholds will not be passed again and
the system will be operating in suboptimal mode. Even in these
cases our efficiency metric can be used to compare countermea-
sures if one also considers the difference between maximum
recovery and the full recovery.

There are three main elements that affect the impact, as it can
be seen from the plot and derived from our results:

• the thresholds set to identify attacks will determine the
time at which we start to evaluate the integral;
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• the scale and characteristics of the attacks themselves
might influence the shape of the revenue curve in time;

• and finally the measures that are used to safeguard the net-
work will determine the value of the implementation time
and the recovery time.

The three attack scenarios we evaluated show that the detec-
tion time and the response time can depend on the attack char-
acteristics, i.e. the number of attackers or the amount of data
they transmit. The implementation of a countermeasure in our
system is currently constant, because 1) we determined how to
react a priori, 2) there is no risk analysis done, and 3) we fully
control the devices on which we deploy our countermeasure.
The implementation time will start to vary once the risk analy-
sis is more complex and even more so when the implementation
steps require coordination with other domains. Latency will in-
crease, thus automatically increase the impact.

This approach to determine efficiency becomes crucial when
deciding how to respond to an attack. As we had shown in
Fig.1 our system comprised a Learn phase that will store effi-
ciency information and use at subsequent time to take the most
appropriate decisions.

8. Related Work

Our work presents defence mechanisms against cyber attacks
that rely on both software defined networking mechanism as
well as virtual network function in containers. Our ultimate
goal is to achieve autonomous response to such attacks.

Defence mechanisms against network attacks have been thor-
oughly compared against each other in the literature. In particu-
lar approaches for the mitigation of DDoS attacks have received
significant attention. Surveys have been conducted, for example
by Chang et al. [9] or more recently by Zargar et al. [10]. These
surveys provide an extensive evaluation of various techniques
but they do not provide quantitative ways to define efficiency as
we do in this paper. Such definitions are crucial to support the
learning and decision making required an autonomously react-
ing systems, and our approach provides that.

Recent work focuses on the role of SDNs in both providing
countermeasures to attacks as well as identifying unexplored
vulnerabilities in SDNs and SDN techniques themselves. Yan
et al. [11] address these aspects, and point to the need to ex-
tensive evaluation of SDN-based solutions and SDN networks
themselves. We believe that our proposal to evaluate counter-
measures by efficiency, will facilitate the assessment of soft-
ware based responses.

Our work has shown that some of the components in a
counter attacks are easily delivered using Virtual Network
Functions. In our case these VNFs are delivered via the de-
ployment of containers at the appropriate locations in the net-
work. Existing work so far has mainly focused on the survey of
available techniques and discussing their applicability in vari-
ous scenarios, particularly in data centres [12] and mobile en-
vironments [13] [14]. Our application and use of containerised
VNFs in a real network that is driven by autonomous responses

is, to the best of our knowledge, a first step to show the actual
usability and the effect of such techniques.

Autonomy of responses will ultimately rely on machine
learning techniques. It has been argued by Sommer and Pax-
son [15](2010) that machine learning could be successfully ap-
plied to the area of intrusion detection. Recent patents such
as the one from Google on botnet detection [16] show the ap-
plicability of this type approach for identifying attacks. Our
proposal to use machine learning to assess efficiency and adopt
the most effective set of countermeasures is therefore a novel
and promising application of such techniques.

9. Conclusions and Future Work

This paper shows the first steps toward autonomous response
to cyber attacks using SDN and NFV. We introduce the SAR-
NET control loop, elaborated on the phases of the control loop
and discussed how to implement them. We also showed a first
implementation of this control loop as a continuation of the
VNET work, which after including SDN and NFV capabilities
was able to exhibit autonomous response to a selection of at-
tacks. Finally, our measurements show that detection and re-
sponse time are dependent on the attacks characteristics and
continue our discussion on how we use impact and efficiency to
evaluate different solutions. We conclude that metrics for im-
pact of the attack and efficiency of a countermeasure are neces-
sary inputs for learning and choosing the best suitable responses
to achieve more advanced autonomous responses.

The actual assessment of relative efficiency is the focus of
our future work. We are interested in using our evaluation sys-
tem to compare multiple SDN measures and to select the best
option, and on determining where to apply such measures in
the network when there are multiple options. Furthermore, we
think that containers have the potential to share security VNFs
such as detection mechanisms, and possible countermeasures
in a reusable manner. Therefore, we want to continue to in-
vestigate intelligence sharing using containers in multi domain
collaborations such as SARNET Alliances[17].
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