
Enabling User-Centric Data-Intensive Application
Deployment in Clouds Using the Open Cloud

Exchange

Cosmin Dumitru, Ralph Koning, Ana-Maria Oprescu, Yuri Demchenko, Paola Grosso, Cees de Laat
University of Amsterdam

System and Network Engineering Group
Amsterdam, The Netherlands

{c.dumitru,r.koning,a.m.oprescu,y.demchenko,p.grosso,delaat}@uva.nl

Abstract—The Open Cloud eXchange (OCX) concept has been
defined as a place for inter-connection and peering between cloud
providers and customers. The concepts surrounding OCX focus
mainly the network aspects and are currently being implemented
within GÉANT (gOCX). The current goal of the OCX is to
seamlessly provide layer 0-2 connectivity between cloud sites
and cloud users. In this work we investigate the advantages
and challenges of using the OCX instead of traditional (public
Internet) multi-cloud connectivity. To this end, we deploy a user-
centric cloud resource scheduler and execution engine for bags-of-
tasks. Based on our previous demonstration at TNC2014 we put
froward the plan for the SC14 demonstration of data-intensive
applications on the gOCX infrastructure.

I. INTRODUCTION

The Open Cloud eXchange (OCX) [11], [13] concept has
been defined as a place for inter-connection and peering be-
tween cloud providers and customers. The concepts surrounding
OCX focus mainly the network aspects and are currently being
implemented within GÉANT [10], [19]. The current goal of the
OCX is to seamlessly provide layer 0-2 connectivity between
cloud sites and cloud users.

Many data-intensive cloud computing applications require
high performance and stable network interconnections in order
to provide the optimum service to users. It is envisioned that
the OCX will enable these applications with a service-like view
of the private network connecting multiple cloud provider sites.

The problem of interconnecting multiple cloud providers
through private links in the presence of data-intensive applica-
tions can be viewed from multiple perspectives:

• from the perspective of the connectivity providers
• from the perspective of the cloud providers
• from the perspective of application and middleware

developers
• from the perspective of the users (application owners)

OCX is distributed and implemented as a set of intercon-
nected OCX nodes or partners over the multi-gigabit GÉANT
infrastructure. This paper describes our findings and experience
while using the GÉANT OCX (gOCX) infrastructure to perform
ultra-high-definition video transcoding during the TERENA
Network Conference 2014 [12], [8] and in preparation for the
SC14 demonstration. We aim to provide novel insight into the
challenges surrounding the emerging concept of Open Cloud

eXchange with respect to the four perspectives mentioned
above.

II. DEMONSTRATION DESCRIPTION

The main goal of the demonstration at TNC2014 was to
investigate how data-intensive applications may benefit from
the potential power of the OCX concept compared to using the
routed internet.

We demonstrated that the GÉANT OCX (gOCX) infrastruc-
ture can be used for multi-server video encoding by transcoding
the very high resolution frames of Sintel [7], from the original
lossless format to a compressed format more suitable for web
viewing. This is a highly processor intensive task to reach the
target performance of 24 frames per second (i.e. the frame rate
used in TV and cinema productions).

The initial implementation of the gOCX contained 3 gOCX
sites (SURFnet, GRNET, SWITCH) connected by the GÉANT
network. These gOCX sites connected the video data located
at the University of Amsterdam to the compute resources of
the pioneering cloud providers Okeanos and CloudSigma.

We aimed to identify a first set of extra challenges cloud
application developers and users would face having this degree
of flexibility available. We proceed to describe the technical
details of the demonstration and its outcome.

A. An OCX-aware application deployment environment

For the demonstration we leveraged Vampires[14], a cloud
scheduler and execution engine for data-intensive bags-of-tasks
applications, an extension of the BaTS[18], the budget-aware-
task scheduler. Bags-of-tasks are a type of workload which
consists of independent jobs which can be executed in any order.
Typical examples include image processing, parameter sweeps,
design space exploration or any other type of batch jobs which
have no interdependency. The provisioning component is built
using the jclouds Java library, which provides a common API
for multiple cloud providers. The user-specified resources were
provisioned from the selected cloud providers and then the
application was deployed on to them.

For the purpose of the TNC2014 demonstration, we used a
bag-of-tasks workload consisting of a multimedia application:
elastic transcoding [5] and processing [3] of very high resolution



images. The input data (image set) is the 4K (4096x1720
pixels) version of the 10 minute open source movie Sintel.
The application deployment configuration was controlled by
the user via a web application (GUI). The scheduler used a
straightforward self-scheduling policy to distribute the tasks to
provisioned resources.

The web interface to the application had three main areas: a)
the preview area, where the user can view in real time the result
of the transcoding, b) the control and status area and c) the
configuration area at the bottom. In the configuration area the
user could select the resources which would be used to execute
the application. The workload parameters were also configured
here: what image set to use and what transformations to apply
to it. Each Cloud Service Provider offers different types of
virtual machines, with varying CPU and memory capacities
and the interface allows users to select the amount and type of
resources to be requested from each Cloud Service Provider. To
showcase the advantages offered by using OCX, the interface
allows users to also select the network resources to be used by
the application. There are two options available: the Internet
or the high speed OCX network.

Figure 1. The GUI of the OCX Demonstration Application showcasing the
preview area and the status information during execution

Once the application and the required resources have been
configured, the execution phase may begin. As images are
processed, the preview area starts displaying the last processed
image together with real-time network statistics.

B. The OCX-connected storage and computing infrastructure

The workload data source and destination are stored on
FIONA [9], the network appliance developed by the USCD.
This appliance has 1.4TB of flash backed with 18T of hard
disk storage, and is designed to be a source for high quality
video streams at speeds above 10Gb/s.

FIONA is running a nginx [4] web server on a private
interface to serve images to the cloud sites and a flask [2] web
application to receive the processed image data. The output
image is then served on the public interface together with
interface statistics and become embedded in the demonstration
GUI.

The total amount of data transferred during one execution
was approximately 160GB. We tried to use similar types of

virtual machines at both cloud providers sites. The instances
were configured to have 4 CPU cores running at 2GHz and
4GB of RAM. All virtual machines were connected to both
the OCX network and the Internet. The demonstration users
were able to chose between the two connectivity options for
each execution.

C. Network setup

NetherLight)OCX
(operated)by)SURFnet)

UvA

SURFnet
GRNET)OCX
(operated)by)GRNET)

Okeanos)Cloud

GRNET

SWITCH)OCX
(operated)by)SWITCH)

GEANT

Cloud)Services)
)CloudSigma

CloudSigma

Figure 2. Network topology for the TNC2014 demonstration

Figure 2 shows the global network topology. The storage
infrastructure at the University of Amsterdam (UvA) was
directly connected to the compute infrastructure of CloudSigma
(commercial cloud) and Okeanos (GRNET’s research cloud)
through various OCX sites tapping into the GÉANT backbone.
The network used private 10G and 1G Ethernet services
provided by the cooperating NRENs to the three endpoints.

The connection between Okeanos and UvA consisted of
the 802.1q vlans 3301-3310 on a 1G Ethernet service which
were mapped to 10 predefined networks in the Okeanos cloud
interface. The connection between UvA and CloudSigma
consisted of a Q-in-Q tagged vlan 2611 on a 10G Ethernet
service. CloudSigma used the 50-1000 range as inner vlans,
which were randomly assigned to virtual networks created via
their cloud API. However, the actual mapping could not be
queried via the cloud API and their support department had to
be contacted to see what actual vlans are mapped to the virtual
networks.

Netherlight
 OCXQinQ vlan 2611

802.1q vlans 3301-3310vlan 3301-3310
vlan 50-1000

1 Gb/s

10 Gb/s

FIONA Juniper EX4500

University of Amsterdam SURFnet

Figure 3. Local network configuration at UvA

Figure 3 shows the local configuration at the UvA. The 10G
Ethernet service from Netherlight was connected to a network
switch at the UvA. The switch stripped the outer Q-tag and
forwarded the inner vlans 50-1000 together with the vlan range



3301-3310 from Okeanos to FIONA which was connected at
10Gb/s.

The vlans that were used for the demonstration were
combined on FIONA in a Linux network bridge. This created a
transparent Ethernet domain between the UvA and the different
cloud sites and offered the advantage of running a DCHP
server which provided VMs from both cloud providers with IP
addresses and (possibly) other configuration options.

D. Results

We have analyzed the behavior of the system in two
scenarios: regular internet inter-site connectivity and OCX-
based inter-site connectivity.

Using the regular internet connection, the maximum
achieved throughput from the UvA storage server to any of the
two cloud providers was 1Gbit/s. This translated to roughly 10
processed images per second.

Using the OCX network, the maximum achieved throughput
from the UvA storage server to any of the two cloud providers
was 3Gbit/s, i.e. a three-fold increase compared to the public
internet scenario. This increase in the network throughput
allowed for processing speeds close to 30 frames per second.
This magnitude of processing rates would allow users to
visualize the resulted movie frames without buffering or delays.

III. LESSONS LEARNED

A. Heterogenous cloud APIs

One challenge for the application developers is the variety
of cloud APIs. There are currently a number of efforts to
standardize these APIs, such as the Open Cloud Computing
Interface [17], or to abstract away functionality in order to have
a common core API, regardless of the provider. However, in
practice this proves to be more difficult than expected, as some
providers have only partial API implementations, confusing
application developers who expect that everything works in
a consistent manner across all providers, i.e. the APIs share
the same semantics. For example, CloudSigma sees the virtual
image as a disk which can be reused, while Okeanos sees the
virtual image as an ephemeral entity, which disappears when
tore down.

B. Resource Descriptions and Performance Equivalence

Each cloud provider offers resources to the users in different
ways. CloudSigma users have the flexibility to define their own
types of instances, with a custom number of CPUs, each having
possibly varying performances. The amount of RAM memory
and disk can also be customized. On the other hand, providers
like Amazon and Okeanos offer users predefined instance
profiles, with fixed amounts of memory, CPU and disk. Efforts
like the Infrastructure Description Language (INDL) [15] or
PROTOGENI’s rspec [6] aim at providing a consistent way of
describing compute and/or network resources. However, these
efforts haven yet to see adoption across a wide number of
providers.

Due to these different cloud resource packaging policies, it
is difficult to match or equivalate resources from different cloud
providers using just static information. This means that users

have to profile their applications to gain a good understanding
of what kind of performance they can expect from the offered
resources.

C. Cloud interoperability

In order to easily deploy the application during the demon-
stration, both cloud providers had to be pre-configured with
similar virtual machine instance images. We found it difficult to
deploy the same image to both providers as they used different
image formats. This proved to be time consuming as the image
occasionally had to be rebuilt. Automated deployment tools,
such as Ansible [1], are of great use to reduce build time and
keep consistency across different cloud image formats.

D. Heterogeneous cloud boot-up times and API reliability

The amount of time required to provision resources varies
among providers [16]. Users and application developers have
to be aware of this when deploying their applications on cloud
resources. In our experience, the boot-up time varied between
1 to 10 minutes across providers. In the case of applications
which need to quickly scale or start this aspect requires extra
planning and synchronization. Apart from slow start-up times,
there were also cases where the API calls for provisioning
or querying resources simply failed. This was either due to
provider-side reasons, such as faulty hardware nodes, or due
to hitting the upper bound on resource requests (maximum
number of acquired resources). The latter occurred during the
stress testing procedure prior to the demonstration.

E. Heterogenous billing models

Budget planning is an important aspect of cloud computing.
Similar to the API and the resource description model, cloud
providers use different billing models. The most common
approach is to charge by the time unit. This time unit can
be different for each cloud provider. For instance, CloudSigma
uses a 5-minute billing interval which allows users to fine tune
their cloud deployment configuration. Other cloud providers,
such Amazon EC2, use a larger time interval, i.e. 1 hour,
which makes accounting simpler to handle and understand, but
also incurs a larger cost for experimenting and testing various
deployments.

F. Network

At the time of the TNC2014 demonstration, i.e. in the early
stages of the gOCX, the network configuration still presented
some challenges. At each gOCX site, as well as at the end-
points (UvA, Okeanos and CloudSigma), some of the network
configuration had to be done manually, a very time-consuming
and error-prone process. Next, the different technologies to hand
over the vlans (801,2q and q-in-q) presented further challenges
in configuring the equipment and required the contribution of
the network engineers. However, the OCX concept dictates
that the gOCX infrastructure should be accessible to network-
agnostic end users. Therefore, the next natural step for gOCX is
to make use of the progress in the NSI working group [20], [21]
of the Open Grid Forum in order to enable flexible provisioning
of multi-domain network services.



a) IP Connectivity: As public IPv4 addresses become
more and more scarce, cloud service providers might stop
assigning them by default to a cloud instance and start charging
extra for provisioning one. In our demonstration, one of the
cloud providers opted to limit the amount of IPv4 addresses
available and assigned by default only IPv6 addresses. The
other provider only used IPv4 addresses. This restriction made
communication over the public internet impossible. Private
networking solutions, like the gOCX infrastructure, circumvent
this problem and enable the use of any private IP range. They
also do not limit the available bandwidth, which is generally
the cost incurred by using tunnels and VPNs between providers
or dealing with firewalls and other network policies.

IV. SC14 DEMONSTRATION AND FUTURE WORK

During SC14 we plan to showcase an extended demon-
stration of the Open Cloud eXchange concept. Resource-wise,
we will demonstrate the system with an extended pool of
cloud providers available to the users. By extending the pool
of available resources, the task of selecting the right set of
resources on which to execute the workload will become more
difficult. We will include a scenario where users will also be
presented with a certain budget range.

The user-centric component of the Vampires scheduler
will be extended with a module which performs application
performance prediction for a given orchestrated set of network,
computing and storage resources. This performance prediction
module extends the existing implementation of a theoretical
performance model [14]. Additionally, we will increase the
number and type of applications showcased. It is our vision that
distributed data-intensive applications deployed on clouds will
benefit from the increased capacity and flexibility offered by the
Open Cloud eXchange concept. The TNC2014 demonstration
has focused more on functionality and slightly less on obtaining
high (peak) performance. The SC14 demonstration also intends
to highlight the benefits of having on-demand high performance
computing infrastructure distributed across multiple providers.

We also plan to attach a monetary cost to using the gOCX
services and investigate user-centric data-intensive application
scheduling. This part will include different cost models for
Ethernet services. Moreover, we will consider future generation
cost models such as the ones based on actual energy usage
of the network components [23]. A first step to energy-aware
network billing was already showcased at SC13 and TNC2014
through the GreenPath demonstration [22].

V. CONCLUSION

In this paper we have presented the GÉANT Open Cloud
eXchange platform and the results of the first demonstration
which leverages the ability to transparently connect the re-
sources rented by a single user from different cloud providers.
We showed the potential of the gOCX infrastructure for data-
intensive as well as CPU-intensive applications, such as ultra-
high-quality video transcoding.

During the preparation and demonstration execution we
have encountered several critical new challenges which we
have put forward as lessons learned from our experience with
gOCX, for the benefit of different actors: application developers,
application owners and cloud providers. The outcome of this

was a better understanding of the future requirements of users
and applications from complex network infrastructures.

ACKNOWLEDGEMENTS

We would like to thank all the people in the
GÉANT gn3plus-jra1-t2 project, especially Tasos Karaliotas
(GRNET/Okeanos), Damir Regvart (CARNet), Kurt Baumann
(Switch), Migiel de Vos (SURFnet) and the people from
CloudSigma for providing the resources, their help and support
during the planning and execution of the demonstration.

REFERENCES

[1] Ansible is simple it automation. http://www.ansible.com/home. Accessed:
2014-09-01.

[2] flask. http://flask.pocoo.org. Accessed: 2014-09-01.
[3] Imagemagick: Convert, edit, or compose bitmap images. http://www.

imagemagick.org/. Accessed: 2014-01-27.
[4] nginx. https://nginx.org. Accessed: 2014-09-01.
[5] Openjpeg - jpeg2000 codec. http://www.openjpeg.org/. Accessed: 2014-

01-27.
[6] Rspec. http://www.protogeni.net/wiki/RSpec. Accessed: 2014-09-01.
[7] Sintel: Open source movie . http://sintel.org/.
[8] videoocx. https://www.youtube.com/watch?v=q7IAAFUcTY0. Accessed:

2014-09-01.
[9] T. DeFanti, P. Papadopoulos, and J. Schulze. Fiona the flash i/o network

applicance. http://www.cian-erc.org/pdf/2013 projects/Thrust%201/
C1-1b%20THE%20FLASH%20IO%20NETWORK%20APPLIANCE.
pdf.

[10] Y. Demchenko, M. de Vos, D. Regvart, S. Filiposka, T. Karaliotas,
K. Baumann, D. Arbel, J. van der Ham, R. Strijkers, and E. Escalona.
Open cloud exchange (ocx).

[11] Y. Demchenko, J. v. d. Ham, C. Ngo, T. Matselyukh, S. Filiposka, C. d.
Laat, and E. Escalona. Open cloud exchange (ocx): Architecture and
functional components. In Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on, volume 2,
pages 81–87. IEEE, 2013.

[12] Y. Demchenko, R. Koning, C. Dumitru, C. de Laat, M. de Vos,
T. Karaliotas, K. Baumann, D. Regvart, and S. Filiposka. Open
cloud exchange (ocx): Architecture, components, and demo scenario.
https://tnc2014.terena.org/core/poster/11.

[13] J. der Ham, C. de Laat, T. Matselyukh, E. Escalona, M. de Vos,
S. Filiposka, T. Karaliotas, A. Mavrin, D. Regvart, K. Baumann, D. Arbel,
et al. Open cloud exchange (ocx): Bringing cloud services to nrens and
universities.

[14] C. Dumitru, A.-M. Oprescu, M. Živković, R. van der Mei, P. Grosso, and
C. de Laat. A queueing theory approach to pareto optimal bags-of-tasks
scheduling on clouds. In Euro-Par 2014 Parallel Processing, pages
162–173. Springer, 2014.

[15] M. Ghijsen, J. van der Ham, P. Grosso, and C. de Laat. Towards an
infrastructure description language for modeling computing infrastruc-
tures. In Parallel and Distributed Processing with Applications (ISPA),
2012 IEEE 10th International Symposium on, pages 207–214. IEEE,
2012.

[16] M. Mao and M. Humphrey. A performance study on the vm startup
time in the cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 423–430. IEEE, 2012.

[17] T. Metsch, A. Edmonds, et al. Open cloud computing interface–
infrastructure,”. In Standards Track, no. GFD-R in The Open Grid
Forum Document Series, Open Cloud Computing Interface (OCCI)
Working Group, Muncie (IN), 2010.

[18] A.-M. Oprescu, T. Kielmann, and H. Leahu. Budget estimation and
control for bag-of-tasks scheduling in clouds. Parallel Processing Letters,
21(02):219–243, 2011.

[19] D. Regvart, Y. Demchenko, S. Filiposka, M. de Vos, and T. Karaliotas.
Milestone ms101 (mj1. 2.1): Network architectures for cloud services
white paper.

 http://www.ansible.com/home
 http://flask.pocoo.org
http://www.imagemagick.org/
http://www.imagemagick.org/
https://nginx.org
http://www.openjpeg.org/
http://www.protogeni.net/wiki/RSpec
http://sintel.org/
https://www.youtube.com/watch?v=q7IAAFUcTY0
http://www.cian-erc.org/pdf/2013_projects/Thrust%201/C1-1b%20THE%20FLASH%20IO%20NETWORK%20APPLIANCE.pdf
http://www.cian-erc.org/pdf/2013_projects/Thrust%201/C1-1b%20THE%20FLASH%20IO%20NETWORK%20APPLIANCE.pdf
http://www.cian-erc.org/pdf/2013_projects/Thrust%201/C1-1b%20THE%20FLASH%20IO%20NETWORK%20APPLIANCE.pdf
https://tnc2014.terena.org/core/poster/11


[20] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, J. MacAuley, and C. Guok.
GFD.212: NSI Connection Service v2.0. Technical report, 2014.

[21] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, and J. Vollbrecht. GFD.173:
Network Services Framework v 1.0. Technical report, 2010.

[22] K. van der Veldt. Carbon-aware path provisioning for nrens. https:
//tnc2014.terena.org/getfile/1405.

[23] K. van der Veldt, I. Monga, J. Dugan, P. Grosso, and C. de Laat. Carbon-
aware path provisioning for nrens. In proceedings of International Green
Computing Conference IGCC14, accepted for publication.

https://tnc2014.terena.org/getfile/1405
https://tnc2014.terena.org/getfile/1405

	Introduction
	Demonstration Description
	An OCX-aware application deployment environment
	The OCX-connected storage and computing infrastructure
	Network setup
	Results

	Lessons Learned
	Heterogenous cloud APIs
	Resource Descriptions and Performance Equivalence
	Cloud interoperability
	Heterogeneous cloud boot-up times and API reliability
	Heterogenous billing models
	Network

	SC14 Demonstration and Future work
	Conclusion
	References

