
Merijn Ve!traaten

Analysis and Predi!ion of GPU
Graph Algori"m Performance

Analysis and Prediction of GPU
Graph Algorithm Performance

Merijn Verstraaten

This research has been partially supported by the NWO Veni project
Graphitti: A Framework for Self-adapting High Performance Massively
Parallel Graph Processing (STW, dossiernummer 12480, 2012). This re-
search has also been supported by the Distributed ASCI Supercomputer
5 (DAS-5).

Cover based on art by Zaie/Shutterstock.com
Images used under license from Shutterstock.com

Copyright © 2018–2022 by Merijn Verstraaten
Typeset using XƎLATEX, written using Vim.

ISBN:978-94-6421-837-4

Analysis and Prediction of GPU
Graph Algorithm Performance

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. G.T.M. ten Dam

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel op

donderdag 8 september 2022, te 13:00 uur

door

Merijn Elwin Verstraaten

geboren te Amstelveen

Promotie Commissie

Promotor: Prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam

Copromotor: dr. ir. A.L. Varbanescu Universiteit van Amsterdam

Overige Leden: prof. dr. J.D. Owens University of California, Davis
prof. dr. S. Scholz Herriot-Watt University
prof. dr. G.H.L. Fletcher Technische Universiteit

Eindhoven
prof. dr. P.T. Groth Universiteit van Amsterdam
prof. dr. A.D. Pimentel Universiteit van Amsterdam
prof. dr. R.V. van Nieuwpoort Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Contents i

List of Figures iv

List of Tables v

Preface & Acknowledgements vii

1 Introduction 1
1.1 Irregularity & GPU Acceleration 2
1.2 Research Hypotheses . 3
1.3 Scope of Thesis . 4
1.4 Thesis Structure & Contributions 7

2 Background 9
2.1 Graphs . 9
2.2 Graphical Processing Unit 10
2.3 Graph Processing on GPU 14

3 The Art & Engineering of Empirical (Computer) Science 17
3.1 Motivation . 18
3.2 Data Format Design & Refinement 21
3.3 High-level Implementation & Tooling 30
3.4 Lessons Learned . 38

4 Quantifying Performance Impact 41
4.1 Neighbour Iteration Primitive 42
4.2 Parallelisation Strategies for Neighbour Iteration 43
4.3 Intermezzo: Comparing Implementations 45
4.4 Implementing PageRank . 50
4.5 Implementing Breadth-First Search 58
4.6 Summary . 64

i

Contents

5 Graph Generation 67
5.1 Related Work . 69
5.2 A New Graph Generator Design 72
5.3 Implementation . 77
5.4 Results . 79
5.5 Conclusion . 83

6 Analytical Performance Modelling 85
6.1 Workload Models . 85
6.2 Parallelising Workload Models 93
6.3 Conclusion . 97

7 Data-driven Performance Modelling 99
7.1 Binary Decision Trees . 100
7.2 Modelling BFS Performance 102
7.3 Model Evaluation . 104
7.4 Related Work . 108
7.5 Conclusion . 109

8 Model Portability 111
8.1 Model Accuracy by Amount of Training Data 112
8.2 Portability Across Datasets 115
8.3 Portability Across GPUs . 119
8.4 Conclusion . 121

9 Conclusion 125
9.1 Conclusions . 125
9.2 Future Work . 133

Appendices 135

A Current Database Schema 137
A.1 GlobalVars . 137
A.2 Platform . 138
A.3 Dataset . 138
A.4 Graph . 139
A.5 Algorithm . 139
A.6 Implementation . 140
A.7 VariantConfig . 140
A.8 Variant . 141
A.9 RunConfig . 142
A.10 Run . 142
A.11 PropertyName . 143
A.12 GraphPropValue . 143
A.13 StepProp . 144

ii

Contents

A.14 StepPropValue . 144
A.15 TotalTimer . 145
A.16 StepTimer . 145
A.17 ExternalImpl . 146
A.18 ExternalTimer . 146
A.19 PredictionModel . 147
A.20 ModelTrainDataset . 148
A.21 ModelProperty . 149
A.22 UnknownPrediction . 149
A.23 UnknownPredictionSet . 150

B PageRank PTX Code 151
B.1 Edge List . 151
B.2 Vertex Push . 154
B.3 Vertex Pull . 162
B.4 Vertex Pull NoDiv . 170
B.5 Consolidate & Consolidate NoDiv 177

Summary 189

Samenvatting 193

Publications 197

Bibliography 198

Glossary 209

iii

List of Figures

3.1 Data format design as integral part of scientific inquiry 22
3.2 Schema for the initial version of our data format 25
3.3 Schema for the current version of our data format 29
3.4 Stages of interaction with our data format 30
3.5 Simplified schema for the specification of runs of experiments . 31
3.6 Simplified schema for the collected properties 33
3.7 Simplified schema for the collected timings 33
3.8 Simplified schema for a model’s training inputs 36

4.1 Normalised run times of our PageRank implementations 57
4.2 Normalised run times of our BFS implementations 63
4.3 Run times of different BFS implementations per level 64
4.4 Optimal BFS run time compared to observed run times 65

5.1 Degree distribution of generated uniform degree graph 80
5.2 Degree distribution of generated exponential degree graph . . . 81
5.3 Degree distribution of generated normal degree graph 81

6.1 PageRank run times for different in-memory orderings 95

7.1 Schema extension for supporting BDT models 103
7.2 Comparison of Mix-and-Match against the state-of-the-art . . . 107

iv

List of Tables

4.1 Example comparison of run times across multiple inputs 45
4.2 An example performance aggregate table 46
4.3 Selected graphs for performance comparisons 49
4.4 Aggregate performance of our PageRank implementations . . . 57
4.5 Aggregate performance of our BFS implementations 62
4.6 Optimal BFS performance compared to aggregate results . . . 65

5.1 Critical values for KS goodness-of-fit test 78

6.1 Legend of memory orderings used in Fig. 6.1 94
6.2 Relevant performance counter values for PageRank 96
6.3 Legend of performance counters in Table 6.2 97

7.1 Predicted Mix-and-Match BFS performance 104
7.2 Actual Mix-and-Match BFS performance 106
7.3 Mix-and-Match BFS compared to the state-of-the-art 108

8.1 Comparison of BDT model performance for BFS 114
8.2 Comparison of BDT model performance for PageRank 115
8.3 KONECT BFS model performance on SNAP 116
8.4 KONECT PageRank model performance on SNAP 117
8.5 SNAP BFS model performance on KONECT 118
8.6 SNAP PageRank model performance on KONECT 118
8.7 KONECT BFS models from various GPUs on K20 120
8.8 KONECT BFS models from various GPUs on GTX980 122
8.9 KONECT BFS models from various GPUs on TitanX 123
8.10 KONECT BFS models from various GPUs on RTX2080Ti . . . 124

v

Preface &
Acknowledgements

As I write these final1 words, several thesis related deadlines are fast ap-
proaching. Some things never change. Out of the many things I learned
during my Ph.D., “writing without a deadline looming over me like a Sword
of Damocles” sadly wasn’t one. As the saying goes: de laatste loodjes wegen
het zwaarst…

By now I spent as much time working on this thesis in my own time
as I spent employed at the university. I suspect the only reason I got to
this point is that most valuable attribute for any Ph.D. — stubbornness.
Ironically, this whole endeavour would have been completed a whole lot
more efficiently had I not stubbornly decided to be “less stubborn” at the
start.

But you didn’t get this far by giving up, did you? That’s right.
You have something called ‘determination’.

Undertale

This whole journey started in 20102. I decided that I could not consider
my Computer Science master complete without learning more about com-
pilers. The Vrije Universiteit (VU) no longer had any compiler course, so
I enrolled in Clemens’ compiler construction course at the Universiteit van
Amsterdam (UvA). In hindsight, one of the most useful and enlightening
courses of my entire degree.

At the end of this course I approached Clemens to see if I could do
a master’s project with him on “something with programming languages”.
This ended up as a project to port S-Net to Intel’s experimental Single-
chip Cloud Computer (SCC), a thoroughly weird and experimental piece
of hardware. Culminating in my first two “proper” scientific publications.
1 Yet also first…
2 Probably? Who knows after 12 years…

vii

Preface & Acknowledgements

After my project finished and I finally graduated, I stayed in the Com-
puter Systems Architecture (CSA) group as research assistant. During
this period I met a lot of friends and colleagues who would show me how
modern science (dis)functions. Starting, of course, with Clemens who is
responsible for getting me there in the first place. Roy and Roeland, my fel-
low master students, who were perhaps wiser in not seeing things through
to the very end. Michiel, who supervised my master project. Raphael,
who was always ready to help with my technical problems and to derail
productivity for hours through philosophical discussions. And many more:
Roberta, Mike, Mark, Peter, and Simon.

I worked on the ADVANCE project, where I also had some great col-
leagues and verbal sparring partners. Daniel and Frank, my day-to-day
collaborator on the S-Net codebase. Philip and Jan, always willing to
ignore the actual project to talk about the philosophy of programming lan-
guages and functional programming. And Bodo, who is probably indirectly
responsible for my love of whisky.

When the UvA’s funding within ADVANCE ran out, I finished the
remainder of the project with Bodo in Edinburgh. I had a great time
there, but in the end I missed my social life in the Netherlands too much
to move to Edinburgh for a longer period. Somewhere out there, there
is an alternative universe where I stayed to do a Ph.D. in “SaC world
domination”, and sometimes I wonder what that universe looks like…

Coming back to where you started is not the same as never
leaving.

Terry Pratchett,
A Hat Full of Sky

After my time in Edinburgh, I came back to the Netherlands, the UvA,
and most of the same colleagues. At this point, the old CSA group was no
more; absorbed into the System and Network Engineering (SNE) group.
Which became my new home, a lot of old faces, but also many new ones.
Giulio, my fellow starting Ph.D. student. Pieter, who was always up
for discussions about computer science education and programming lan-
guages. My fellow “beer researchers”: Ralph, Cosmin, Stijn, Taddeüs,
Reggie, Łukasz, Mikołaj, Karel, and Joe. And alsp Fahimeh, Ameneh,
Paola, and everyone else I’m probably forgetting.

And most importantly Ana. Somewhere in late 2013 Raphael put me
in contact with Ana. I was looking for a Ph.D. position, she was looking
for a Ph.D. student, and Raphael thought we would get along. Correctly, it
turns out. Our first conversation boiled down to the question: “Would you
like to work on graph processing on Graphical Processing Units (GPUs)?”

viii

I enjoyed the challenge of squeezing the maximum performance out of
GPUs during my master’s degree, so this seemed like an interesting chal-
lenge. I wasn’t sure how hard it would be to do something new; after
all, we’ve been doing graph theory for over 280 years [31], General Pro-
cessing on GPU (GPGPU) programming for over 17 years [53], and even
graph processing on GPUs for over 14 years [67]. Surely, the most obvious
problems were already tackled by other researchers…right?

This is the point in your career where you look around for the
cavalry and realize that you’re it…

Edward Kmett

It turns out that that was hopelessly naive of me. What started out
as lofty and ambitious plans of linking the structure of graphs to the best
performing parallelisation strategy quickly ran into multiple walls. No
one had really figured out a necessary and sufficient description of graph
structure. Sure, there are several tens (if not hundreds) of different struc-
tural properties in use to describe graphs, but most are correlated and the
relations between them are poorly understood and documented.

However, that is not a problem, we can figure out which structural
properties matter by looking at all the primitive operations on graphs
and seeing how the performance of their parallelisations correlates with
properties.

Unless, of course, we don’t really have a definition of “the primitive
graph operations” either. It turns out that there is no consensus on what
the core operations in graph processing are either. Thus, I found myself
in a position with entirely too many degrees of freedom, leading top a
floundering start.

Every story has a beginning, a middle, and an end; but not
necessarily in that order.

Paraphrasing Jean-Luc Godard

At the heart of every thesis we find the divergence between what was
planned and what was done. The difference between what we set out to
discover and what was found. These two, often disparate, things need to
be brought together.

After my experiences in ADVANCE I was fairly cynical about the qual-
ity and usefulness of the average computer science paper. I swore to aban-
don my stubborn idealism and focus on ruthless pragmatism. Do the bare
minimum, lousiest possible engineering to get results and publish as soon
as possible. Ignoring grandiose visions of polished tooling to automate
benchmarking, analysing, and visualising performance data.

ix

Preface & Acknowledgements

And, boy, was that a mistake. With all these degrees of freedom there
was a lot of room to stumble into things that don’t work. But negative
results are hard to sell and publish. Especially when experiments are small-
scale and ad hoc. I didn’t start having a coherent story for this thesis until
I started building my imagined tooling after all.

The final version of this thesis is completely dependent on this tooling.
The “political/philosophical rant disguised as science” in Chapter 3, the
performance analysis in Chapter 4, the machine learning in Chapter 7, and
the portability study in Chapter 8 are all unimaginable without it.

Looking back at my version control history, the very first line of code
for my tooling wasn’t written until June 2017, exactly 3.5 years into my 4
year Ph.D. Imagine how much more useful and productive my time could
have been, had I not decided to be “ruthlessly pragmatic” in 2014…

So, thank you, Ana. For your optimism and belief that all this floun-
dering and effort would turn a coherent thesis, long before I did. Who
knows where this work would have ended without it. And thanks Alex, for
occasionally playing the “bad cop” to Ana’s “good cop” about my work.
I don’t think I really understood some of the lessons you were trying to
teach me early on, until I was solidly half way into writing this thesis.

And, of course, thanks to my committee for finding the time to read
through this thesis and grill me at my defense: John Owens, Sven Scholz,
George Fletcher, Paul Groth, Andy Pimentel, and Rob van Nieuwpoort.
And thanks to Cees, who managed to put up with me for so long, and is
undoubtedly happy to finally be rid of me!

Writing a thesis is stressful business in the best of times. Even more
so, when done in addition to a fulltime job and a pandemic. So special
thanks to Hare Koninklijke Hoogheid, Prinses Donder. Because nothing
relieves writing stress like a purring cat or a friendly “Prrrt?”.

And last, but certainly not least, Annelies. For putting up with the
stress, frustration, and generally having to — vicariously — go through a
second promotion. Sorry, schat; maar eindelijk klaar!

I may not have gone where I intended to go, but I think I have
ended up where I needed to be.

Douglas Adams,
The Long Dark Tea-Time of the Soul

x

CHAPTER 1
Introduction

Everything starts somewhere, although many physicists
disagree.

Terry Pratchett,
Hogfather

Can we improve the performance of graph processing using Graphical
Processing Units (GPUs)? This seemingly straightforward question, is the
starting point for the work in this thesis. However, before we consider this
question, let us first consider the assumptions built into it. Why do we
care about graphs and processing them? Why do we care about GPUs?
Why do we want to combine these?

Graphs are flexible abstractions for describing relationships between
discrete objects, making them well suited to modelling complex structures
and/or relationships. As a result, graphs are widely used across different
fields, such as linguistics, physics, chemistry, biology, bioinformatics, and
social science.

Their usefulness puts graphs at the core of many computational prob-
lems in science and business. As we digitise more processes and data, the
number and size of graphs people want to process will keep growing. This
illustrated by the growth of and activity in the Graph5001 ranking. The
growing demand for graph processing is likely to continue for the foresee-
able future.

Graph processing is not unique in this respect; demand for compute
power has been growing in every field. This growing demand for processing
1 http://www.graph500.org

1

http://www.graph500.org

1. Introduction

power brings us to GPUs, which over the past 15 years have offered the
most compute per dollar.

The design of modern commodity GPUs — with their massive, fine-
grained parallelism and high-bandwidth memory — makes them very suit-
able as accelerators. Modern GPUs provide better computational through-
put per dollar and/or watt than most traditional Central Processing Units
(CPUs) and General Purpose Multi-Cores (GPMCs) architectures. They
are the most cost-effective solution to increased compute demands, both in
purchase price and FLOPS per watt. This is clearly shown by the TOP5002

ranking, where the majority of supercomputers feature GPU accelerators.
In short, graph processing is important because many practical com-

putational problems rely on it; GPUs are important because they are the
most cost-effective way of meeting increasing demand for compute power,
especially for massively parallel compute tasks.

In theory, graph processing should benefit a lot from GPU accelera-
tion, as graph processing algorithms are characterised by large numbers of
independent operations that can be parallelised, and high memory inten-
sity [61]. However, as observed by Benjamin Brewster3: “In theory there is
no difference between theory and practice, while in practice there is.” [88]

1.1 Irregularity & GPU Acceleration

What makes it hard for graph processing to benefit from GPU acceleration
in practice is, in short, our lack of understanding of the (parallel) perfor-
mance of graph processing algorithms. This problem is compounded by
the requirements imposed by modern GPU architectures.

There are some key trade-offs in the design of current GPUs that keep
them affordable, while achieving the aforementioned fine-grained paral-
lelism and high memory bandwidth — which we will cover in more detail
in Section 2.2. The result of these trade-offs is that irregularity of mem-
ory accesses, branching behaviour, and poor locality drastically reduce the
performance of code running on a GPU.

For programs with static access patterns, we can design code to play to
the hardware’s strengths to avoid these pitfalls. However, graph processing
algorithms are highly irregular [61]. The data dependence of algorithms
leads to unpredictable branching and poor locality. And the low compu-
tational intensity increases the impact of the (relatively high) latency of
GPU memory.

These problems are not unique to either General Processing on GPU
(GPGPU) or graph processing. The difficulty of modelling the perfor-
mance of irregular algorithms is well-known within the High-Performance
2 https://www.top500.org
3 Not Einstein or Feynman, as the quote is often erroneously attributed. [72]

2

1.2. Research Hypotheses

Computing (HPC) community. HPC practitioners generally have a lot of
experience and intuition for mitigating these issues in their code — learned
through years of practice.

Indeed, when looking at the state-of-the-art in GPU graph processing
frameworks [17, 37, 45, 49, 66, 69, 97, 102] we see that each has its own
approach to mitigate these pitfalls and exploit GPU features.

The problem with intuition, heuristics, and experience as tools is that
they are hard to communicate, analyse, and validate. As a result, it is
hard to quantify their effectiveness. This makes it difficult for experienced
programmers and researchers to distinguish which of their intuitions and
techniques are useful generalisations from experience, and which are su-
perstitions or techniques that merely appeared to work by coincidence. It
also means that it is hard to validate whether knowledge is still accurate
for newer hardware platforms or whether it has become obsolete as the
underlying hardware evolves.

It is not surprising that most papers address the impact of irregular-
ity and mitigations of it empirically, rather than analytically. In graph
processing we are dealing with four strongly intertwined dimensions: algo-
rithm, data structures, hardware platform, and input graph. The impact
of each dimension is dependent on the choices made for all the others. This
makes isolating and testing the effect of choices along a single dimension
difficult; in turn, this makes it hard to create analytical models that predict
the optimal processing approach for a given problem.

In principle, there is no objection to an empirical approach to this
problem. However, as we argue in Section 3.1 on page 18, the quality of
empirical computer science often is not sufficient to support the claims
made in papers.

1.2 Research Hypotheses

In summary, we care about graph processing because of its many practi-
cal applications and we care about GPU processing as it is currently one
of the most cost-effective methods to obtain compute power. Addition-
ally, several aspects of graph processing lend themselves well to the GPU
programming model.

At the same time, the performance of irregular algorithms, including
graph algorithms, on GPUs is poorly understood. There are no practical
analytical models for GPU graph processing performance and the available
empirical results are based on datasets that are too small [3, 46, 61]. As
a result, a significant part of this thesis deals with developing our own
analytical models and empirical methods for tackling the problems of GPU
based graph processing.

3

1. Introduction

Going into this research we had a number of vague intuitions about
the behaviour of graph algorithms and GPU behaviour, which are best
captured by the following two hypotheses:

1. Graph structure has a significant impact on GPU graph processing
performance, and

2. this impact is relatively stable across GPU generations.

The goal of this thesis is to develop analytical and empirical methodol-
ogy for investigating the link between graph structure and parallelisation
strategy for graph processing on the GPU. We demonstrate the effective-
ness of our methodology using the PageRank and Breadth-First Search
(BFS) algorithms as case studies. Both PageRank and BFS are commonly
used to benchmark graph processing systems, allowing for comparisons
with existing solutions.

To validate our hypotheses, we identify the following five objectives:

1. Build tooling to produce, aggregate, and analyse the performance
data of multiple algorithms, different parallelisations of each algo-
rithm, across multiple hardware platforms, and across different input
graphs.

2. Quantify the performance impact of graph structure on the perfor-
mance of the various parallelisation strategies and their data repre-
sentations, and show that there is a significant performance impact.

3. Model the relation between graph structure and parallelisation strat-
egy, allowing prediction of the best parallelisation strategy for a given
graph.

4. Show that it is feasible to exploit the relation between graph structure
and parallelisation strategy to improve on the performance of the
state-of-the-art.

5. Show that the relation between graph structure and parallelisation
is, indeed, stable and can be exploited across GPU generations.

1.3 Scope of Thesis

We are faced with a performance engineering challenge. To improve the
performance of GPU graph processing, we need to untangle the complex
interactions between algorithms, data representation, hardware, and input
graphs. Unfortunately, as alluded in the previous section, there are no
adequate analytical models, and there are insufficient empirical results to
start from.

4

1.3. Scope of Thesis

Our goal for this thesis is to establish a foundation for both analyti-
cal and empirical investigation of the interaction between algorithm, data
representation, hardware, and input graphs. However, addressing this in-
teraction in its full generality is far too broad a scope for a single thesis.
Even examining each dimension in isolation we find a lot of unknowns. In
this section, we set out how and why we limit the scope of our investigation
for each of these dimensions.

1.3.1 Algorithms
HPC graph processing papers often talk about the ubiquity, flexibility,
and importance of graphs and graph processing algorithms. Given their
ubiquity, it is surprising that there is no consensus on which real world
applications to use as benchmarks for graph processing systems.

Most of the literature uses well-known, but simple algorithms such as
BFS, Single-Source Shortest Path (SSSP), PageRank [74], Betweenness
Centrality (BC), and various clustering algorithms. The Graph 500 [24]
benchmark, for example, only concerns itself with BFS and SSSP. Yet it is
unclear to what extent these algorithms are representative for real world
algorithms used in model checking, bioinformatics, or network analysis.

This lack of consensus extends to the idea of “primitive” graph opera-
tions — i.e., set of operations on which all graph algorithms can be based.
Neighbour iteration and common neighbour iteration are both operations
that are simple and frequent enough to qualify, but for other operations it
is less clear. For example, in model checking, BFS and Depth-First Search
(DFS) are often considered primitive operations used as a part of other
algorithms, whereas most HPC papers treat them as complete algorithms.

Establishing a minimal set of primitive operations makes it feasible to
comprehensively evaluate implementation strategies for each. Additionally,
it would limit the scope along the “algorithm” dimension, making it simpler
to analyse how it is affected by the other dimensions of our problem.

In this thesis we opt to focus on the use of neighbour iteration as a
primitive operation. It is simple to implement, simple to formalise, and
widely applicable in the implementation of graph algorithms. As such,
results related to neighbour iteration are applicable to many graph pro-
cessing algorithms. Specifically, we examine neighbour iteration in the
context of BFS and PageRank[74]; both algorithms are commonly used in
the literature.

1.3.2 Data Representation
Data representation — i.e., data structures and in-memory layout — and
parallelisation strategy are closely related. The number of parallelisation
strategies that make sense for a specific data representation (or vice versa)

5

1. Introduction

are often limited. On GPGPU platforms, the hardware further restricts
which parallelisation strategies, and thus data structures, are sensible to
use.

As a result, this is one axis where the scope of our investigation is auto-
matically limited. In Section 2.3 on page 14 and Section 4.2 on page 43 we
discuss possible parallelisation strategies for graph processing on the GPU.
We conclude that there are only a limited number of sensible parallelisa-
tion strategies, limiting our data structure choices to those parallelisation
strategies. For the parallelisation strategies we use in this thesis, the rel-
evant data structures are: edge list, Compressed Sparse Row (CSR), and
several minor variations of these.

1.3.3 Hardware Platform
The core programming model of GPUs has been the same for the past
15 years. However, there have been many changes and advances in the
internal logic of GPUs, which affect thread scheduling, access coalescing,
atomic operations, caching behaviour.

It is unclear how big the impact of these implementation details is on
the performance of graph processing code. As a result, we don’t know how
much our optimisation techniques, intuition, and code are portable across
hardware platforms/generations, both past and future.

In this thesis we use four different types of NVIDIA GPUs for compar-
isons across hardware generations. We use Kepler architecture K20 cards
from 2012, Maxwell architecture GTX980 cards from 2014, Maxwell ar-
chitecture TitanX cards from 2014, and Turing architecture RTX2080 Ti
cards from 2018.

1.3.4 Input Graphs
We know that the structure of input graphs affects the performance, but
little is known about which structural properties are relevant or how big
their impact is. Some of the more important properties are: edge count,
vertex count, degree distribution, diameter, clustering coefficient. There
is a near endless variety of other structural properties, but there is no
consensus on which properties best characterise the “structure” of a graph.

One of the reasons for this lack of consensus is that most of these
properties are strongly correlated. This makes it hard to classify graphs by
“structure” and investigate how that impacts performance. For example,
how do we determine if a given graph dataset is biased to graphs of certain
types of structure, if we do not know how to identify those structures?

In this thesis, we explore two different approaches to tackle the selec-
tion of input graphs. First, we explore the generation of graph datasets
that contain graphs with sufficiently different structure (see Chapter 5 on

6

1.4. Thesis Structure & Contributions

page 67). However, the strong correlation of structural properties makes
this a challenge. Second, we used graphs from publicly available graph
repositories. As such, the scope of our thesis is limited by the success of
our graph generation and the (public) availability of graph datasets.

1.4 Thesis Structure & Contributions

Chapter 2 on page 9 presents an overview of graphs, GPGPU programming,
and graph processing on GPUs. Providing the necessary background infor-
mation for the discussion in the rest of this thesis. Most importantly, we
include a more detailed overview of the design trade-offs present in mod-
ern GPUs and how these constrain our implementation choices for graph
processing.

Chapter 3 on page 17 discusses the reproducibility difficulties of empir-
ical computer science, with a focus on the difficulties in graph processing.
We present the software toolchain, published in [89], we built for gather-
ing performance data of graph algorithms, running data analyses on these
results, and evaluating models against our empirical data.

In Chapter 4 on page 41 we discuss possible parallelisation strategies for
neighbour iteration and how neighbour iteration can be used to implement
the PageRank and BFS algorithms. We use our toolchain from Chapter 3
on page 17 to quantify the performance impact of different parallelisation
strategies on the performance of PageRank, published in [92, 93], and BFS,
published in [94].

Chapter 5 on page 67 presents our graph generator based on evolu-
tionary computing, published in [95]. We built this generator as a proof-
of-concept to generate input graphs for our experiments. However, we
eventually abandoned this approach in favour of using real-world datasets,
due to pragmatic constraint on engineering time.

Chapter 6 on page 85 presents analytical workload models, published
in [94], for the parallelisation strategies from Chapter 4 on page 41. We
demonstrate that these analytical models are not sufficiently accurate to
predict parallel performance of these algorithms on the GPU.

In Chapter 7 on page 99 we show how we can use our toolchain from
Chapter 3 on page 17 to create Binary Decision Tree (BDT) models that
let us predict the best implementation of an algorithm for a given input
graph, published in [92, 93]. Furthermore, we demonstrate that we can
speed up BFS traversals by using our BDT models to dynamically switch
implementations during a traversal.

Chapter 8 on page 111 presents an analysis of the portability of our
BDT models across datasets and GPU architectures, published in [90]. Our
analysis shows that the performance characteristics of our implementations
are largely stable across GPU architectures and datasets.

7

CHAPTER 2
Background

In this chapter, we provide a brief introduction to graphs, General Process-
ing on GPU (GPGPU) programming, and graph processing on Graphical
Processing Units (GPUs). The main goal is to introduce the concepts,
terminology, and notation necessary to understand the remainder of this
thesis.

2.1 Graphs

Graphs are an abstraction for describing relationships between discrete
objects. Thus, graphs are a natural fit for working with many of the com-
plex, relational datasets we encounter in the real-world. As a result, graphs
are widely used across different fields, such as (computational) linguistics,
physics, chemistry, biology/bioinformatics, and social science.

A graph describes a collection of entities (called nodes or vertices) and
the relationships between these entities (called edges). We can, optionally,
ascribe one or more attributes to these relationships. A real-world example
of a graph would be that of a rail network: each vertex represents a sta-
tion, each edge represents a rail connection between two stations; distance,
travel time, and/or capacity represent examples of edge attributes.

Formally, G(V,E) denotes a graph G, a set of vertices V , and a set
of edges E. An edge (u, v) ∈ E represents a binary relationship between
vertices u ∈ V and v ∈ V . We can distinguish several subcategories of
graphs within this definition — such as directed graphs, undirected graphs,
and multigraphs.

Traditionally, the assumption is that graphs are undirected. Edges are
unordered pairs, meaning that (v, u) ∈ E and (u, v) ∈ E are equivalent.

9

2. Background

Both mean that there is a connection from u to v and from v to u. Directed
graphs are considered a related, but different abstraction. For directed
graphs we consider edges to be ordered pairs. Therefore, (v, u) and (u, v)
are distinct. Thus, (v, u) ∈ E means there is a connection from v to u, but
not vice versa.

In this thesis we use a different viewpoint. We assume graphs are
directed — i.e., edges are ordered pairs. From this viewpoint, undirected
graphs are isomorphic to the subset of directed graphs where:

∀v, u ∈ V . (u, v) ∈ E ⇐⇒ (v, u) ∈ E

Mathematically, these two viewpoints are equivalent, but, from an im-
plementation perspective, the latter is more convenient: when we treat
undirected graphs as a subset of directed graphs, we only need to write an
implementation for directed graphs without needing to introduce special
cases and edge conditions for undirected graphs.

Multigraphs are another common subcategory of graphs. A multigraph
is a graph where the edge (u, v) can appear multiple times, i.e., there are
multiple connections between vertices u and v. This can be used to, for
example, model multiple independent interactions between two entities.

We do not consider multigraphs in this thesis, as, in most cases, we can
reduce multiple edges between vertices to a single edge with an attribute
storing the number of duplicate edges. Furthermore, for structural algo-
rithms, like traversals, having multiple connections between two vertices
results in behaviour identical to the case of a single connecting edge. There
are some algorithms and uses of multiple edges that cannot be replaced
this way, but we do not concern ourselves with these in this thesis.

2.2 Graphical Processing Unit

The purpose of a GPU, as the name suggests, is processing graphics. The
transition to real-time 3D graphics in video games in the early to mid
nineties led to consumer demand for hardware 3D graphics acceleration.

Initially, GPUs were sold as separate accelerator cards, which is what
most people think of when talking about GPUs. Nowadays, even devices
without a separate graphics card have some form of hardware acceleration
for 3D graphics, usually integrated as a part of the device’s System-on-Chip
(SoC)1.

Accelerating 3D graphics and rendering pixels to a screen involves a
lot of embarrassingly parallel tasks. People quickly realised that many
High-Performance Computing (HPC) and scientific computing tasks could
benefit from exploiting this parallelism. For example, in 2001 Larsen and
McAllister used a GPU to implement fast matrix multiplication [53].
1 For example, in modern smartphones.

10

2.2. Graphical Processing Unit

At first, this use of GPUs relied on tricks to encode the computation as
part of the graphics pipeline. For example, in [53] the input matrices were
encoded as texture images, with the result matrix encoded in the rendered
pixels. As more people started using GPUs for non-graphics computation,
there was an incentive for manufacturers to accommodate this use.

In November 2006, NVIDIA announced the Compute Unified Device
Architecture (CUDA) programming model. CUDA allows programmers
to write code that can be run directly on the GPU, rather than having
to resort to hacks and workarounds. In December 2008, the Khronos
Group released the Open Computing Language (OpenCL) specification,
the result of a collaboration between Apple, AMD, IBM, Intel, NVIDIA,
and Qualcomm. The goal of OpenCL is to provide a cross-platform model
for programming GPUs and other massively parallel accelerators.

Most of this thesis’ implementation work was done using NVIDIA’s
CUDA platform. Our choice to use NVIDIA’s proprietary standard over
the open OpenCL standard was a matter of pragmatism. At the time,
there were no publicly available implementations of OpenCL 2.0, and the
CUDA developer tools were2 easier to use and higher quality.

It should be fairly straightforward to translate both our code and re-
search methods to OpenCL, as the core programming concepts of CUDA
and OpenCL are largely the same. As such, this choice mainly affects the
terminology we use. We opt to use CUDA’s terminology, as it matches our
code and is already widely used in GPGPU programming communities.

2.2.1 The GPU Design
There are some key trade-offs in the design of GPUs. The overarching
theme of these is: Throughput over latency.

The most obvious of these is the cores on the GPU. There is a trade-off
between the raw power of individual cores and the number of cores that can
be packed on the chip. The GPU cores, called Stream Processors (SPs),
are slow compared to modern desktop Central Processing Units (CPUs).
Clock rates range from 700 MHz to 1.7 GHz, in contrast to the 2.4 GHz
and up seen in modern desktop/server CPUs.

Slower and simpler cores enable GPU manufacturers to put more of
them on a single GPU. It is not uncommon for modern GPUs to have
hundreds or thousands of parallel cores. This is a performance win iff
there is enough parallel compute work to keep all cores busy.

The other key trade-off concerns memory. GPUs have memory with
high bandwidth, but also a high latency for memory accesses. This high la-
tency is hidden by using Simultaneous Multi-Threading (SMT) [96]. With

2 And largely still are…

11

2. Background

SMT we keep multiple instruction streams per core; when an instruc-
tion stream is stalled waiting for memory, the core simply switches to
another instruction stream. As long as there are enough parallel instruc-
tion streams, there will always be useful work to do while data is fetched
from memory. The high bandwidth is exploited by coalescing multiple
smaller memory fetches into a single bigger memory fetch.

GPGPUs are programmed using a Single Instruction, Multiple Threads
(SIMT) programming model. The individual SPs are grouped into Stream-
ing Multiprocessors (SMs). The SM schedules and executes groups of
threads called warps. There are always 32 threads within a warp3, but the
number of SPs per SM varies over hardware generations.

The cores within an SM share a single instruction scheduler, which
executes all threads within a warp in lockstep. To accommodate SIMT
latency hiding, each SM stores the registers and entire execution context
of multiple active warps. As a result, there is no overhead to context
switching between active warps [70, Section 4.2]. When one warp is stalled
on a memory fetch, another warp can be computing.

A result of this SIMT model and shared instruction scheduler is that
all threads in a warp execute the same instructions. This would seem to
rule out the use of dynamic branching instructions within a kernel, since
threads within a warp might end up executing diverging branches. Instead,
diverging branches are handled via the SM’s instruction scheduler. This
scheduler can disable specific threads in the warp. Divergent branches are
handled by executing both of a branch’s code paths in order, disabling
all threads in the warp that took the other branch. The downside of this
solution is that the efficiency of code with divergent branches is reduced, as
one or more of the cores of the SM are not doing any computation during
half of that branch.

NVIDIA’s latest Volta architecture [71] reduces the impact of branch
divergence. It allows arbitrary interleaving of instructions from each code
path, rather than executing the code paths one after the other. This allows
SMT-style latency hiding between threads within the same warp, rather
than just between entire warps and thus reduces the efficiency loss from
divergence.

While lockstep execution reduces efficiency of divergent branches, it al-
lows the hardware to coalesce adjacent memory accesses by threads within
a warp into a smaller number of large fetches. Coalescing reduces the
number of memory fetches required, and, thus, the time that threads are
stalled waiting for these fetches to complete.

3 At least, in all NVIDIA GPUs so far.

12

2.2. Graphical Processing Unit

2.2.2 The GPU Memory Hierarchy
The GPU’s Non-Uniform Memory Access (NUMA) architecture is consid-
erably more complex than that of the host. On the CPU there is only
global memory and three layers of caches, with the caches preserving con-
sistency. In contrast, GPUs have a weak memory consistency model and
multiple different types of memory. The four relevant types of memory
are: global memory (and caches), constant memory, texture memory, and
per-block shared memory.

Global memory is the slowest of these memory types. Global memory
can be read or written by any thread on the device. However, the weak
memory consistency model means that there are no guarantees about the
observed order of reads and writes from different threads. Programmers
have to use explicit barriers and memory fences to ensure that reads and
writes from other threads or other blocks are visible within the current
thread. There are L1 and L2 caches available to reduce the latency of
global memory, but their usage often requires extra configuration.

Constant memory refers to a logically distinct part of global memory.
This part of the address space has its own dedicated, read-only cache and
logic to reduce the memory traffic required when the data is read by many
threads simultaneously. This makes constant memory suitable for run
time defined, read-only constants shared across every thread in the kernel
invocation.

Texture memory, like constant memory, is a logically distinct portion
of global memory. There is a dedicated cache for texture memory which,
unlike constant memory and its cache, is not limited to a dedicated part of
the address space. Instead, programmers use specific texture functions to
perform reads from texture memory. The cache is optimised for 2D spatial
locality, rather than regular memory locality. Additionally, addressing cal-
culation and optional value interpolation happen in dedicated logic units,
reducing compute work for the SPs.

Per-block shared memory is directly attached to the SMs, which means
it is only accessible from a single SM, but provides much higher bandwidth
and lower latency than global memory. It is made up of multiple parallel
memory banks, so accesses spread over multiple banks can be handled in
parallel, increasing the bandwidth further. The lifetime of values in shared
memory is limited to the lifetime of the active block running on the SM,
unlike global, constant, and texture memory whose values persist across
kernel invocations.

2.2.3 Programming GPUs
Programs using GPGPU processing consist of two parts. Part one is a
normal program running on the CPU, also called the host. The second

13

2. Background

part is the code running on the GPU, also called the device. Individual
parts of the device code are called compute kernels, or just kernels.

Kernels are usually written in an extended version of C, such as CUDA
C/C++ for NVIDIA or OpenCL C for the various OpenCL implementa-
tions. But we are slowly seeing more high-level languages and Domain
Specific Languages (DSLs) for GPGPU computing [21, 39, 42, 76, 85].
These languages generate either their own CUDA/OpenCL code, or assem-
bly for the Parallel Thread Execution (PTX) Instruction Set Architecture
(ISA) exposed by NVIDIA.

The main difference between a GPGPU kernel and a regular function,
besides running on a GPU, is that for the kernel we execute many inde-
pendent instances of the same code, rather than just one. To do so, when
launching a kernel from the host code, we must specify a 3-dimensional
grid of threads to run.

Each thread is assigned a tuple of x, y, and z indices within the grid.
These indices are accessible within each thread and are used to build a
mapping between threads and data, such that different threads execute
the same instructions on different data.

The programmer also specifies how to further split this 3-dimensional
grid into 3-dimensional thread blocks of equal size. These blocks are used
to distribute threads over the available SMs. Within a block, the hardware
further splits the threads into warps. An SM holds all warps within a block
simultaneously, allowing zero cost context switching between them.

2.3 Graph Processing on GPU

The flexibility of graphs as a data structure means there are endlessly
many ways to implement graphs algorithms on a CPU. But on the GPU,
the limitations imposed by the hardware restrict the number of viable
implementations for any given algorithm.

In this thesis we restrict ourselves to a Bulk Synchronous Parallel (BSP)
execution model. In a BSP model, an algorithm consists of a number of
supersteps with barrier-synchronisations in between. BSP is a natural
fit for the GPGPU kernel interface, and most graph algorithms can be
restated in terms of iterative steps.

These steps generally boil down to performing some operation on each
element in a set of vertices or edges. This set can be the entire graph, a
subset of the graph, or the frontier of a traversal.

Graph processing is characterised by a low arithmetic intensity and
large number of independent operations [61]. The large number of inde-
pendent operations means there is enough work to parallelise across the
many cores of a modern GPU. However, the low arithmetic intensity in

14

2.3. Graph Processing on GPU

graph processing means there is very little compute work for these cores
to do.

Thus, the key to efficient graph processing on GPU is to focus on
maximising the use of memory bandwidth. In the previous section we
discussed the SMT-style latency hiding used between warps on a single
SM. In the ideal scenario the entire time between issuing a memory fetch
and the fetch completing can be filled with issuing fetches for the other
warps. This is something that should be kept in mind when considering
parallelisation and workload distribution.

The need to saturate each SM with enough parallel work to effec-
tively perform latency hiding restricts the number of sensible paralleli-
sation strategies. We can do edge-centric parallelisation, using one thread
per edge, or vertex-centric parallelisation, using one thread per vertex. In
the latter case there are two possible variations: we either push updates
for each outgoing edge of a vertex, or we pull updates from each incoming
edge of a vertex.

When dealing with a vertex subset or frontier, there are two further
options. One option is to use a Gather-Apply-Scatter (GAS) based ap-
proach. This involves gathering the relevant edges or vertices into a new
data structure, applying the above parallelisation strategies to process this
data, and, finally scattering the results back to the original data structure.
The alternative option is to always launch threads for every vertex or edge
in the graph, and set the threads for vertices/edges outside the active sub-
set to run no-ops. This has the benefit of skipping the copying of the
gather and scatter phase, but reduces the efficiency of the SMs by having
no-ops threads scattered across warps.

Vertex-based parallelisation strategies often perform fewer redundant
reads and/or fewer atomic operations than edge-based ones (see Chapter 6
on page 85). However, they are susceptible to efficiency loss due to load
imbalance. Suppose we have a vertex with one million edges that is pro-
cessed by a thread in a warp where every other vertex has five edges. In
this scenario, 31 threads in the warp will be idle until all million edges
have been processed in the remaining one thread.

Ultimately, how successfully a GPU graph processing algorithm satu-
rates the bandwidth depends on the coalescing of memory accesses. The
result is that there is no single best parallelisation strategy for any algo-
rithm or graph, as the chosen strategy only partially controls the memory
locality and access pattern. The rest of the locality and access pattern is
dependent on the graph’s structure and specific algorithm.

15

CHAPTER 3
The Art & Engineering of

Empirical (Computer)
Science

Ostensibly, this thesis is about General Processing on GPU (GPGPU)
programming. However, in reality only 770 (2.96%) of the 26, 036 lines
of code covered by this thesis are Compute Unified Device Architecture
(CUDA) code. Even if we broaden our definition of GPGPU code to include
all the host code and the build system, it is still only 7, 650 (29.38%) of
the total code.

The remaining 70.62% (or 97.04%) of the code exists solely to deal
with running experiments, tracking provenance of results, postprocessing
data, validating results, and performing data analyses. In other words, it
is “just” engineering work that is normally seen as incidental to the pursuit
of “actual” science. The purpose of this chapter is twofold:

First, to explain the design of and rationale behind the data format
we use for our results, give an overview of the tools we developed for run-
ning experiments, tracking the provenance of our results, and performing
analyses.

This chapter is based on work previously presented in:
Merijn Verstraaten. Belewitte. Version 1.0.0. Aug. 2022. doi: 10.5281/zenodo.6959684. url:
https://doi.org/10.5281/zenodo.6959684
Merijn Verstraaten. Belewitte GPU Experiment Results. Version v1.0.0. Aug. 2022. doi:
10.5281/zenodo.6925023. url: https://doi.org/10.5281/zenodo.6925023

17

https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.6925023

3. The Art & Engineering of Empirical (Computer) Science

Second, and more importantly, to motivate why our data format and
tooling are not just engineering. We argue that:

• The data format and tooling are an essential contribution of this
thesis,

• the design and implementation of data formats and tooling are in-
herently part of the scientific process, not “just” engineering, and

• this engineering work should be an expected part of any performance
engineering or other experimental computer science.

3.1 Motivation

Performance engineering is the art of untangling the complex interactions
between hardware, data structure, and algorithms to achieve the best pos-
sible performance. The challenge of performance engineering for GPGPU
graph processing is at the core of this thesis.

Each of the areas of hardware, data structures, and algorithms covers
decades of development and layers upon layers of abstraction, on both the
hardware and software level. And all these areas and abstractions influence
each other in indirect ways. As a result, a complete and accurate simulation
of the interaction(s) between all relevant components is infeasible.

In other words, in performance engineering we cannot feasibly work
from “ground truth”. We can only observe how systems behave in the
real world, model this behaviour, and verify that our model approximates
reality sufficiently to be useful.

This can feel limiting in a field where theoretical research has the lux-
ury of working with well-defined mathematical abstractions, but it is no
different from the daily reality in other empirical fields like experimental
physics, astronomy, or chemistry.

If we, computer scientists, want to take ourselves seriously as a science,
we should aspire for our research to be at least as principled as these
traditional empirical fields.

3.1.1 The State of Empirical Computer Science
In 1980 Denning, then president of the ACM, already argued that “ex-
perimental” computer science is an empirical science and that we should
evaluate according to the same standards as more traditional empirical
sciences [27].

25 years later he admonished us — computer scientists — for not heed-
ing his warning [28]. In this article he indirectly references1 two studies
1 via the 1998 article [87] by Tichy

18

3.1. Motivation

on experimental validation of pre-1995 and pre-1998 computer science pa-
pers [86, 100]. These studies conclude that, after excluding theoretical and
mathematical papers, 30–40% of computer science papers fail to have any
experimental validation.

The situation seems to have improved since then, but there are still
plenty of problems. The real litmus test for (empirical) science is whether
others can reproduce the results. And just because a paper describes an
experimental validation, does not mean it can be reproduced. A 2015 study
on reproducibility by researchers at the University of Arizona found that
they could only reproduce 54% the experiments of 402 papers involving
experimental validation [23].

These findings mimic our own experience: while some authors take
care to make their code publicly available and archived on Research Data
Management (RDM) platforms — such as Zenodo [18] — other research
software simply gets lost. At least one author we approached indicated
that the graph-processing code we were interested in using was lost in the
process of moving between different institutions.

Problems with reproducibility are not the only issue in empirical com-
puter science. The quality of the produced empirical data varies greatly
from paper to paper. A recurring problem we have observed in papers
on GPGPU graph processing is that the conclusions are justified based
on very small result datasets — i.e., results from 5–20 graphs — in most
cases.

Extrapolating from such small samples is fine if the problem is regular
or when samples are truly representative of the wider data. However,
GPGPU graph processing is not regular and these sample graphs are not
representative of all graphs — or, at least, we have no way of knowing if
they are.

We do not blame the authors for this, there is only so much room for
graphs and tables included directly in a single paper. Summarising large
benchmark datasets in a way that is both complete and understandable for
the reader is a challenge, and computer science does not have a tradition
of separately publishing datasets of empirical results.

Furthermore, there are no standard classification schemes or metrics
for evaluating the similarity of (sets of) graphs. This makes it hard to
assess how similar two graphs are or how representative a set of graphs is
off all possible graphs. This is a problem that crops up in Chapters 4, 5,
and 8 on page 41, on page 67, and on page 111, too.

3.1.2 The Wider Empirical World
Fortunately, we are not alone in this. In a 2016 survey by Nature, over 70%
of the 1,576 surveyed scientists said to have tried and failed to reproduce
work by others. When asked which factors contribute to these failures, over

19

3. The Art & Engineering of Empirical (Computer) Science

40% of the respondents indicated that unavailable code, methods, and raw
data are “often or always” part of the problem.

The underlying causes of reproducibility issues impact science in other
ways too. 2016 also saw the publication of the FAIR guiding principles
for scientific data management [98]. The paper argues that we can extract
more scientific value from scientific data if we improve the ecosystem(s)
for publishing scientific data. The authors highlight the value of archiving,
sharing, and linking datasets in ways that allow other researchers to find,
(re)use, and build upon them. They further discuss the problem areas
that currently make this difficult. The key problem areas they identified
have significant overlap with the problems identified by the Nature survey
respondents [6].

The key take away of the paper is that datasets produced by empirical
experiments have value beyond the papers that gave rise to them, but only
when others can find, use, and refer to them. Which is what they hoped
to capture with their FAIR acronym: Findability, Accessibility, Interoper-
ability, and Reusability.

The paper started discussions in many empirical fields and has already
had an impact, as many funding agencies — including NWO2 — now
require data management plans and proper data archiving for all projects
they fund.

Of course, the concerns about FAIR data are equally relevant for re-
search software3. This led to a reformulation of the FAIR principles tai-
lored to software [52].

3.1.3 Practice What You Preach
Fortunately, the situation is improving. Computer science conferences are
increasingly employing “artefact evaluation” committees to evaluate soft-
ware artefacts, source code is increasingly publicly available, work on mak-
ing software citable [29, 79], and funding agencies are starting to require
proper archiving of both data and software.

However, there is still plenty of room for improvement: code is often
available on faculty websites or GitHub, rather than scientific archiving
organisations, such as Zenodo [18]. Papers often do not clearly indicate
the exact software versions used for experiments, and it is still very rare
for computer scientists to publish datasets of empirical results.

The above factors make it difficult to explicitly cite or credit software
and datasets produced by other researchers, despite the considerable effort
and engineering that has gone into them.

2 https://www.nwo.nl/en/research-data-management
3 Research software is defined here to mean “software whose primary purpose is the
generation or validation of data for use in scientific research.”

20

https://www.nwo.nl/en/research-data-management

3.2. Data Format Design & Refinement

Following our own arguments above, the exact code [89] and data [90]
used in thesis are available under the General Public License version 3
(GPLv3) [34] and Creative Commons Attribution 4.0 International [26]
licences respectively. They are archived on Zenodo, with the latest version
being available at https://github.com/merijn/Belewitte.

3.2 Data Format Design & Refinement

In the previous section we argued the importance of publishing datasets
of results in addition to publishing the software used to generate those
results. But, if that “dataset” is merely a ZIP file of unlabelled CSV files,
this is not useful to anyone. This is reflected in the FAIR acronym.

The first half, findability and accessibility, deals with unique identifi-
cation of datasets, metadata availability, and getting access to a copy of
the dataset. These concerns can be addressed by using a dedicated RDM
service for archiving and sharing datasets.

The second half of the acronym, interoperability and reusability, deals
with more nebulous concepts. In [98], reusability is clarified to refer to:
“having a clear licence for data and metadata usage, detailed provenance
of the data and metadata” and “meeting domain-relevant community stan-
dards”. Interoperability is clarified as: “references other data using quali-
fied references” and using a “formal, accessible, shared, and broadly appli-
cable language for knowledge representation”.

While these statements give us no hard definition, the intent is clear:

• Use standard and commonly used data formats that others can access
without too much effort,

• ensure the dataset or schema clearly defines the data stored, and

• include all the metadata necessary to track the provenance of results
to their experiments.

In other words, the recommendation is: “use what everyone else in the
field is using”. Fields where the publication of datasets is already common

— such as climate science, ocean science, or computational chemistry —
have settled on a handful of widely available formats that everyone uses.
However, publishing result datasets is rarely done in computer science, so
there is no real established format yet, requiring us to invent our own
format.

Designing a data format sounds simple enough: decide what data you
need to store and write down a schema for it. Our experience has taught
us that, in practice, it is not obvious which data we need. Thus, the design
of a data format is an integral part of our research’s refinement process.

21

https://github.com/merijn/Belewitte

3. The Art & Engineering of Empirical (Computer) Science

As shown in Fig. 3.1, we start out with research questions in mind.
Based on these questions and our assumptions, we can formulate what data
we need. Once we know which data we need, we can run our experiments
and gather the data. Analysis of the data rarely answers our research
question directly. Instead, we find ways we need to refine our hypotheses
and questions, which leads to re-evaluation of what data we need, etc. This
loop continues until we are satisfied with the answers to our questions4.

Data Format
DesignAnalysis

Result Data

Research
Questions

Figure 3.1: Data format design as integral part of scientific inquiry.

A pragmatist might argue that refining the data format is a redundant
part of this refinement loop: “just store everything”. Which is a simple
enough idea, but even deciding what “everything” entails can be a chal-
lenge. To illustrate these difficulties, the rest of this section presents an
overview of how our data format has evolved over time — i.e., the diffi-
culties we encountered in designing a data format, how we addressed the
oversights we discovered, and the importance of accommodating future
refinements into it.

3.2.1 The Messy Initial State
During the initial stages of this project, like many scientific endeavours,
the code consisted of a collection of Python and bash scripts to run exper-
iments, collect, and analyse the data. Similarly, the “data format” was,
essentially, piles of undocumented CSV files. This “works” if there is only
one person manually investigating data from a handful of experiments, but
when the number of experiments grows, this approach becomes untenable.

We started running into problems once we started to benchmark larger
datasets, in an attempt to address our complaint that many GPGPU graph
4 Or funding runs out, whichever comes first…

22

3.2. Data Format Design & Refinement

processing papers base their conclusions on rather small datasets. Many
of our scripts relied on manual pre- and postprocessing of data. Runs on
large datasets across several Graphical Processing Units (GPUs) led to an
explosion in the number of result files, approaching 50,000 result files at
one point.

Each change to the GPGPU code required redoing everything to ob-
tain the new timings and results, making the process even more labour
intensive and error prone. The combined challenge of massive results col-
lections and frequent code changes made it extremely difficult to manage
the experiments and track the provenance of our results.

3.2.2 An Initial Schema
Our goal was to kill two birds with one stone: reducing the manual effort
and time required to do experiments and keep track of the results, while
also making it easier for others to build on top of our code.

A large part of the manual intervention, pre-/postprocessing scripts,
and time investment dealt with querying, aggregating, and filtering our
data into subsets for analysis. In other words, the sorts of operations
that SQL is well suited for. Additionally, the provenance information we
need to store to link results to experimental configurations maps well to a
relational model.

We decided to use SQLite [81] as basis for our data format. It gives us
all the power and convenience of a relational database and SQL, but does
not require us (or other researchers) to set up, configure, or maintain a
separate database server to use it.

Since SQLite databases consist of a single file, it is easy to archive,
backup, or share the entire dataset of results and their provenance. It is
also a well-known, well-supported, and open file format that is supported
by practically every programming language. There are standard tools avail-
able for operating on SQLite databases, and data can be easily exported
to common formats such as CSV.

Finally, SQLite is one of the formats recommended by the US Library
of Congress [25] for the long term archival of complex datasets.

The schema of the first version if our data format is shown in Fig. 3.2
on page 25 and covers:

Platform
The platform timings were performed on.

Algorithms
The set of algorithms we implemented and benchmarked.

Implementations
The different implementations we have of each algorithm.

23

3. The Art & Engineering of Empirical (Computer) Science

Graphs
The input graphs we run our benchmarks on.

Graph properties
Structural properties of our input graphs.

Variants
Some algorithms can be run in multiple configurations (such as root
nodes for Breadth-First Search (BFS)) on the same input graph;
a variant identifies a specific combination of graph, algorithm, and
configuration.

Step properties
Runtime properties for specific supersteps of a variant (such as fron-
tier size for BFS).

Total time
Global timing results for a single variant as measured using a single
implementation on a single platform.

Step time
Timing results for individual supersteps of a single variant as mea-
sured using a single implementation on a single platform.

The main catalyst for our initial schema was our difficulty with tracking
the provenance of results and the performance of our data processing. As a
result, the first version of our data format served mainly to aggregate and
store the results of manually performed experiments — and worked well
for these problems, although it had quite a few oversights and omissions.

As an important side-effect, the SQLite database was also more efficient:
it took up considerably less disk space than the thousands of text files
required otherwise, and the analysis time went down from ∼40 minutes to
∼1 minute.

3.2.3 Data Format Refinement
Because the first version of our data format was a big improvement over
the ad hoc scripts before it, we started using it more intensively for all
the tooling related to our experiments, which we will discuss later on in
Section 3.3 on page 30.

We spent considerable effort on the design of the initial schema, leaving
room for several extensions that we wanted, but did not immediately need.
Despite this effort, we discovered oversights and omissions as we started
using our new tooling more.

Most of the omissions were related to metadata. For example, we stored
which input graphs were used for experiments, but not which dataset each

24

3.2. Data Format Design & Refinement

id

name VARCHAR

INTEGER
GPU

stdDev REAL

maxRuntime REAL

avgRuntime REAL

REALminRuntime

INTEGERstepId

variantId INTEGER

gpuId

implId INTEGER

INTEGER
StepTime

stdDev REAL

maxRuntime REAL

avgRuntime REAL

REALminRuntime

VARCHARtimer

variantId INTEGER

gpuId

implId INTEGER

INTEGER
TotalTime

VARCHAR

algorithmId

VARCHAR

id

prettyName

INTEGER

name

INTEGER

Implementation

id

VARCHAR

prettyName

INTEGER

VARCHAR

name

Algorithm

variant VARCHAR

id

INTEGER

algorithmId

INTEGER

INTEGER

graphId

Variant

value REAL

variantId

INTEGER

property

INTEGER

VARCHAR

stepId

StepProp

prettyName VARCHAR

id

VARCHAR

tag

INTEGER

VARCHAR

name

Graph

REALvalue

graphId

VARCHAR

INTEGER

property

GraphProp

Figure 3.2: Schema for the initial version of our data format.

25

3. The Art & Engineering of Empirical (Computer) Science

graph came from. This made it hard to compare our results across multiple
datasets. Similarly, we did not store or verify which specific version of our
GPU code was used for experiments, which led to one of our databases con-
taining “contaminated” data — i.e., results from multiple different versions
of our GPU code. Requiring us to rerun all those experiments to obtain
the dataset used throughout this thesis. Nor did we store the number of
repeated experiments our results were averaged over.

The biggest omission in the initial data format was that we did not
store the results of our analyses and modelling code in the database. The
resulting models were stored on disk, losing all training metadata. This
training metadata cannot be reconstructed, as our model training algo-
rithm is stochastic.

From the initial version onwards there has been a continuous loop of
tooling to make experiments or analyses easier, leading to increased usage
and reliance on these tools, running into oversights and omissions, fixing
these problems, and then even more reliance on the tooling.

During one of the first refinements to our schema, we made the for-
tuitous decision to implement a versioning scheme for our schema, and
implement migration logic from older schemas to the latest version. As
a result of this effort, even databases created with the first iterations of
our code can still be read and processed by the current version after an
automated migration5. This has been invaluable in addressing omissions
in the schema and extending the functionality of our tools.

In the ∼2.5 years since the initial version of our data format, the schema
has been refined extensively (we are currently on the 29th version of the
schema), and our tooling expanded. The result of this effort can be seen
in the latest version of the schema, shown in Fig. 3.3 on page 29.

In summary, we rectified the metadata omissions discussed above, and
added the ability to import and store results from external implementa-
tions for easier comparison with work by other researchers. We added
metadata to track whether an implementation’s output for an algorithm
matches the output of the other implementations, as simple sanity check
of each implementation’s correctness.

The machine learning models trained by our tools are now stored in the
database, including the metadata describing what results the model was
trained on and the impact of individual features in the training data. We
also added a notion of a “run configuration” which describes a single set of
experiments on a specific dataset of graphs, using a specific version of the
GPU code, and any other configuration. This way, we can accommodate
results from different versions of the GPU code or different configurations

5 After some small changes to fix manual mistakes in the data [91], even the 2-year-old
data for [93] is still readable with the latest version of the tools.

26

3.2. Data Format Design & Refinement

in the same database, which allows us to more easily compare across vari-
ations in the configuration.

And even after 2.5 years of refinement we still found information miss-
ing from our schema in the process of writing this chapter. For example,
we do not currently store information on: the operating system version,
Linux kernel version, NVIDIA driver version, CUDA Software Develop-
ment Kit (SDK) version, or other hardware information besides the GPU.
We also lack a Digital Object Identifier (DOI) or Findability, Accessibility,
Interoperability, and Reusability (FAIR) identifier for our input datasets,
as the datasets we used did not have any — a result of their use not being
widespread within computer science, yet.

We did not initially consider this information, as it was not very im-
portant for our efforts. All our experiments are run on the same cluster,
so this information stays constant across our experiments. However, this
information is important for the provenance of our data when we consider
other researchers using our data.

3.2.4 Data Format Design Takeaways

The switch to using a single database for all results, provenance, and anal-
yses — together with the tools this allowed us to build — has been invalu-
able. It allowed us to explore and investigate larger sets of results more
thoroughly and in a fraction of the time it would have taken without it6.

At the same time, this single database has resulted in making our data
more accessible, transparent, and available for others who wish to explore
our work or experiment with their own analyses on the data we gathered.
There are two main takeaways from our experience working on this data
format.

First, defining a data format and building tooling around that should,
in hindsight, have been central in this research from the start, because it is
the increased scale of data and experiments that enables us to investigate
hypotheses that we could not handle before.

Second, it is crucial to consider how we accommodate changes, exten-
sions, and additions to the data and metadata we store in our data formats.
No matter how systematically we thought through the data we needed, we
kept finding things we missed or did not realise. The continuous evolution
and refinement of our tools and data format has been invaluable for our
investigations. Versioning our data’s schema and investing the engineering
time to support migration from old data allows us to keep evolving and
refining our tooling without throwing out all previous experimental work.

6 This estimation is based on our own experience with both solutions.

27

3. The Art & Engineering of Empirical (Computer) Science

INTEGER
algorithmId
propId

Integer

StepProp

INTEGER
VARCHAR
VARCHAR

name
prettyName

id
Algorithm

timestamp TIMESTAMP
BOOLEANisDefault
VARCHARflags
VARCHARname

INTEGER
INTEGER

id
algorithmId

VariantConfig

maxStepId INTEGER

id

BOOLEAN

INTEGER
variantConfigId

propsStored

INTEGER

INTEGER

BLOBresult

retryCount

INTEGERalgorithmId

graphId
INTEGER

Variant

REALvalue
INTEGERalgorithmId
INTEGERpropId

INTEGER
INTEGER

variantId
stepId

StepPropValue

INTEGER
VARCHAR
BOOLEAN

property
isStepProp

id
PropertyName

name

value

VARCHAR

ANY

GlobalVars

graphId

REALvalue

propId

INTEGER

INTEGER

GraphPropValue

REALimportance

INTEGER
INTEGER
INTEGER

propId
propertyIdx

modelId
ModelProperty

timestamp TIMESTAMP
INTEGERdatasetId
VARCHARprettyName
VARCHARpath

INTEGER
VARCHAR

id
name

Graph

id INTEGER

VARCHARname

Dataset

INTEGER

INTEGER

algorithmId
INTEGER

datasetId

id INTEGER

repeats
algorithmVersion VARCHAR

INTEGER
platformId

RunConfig

INTEGERvariantId

stepId INTEGER

REALminTime

REAL

INTEGER

maxTime

name

stdDev

avgTime

VARCHAR

REAL

REAL

runId
StepTimer

REALminTime

REAL

INTEGER

maxTime

name

stdDev

avgTime

VARCHAR

REAL

REAL

runId
TotalTimer

BOOLEANvalidated
TIMESTAMPtimestamp
INTEGERalgorithmId
INTEGERimplId
INTEGERvariantId

INTEGER
INTEGER

id
runConfigId

Run

timestamp TIMESTAMP
VARCHARtype

flags VARCHAR
VARCHARprettyName

INTEGER
INTEGER
VARCHAR

algorithmId
name

id
Implementation

INTEGER

INTEGER

unknownPredId

implId

INTEGER

algorithmId

UnknownPredictionSet

timestamp TIMESTAMP

totalUnknownCount INTEGER

trainSeed INTEGER

trainSteps REAL

REALtrainVariants

VARCHARalgorithmVersion

trainGraphs REAL

REALlegacyTrainFraction

VARCHARallowNewer

BOOLEANskipIncomplete

model BLOB

VARCHARdescription

prettyName VARCHAR

VARCHARname

INTEGERalgorithmId

INTEGER

INTEGER

id

platformId

PredictionModel stdDev REAL
REALmaxTime
REALavgTime

minTime REAL
VARCHARname
INTEGERalgorithmId
INTEGERimplId

INTEGER
INTEGER

platformId
variantId

ExternalTimer

VARCHARprettyName

VARCHARname

INTEGER

INTEGER

id

algorithmId

ExternalImpl

isDefault BOOLEAN
INTEGERavailable
VARCHARflags
VARCHARprettyName

INTEGER
VARCHAR

id
name

Platform

modelId INTEGER

INTEGERdatasetId

ModelTrainDataset

INTEGERcount
INTEGERunknownSetId

INTEGER
INTEGER

id
modelId

INTEGER

algorithmId

UnknownPrediction

28

3.2. Data Format Design & Refinement

INTEGER
algorithmId
propId

Integer

StepProp

INTEGER
VARCHAR
VARCHAR

name
prettyName

id
Algorithm

timestamp TIMESTAMP
BOOLEANisDefault
VARCHARflags
VARCHARname

INTEGER
INTEGER

id
algorithmId

VariantConfig

maxStepId INTEGER

id

BOOLEAN

INTEGER
variantConfigId

propsStored

INTEGER

INTEGER

BLOBresult

retryCount

INTEGERalgorithmId

graphId
INTEGER

Variant

REALvalue
INTEGERalgorithmId
INTEGERpropId

INTEGER
INTEGER

variantId
stepId

StepPropValue

INTEGER
VARCHAR
BOOLEAN

property
isStepProp

id
PropertyName

name

value

VARCHAR

ANY

GlobalVars

graphId

REALvalue

propId

INTEGER

INTEGER

GraphPropValue

REALimportance

INTEGER
INTEGER
INTEGER

propId
propertyIdx

modelId
ModelProperty

timestamp TIMESTAMP
INTEGERdatasetId
VARCHARprettyName
VARCHARpath

INTEGER
VARCHAR

id
name

Graph

id INTEGER

VARCHARname

Dataset

INTEGER

INTEGER

algorithmId
INTEGER

datasetId

id INTEGER

repeats
algorithmVersion VARCHAR

INTEGER
platformId

RunConfig

INTEGERvariantId

stepId INTEGER

REALminTime

REAL

INTEGER

maxTime

name

stdDev

avgTime

VARCHAR

REAL

REAL

runId
StepTimer

REALminTime

REAL

INTEGER

maxTime

name

stdDev

avgTime

VARCHAR

REAL

REAL

runId
TotalTimer

BOOLEANvalidated
TIMESTAMPtimestamp
INTEGERalgorithmId
INTEGERimplId
INTEGERvariantId

INTEGER
INTEGER

id
runConfigId

Run

timestamp TIMESTAMP
VARCHARtype

flags VARCHAR
VARCHARprettyName

INTEGER
INTEGER
VARCHAR

algorithmId
name

id
Implementation

INTEGER

INTEGER

unknownPredId

implId

INTEGER

algorithmId

UnknownPredictionSet

timestamp TIMESTAMP

totalUnknownCount INTEGER

trainSeed INTEGER

trainSteps REAL

REALtrainVariants

VARCHARalgorithmVersion

trainGraphs REAL

REALlegacyTrainFraction

VARCHARallowNewer

BOOLEANskipIncomplete

model BLOB

VARCHARdescription

prettyName VARCHAR

VARCHARname

INTEGERalgorithmId

INTEGER

INTEGER

id

platformId

PredictionModel stdDev REAL
REALmaxTime
REALavgTime

minTime REAL
VARCHARname
INTEGERalgorithmId
INTEGERimplId

INTEGER
INTEGER

platformId
variantId

ExternalTimer

VARCHARprettyName

VARCHARname

INTEGER

INTEGER

id

algorithmId

ExternalImpl

isDefault BOOLEAN
INTEGERavailable
VARCHARflags
VARCHARprettyName

INTEGER
VARCHAR

id
name

Platform

modelId INTEGER

INTEGERdatasetId

ModelTrainDataset

INTEGERcount
INTEGERunknownSetId

INTEGER
INTEGER

id
modelId

INTEGER

algorithmId

UnknownPrediction

Figure 3.3: Schema for the current version of the data format. Explained
in Section 3.3 and Appendix A

29

3. The Art & Engineering of Empirical (Computer) Science

Data Format

Experiment
Configuration AnalysisExperiment

Execution Visualisation

Figure 3.4: Stages of interaction with our data format.

3.3 High-level Implementation & Tooling

Our data format is the hub through which all our tools interact with the
data and each other. Figure 3.4 illustrates the 4 conceptual modes of
interaction with our data format:

1. Defining configurations of experiments to be run,

2. running the configured experiments,

3. analysing results of past runs, and

4. plotting and visualising gathered data and analyses.

These 4 conceptual modes roughly correspond to the 4 main executa-
bles in our codebase [89]. In this section we cover how these 4 modes of
interaction are implemented in our tools and how the tools make use of
our data format and the high-level design of our data format. For a de-
tailed, technical description of the data format we refer to the explanation
in Appendix A on page 137.

3.3.1 Experiment Configuration
We have to define what experiments to perform before we can start run-
ning them or analysing their results. Figure 3.5 on the facing page shows
a simplified schema of the relevant information for defining experiments.
This part of our data format serves two purposes:

1. It provides provenance information for our measurements, and

2. determines which experiments to run (see Section 3.3.2 on page 32).

As shown in Fig. 3.5 on the facing page a “run configuration” — i.e., a
set of experiments — is defined by: a hardware platform, a set of graphs,
and an algorithm.

30

3.3. High-level Implementation & Tooling

Name
Configuration

Hardware
Platform

Name
Filepath

Graph

Name
Algorithm

Name
Type

Implementation

1

1..*

Name
Dataset

Name
Configuration

Variant
Configuration

Name
Code Version
Run Count

Run
Configuration

1..*

11

1

1..*

1 1..*

1

1..*

1

1..*

Figure 3.5: Simplified schema for the specification of runs of experiments.

In this thesis the hardware platform refers to the GPU used for the
experiments. However, neither our data format nor our tools are limited
to GPUs, other accelerators or Central Processing Units (CPUs) will work
just as well.

The input data is made up of a named dataset of 1 or more graphs.
Graphs are stored as a name and corresponding filesystem path.

Converting graphs to the right in-memory representation is slow, so
we invented our own file format to speed this process up and assume that
graphs are already in this format. The normalise-graph program can
convert to our file format, it supports the common textual edge list format
used by SNAP [56] and the Matrix Market Exchange format [10].

The algorithm indirectly specifies two other aspects of our experiments:
the set of implementations and variants. For each algorithm we store a set
of implementations of that algorithm. Each implementation representing a
different parallelisation strategy and/or implementation approach of that
algorithm, as discussed in Section 2.3 on page 14.

We distinguish two types of implementations: simple implementations
and derived implementations. Simple implementations are standalone im-
plementations of an algorithm. Derived implementations are made up of
multiple simple implementations, plus the logic for switching between them
at run time. The distinction between simple and derived algorithms will
be covered in Chapter 7 on page 99.

Some algorithms can be run on the same graph in many ways. Consider,
for example, BFS and a graph of N vertices; there are N unique BFS
traversals of this graph, determined by the root vertex we select.

Variants identify algorithm specific configurations for an experiment,
such as different root nodes. This allows us to consider the results of these
different configurations separately.

31

3. The Art & Engineering of Empirical (Computer) Science

The Ingest tool we built handles all the relevant operations for storing
the information from Fig. 3.5 on the previous page in our database. It
provides a number of subcommands for operating on our data format. The
most important of these commands are:

add, registers new data in the database.

list, prints an overview of stored data.

query, prints detailed information about a single entry.

The list and query commands have their own subcommands to spec-
ify which table or entry to print information. These subcommands come
with their own command-line help, clarifying what is printed by them. Reg-
istering new experiment configurations is handled via the subcommands of
add:

add platform
Registers a new supported hardware platform.

add graphs
Registers new input graphs.

add algorithm
Registers a new algorithm.

add implementation
Registers a new implementation for an algorithm.

add variant
Registers a new variant for an algorithm and graph pair.

add run-config
Registers a new set of experiments to run.

These subcommands correspond to the schema in Fig. 3.5 on the preced-
ing page, except for the missing “dataset” command, which is an implicit
part of the command for adding new graphs to the database.

3.3.2 Experiment Execution
With our experiment configurations defined in the previous section, we
need to be able to actually run the experiments we define. There are two
distinct types of data that we want to gather: timings and properties.

Timings are fairly self-explanatory; to say anything about performance
we need to measure how long experiments take to run. The properties
are important because the goal of our research is to look into the link

32

3.3. High-level Implementation & Tooling

Name
Value

Graph Property

Step
Name
Value

Step Property

0..*1

1 0..*

Name
Filepath

Graph

Name
Configuration

Variant
Configuration

1

0..*

Figure 3.6: Simplified schema for the collected properties.

Name
Filepath
Dataset

Graph
Name
Type

Implementation

Name
Timing Data
Date

Total Timer

Name
Timing Data
Date

Step Timer

1

1..*

1

1..*

Name
Code Version
Run Count

Run
Configuration

Validated
Run

Name
Configuration

Variant
Configuration

1

0..*

1

0..*

1 0..*

1

0..*

Figure 3.7: Simplified schema for the collected timings.

between the (structural) properties of graphs and the performance of our
implementations.

As mentioned in Section 2.3 on page 14, we assume a Bulk Synchronous
Parallel (BSP) model for our algorithms and implementations. In a BSP
model, an algorithm consists of a number of supersteps with barrier syn-
chronisations in between and maps well to GPGPU kernel invocations.

Figure 3.6 and Fig. 3.7 show simplified schemas for the collected prop-
erties and collected timings respectively.

33

3. The Art & Engineering of Empirical (Computer) Science

We distinguish two types of properties in our data model: graph prop-
erties and step properties. Graph properties refer structural properties of
our input graphs, such as the degree distribution, size, and diameter.

Step properties are algorithm specific run time properties, these are
specific to algorithms and variants. An example is the frontier size for
a BFS traversal. The frontier size is different for every superstep and
individual variants — i.e., runs with different starting vertices — will have
different values too.

Timing measurements store the wall-clock time taken by computations.
We store at least the total execution time for each superstep and each
complete run. Our data format accommodates an unlimited number of
additional timers per superstep and per complete run to accommodate
more fine-grained timing data.

The timings are stored as aggregate over multiple executions, as speci-
fied by the run configuration. Specifically, we store the minimum, average,
and maximum observed timings, as well as the standard deviation of the
timings.

3.3.2.1 kernel-runner

The core of our execution stage is implemented by the C++ program
kernel-runner. This executable provides a unified interface for differ-
ent graph algorithms and GPUs. kernel-runner supports two modes of
operation: interactive and batch.

In interactive use, it can list details about supported algorithms and
implementations, query information about available GPUs, and run indi-
vidual implementations on graph files. In batch mode, the program reads
jobs from stdin, and reports job completion to stdout. The algorithm’s
results and timings logged to job-specific output files.

The kernel-runner program provides an API for registering algo-
rithms and their implementations. On start-up kernel-runner scans spec-
ified directories for dynamic libraries implementing this API and loads all
the libraries it finds. This lets us speed up (re)compilation and keep algo-
rithm implementation separate from the other functionality.

An important part of the above API is a number of C++ templates and
classes that enable the implementation of new algorithms with minimal
effort. Sharing as much functionality as possible across algorithms and
implementations.

The Config templates provided in TemplateConfig.hpp allow us to
write a single implementation of an algorithm’s host code that can be used
with each GPU implementation of the algorithm. This includes loading the
input graph from disk, converting it to the input format for our GPU kernel,
transferring the graph to the device, and setting up the GPU kernels.

34

3.3. High-level Implementation & Tooling

Having only a single host implementation shared across all device im-
plementations means any instrumentation can be done in a single place,
and shared across our device implementations. This includes logging for
structural properties of graphs, logging the algorithm specific properties,
and all the timers.

3.3.2.2 Ingest

The kernel-runner above gives us a consistent interface for running our
different graph algorithms, but it does not integrate with our data format.
This functionality is provided by the run-benchmarks subcommand of
Ingest. This subcommand queries which experiment configurations do
not have corresponding properties or timings stored in the database and
proceeds to run any missing experiments.

The Ingest run-benchmarks command spawns multiple parallel in-
stances of the kernel-runner in batch mode and distributes the missing
benchmark jobs across these processes. By default, this command uses the
Slurm Workload Manager [47] as this is the default scheduler of the Dis-
tributed ASCI Supercomputer 5 (DAS5) [7]. However, this default can be
overridden with Ingest set run-command command which allows users
to specify a custom command for launching jobs using their own cluster
management software or queueing system.

We also store a hash of the algorithms result for each variant, allowing
us to check that all of our implementations correctly produce the same
result. This does not work for all algorithms, since the results of some
algorithms — e.g., PageRank — are affected by the fact that IEEE-754
floating-point operations are not commutative.

These floating-point values can only be checked by doing a pairwise,
epsilon-based comparison. Storing the full result for every experiment is
not feasible, as the size can be several gigabytes. Instead, we provide a
separate Ingest validate command. This command repeats every run
whose result hash is incorrect and performs a full pairwise comparison of
floating-point values to see if the results match when using an epsilon-based
comparison.

3.3.3 Analysis
Figure 3.8 on the following page shows a simplified schema of the inputs
we train our models on. In this section we limit ourselves to discussing
the high-level operations provided by our tools and the inputs we store to
train models and perform analyses on. For the gory details of the exact
model metadata we store we refer back to Appendix A on page 137. For
details on the training method, model metadata, and model evaluation we
refer to Chapters 7 and 8 on page 99 and on page 111.

35

3. The Art & Engineering of Empirical (Computer) Science

Name
Configuration
Date

Prediction
Model

Name
Dataset

Name
Algorithm

Name
Value

Graph Property
Step
Name
Value

Step Property

Name
Timing Data
Date

Total Timer

Name
Timing Data
Date

Step Timer

Model
Metadata

1..*

1
0..*

0..*

0..*

0..*

0..*

0..* 1..*

0..*

0..*

0..*1
0..*

Name
Configuration

Hardware
Platform 1

0..*

Figure 3.8: Simplified schema for a model’s training inputs.

We define a “training configuration”, as shown in Fig. 3.8, to include:

• The hardware platform our timings come from,

• the algorithm,

• one or more datasets of graphs,

• a set of graph properties,

• a set of step properties of the algorithm,

• the step timings of the algorithm,

• the total times for each algorithm,

Many machine learning models require separate training and validation
sets, so our queries support splitting the above data into separate training
and validation sets. We support uniform random splits based on graphs,
specific variants, and individual BSP steps. This randomisation is based
on a seeded Pseudo Random Number Generator (PRNG).

We store the PRNG seed and chosen training/validation split with
the model. This allows us to rerun our experiments with the exact same
training/validation sets later, and also gives others clear provenance of the
exact data a model was trained on.

The Model executable has subcommands for all our model related in-
teractions with our data format. The most relevant subcommands are:

list
Lists all models stored in the database.

36

3.3. High-level Implementation & Tooling

query
Prints detailed training configuration and metadata for a model.

train
Train a new model from a given configuration and store the model
and its metadata in the database.

validate
Prints detailed statistics about a prediction model’s accuracy on both
the validation and total data.

evaluate
Prints a detailed performance comparison between 1 or more models
and previously measured implementations. Comparison is done for 1
specific GPU and either all known graphs or across 1 or more specific
datasets of graphs.

compare
Prints detailed performance comparison of measured implementa-
tions. Comparison is done for 1 specific GPU and either all known
graphs or across 1 or more specific datasets of graphs.

show
Prints the predicted implementation and (optionally) properties for
each BSP step for a specific variant.

export/export-source
Export a trained model as C++ library or source file that can be
plugged into our kernel-runner.

In addition to printing various detailed summaries the Model executable
can also be used to directly produce LATEX tables, such as the ones in
Chapters 7 and 8 on page 99 and on page 111. This lets us generate all
the graphs and tables in this thesis directly from our dataset, ensuring the
accuracy every plot and table.

3.3.4 Plot

With all this data conveniently gathered into a single database, we still
need a way to visualise it all. The Plot executable handles this. There
are three separate subcommands: report, bar and heatmap.

The report helps identify which variants may be interesting to plot.
Its output includes the variants where each implementation performs the
best/worst and variants where there measured timings are “statistically
interesting”. Examples of “statistically interesting” properties are:

• Smallest/largest difference between best and worst implementation,

37

3. The Art & Engineering of Empirical (Computer) Science

• smallest/largest spread of timings,

• smallest/largest skewness, and

• smallest/largest kurtosis.

The bar levels subcommand plots the run times of a set of imple-
mentation on the specified GPU against the different BSP supersteps of a
specific variant. Allowing us to compare how the performance of individual
implementations changes across a run on a single input graph.

The bar totals subcommand plots the total run times for a set of
implementations on given set of graphs. And finally, the bar vs-optimal
plots the run times of a set of implementations normalised to the “optimal”
performance according to our results.

The heatmap total and heatmap levels subcommands correspond
to their bar counterparts, but visualises the data using a heatmap. The
heatmap predict subcommand extends the output of the heatmap total
command to include 1 or more predictors.

3.4 Lessons Learned

In other empirical sciences the engineering work going into experimental
setups7 is treated as a scientific contribution in its own right. There are
journals dedicated to instrumentation and measurements. This is in stark
contrast with computer science, where software engineering and program-
ming work is often viewed as distinct from the “real computer science” and
rarely as a scientific contribution.

Perhaps this is an artefact of the same people building the “instrumen-
tation” and doing the experiments. Or maybe it is due to computer science
rarely having physical experimental setups. Regardless of the reasons, this
difference is holding empirical computer science back. The quality of the
software engineering determines how easy experiments are to reproduce
and validate; and, in any empirical science the quality of your results is
only as good as your ability to reproduce your results. An aspect that is,
unfortunately, still often overlooked in computer science [23].

The experiments within this thesis, despite only addressing a tiny part
of graph processing on GPUs, involve 56 implementations of BFS, 19 im-
plementations of PageRank, 247 graphs from the KONECT dataset, and
109 graphs from the SNAP dataset. Benchmarking all these possible com-
binations leads to:

(56 + 19)× (247 + 109) = 26, 700 experiments
7 Although other empirical sciences would probably refer to it “instrumentation”,
rather than engineering work.

38

3.4. Lessons Learned

The above 26, 700 experiments is before we even consider repeating
these experiments across multiple GPU generations or the fact that BFS
has different behaviour for every possible starting vertex in a graph. At this
scale, reproducibility becomes wishful thinking without adequate tooling
and data management.

As such, it is our opinion this software pipeline is an integral part of the
scientific contributions in this thesis. It forms the backbone of the method-
ology we use in this thesis and allows other to do similar investigations on
other graph algorithms, datasets, hardware, and/or implementations.

There are additional benefits to using a single toolchain and SQLite
database to pack and manage all this data and metadata, besides the
reproducibility aspect. Having all the data about experiment configuration,
results, and analysis configuration in a single database and toolchain makes
tracking the provenance of results much simpler.

Furthermore, the single file format and wide support for SQLite make
it trivial to share entire result sets with other researchers, letting them
build their own work on top of the existing results without having to redo
all the time consuming benchmarks themselves. The interested reader can
find all the data that went into this thesis archived on Zenodo [90].

39

CHAPTER 4
Quantifying Performance

Impact

The impact of input data on the performance of irregular algorithms is
well-known in High-Performance Computing (HPC) and General Process-
ing on GPU (GPGPU) communities; as is the fact that this impact varies
across different implementations of the same algorithm. Graph processing,
being the literal textbook example for irregular algorithm, is no exception.

In 2007, Lumsdaine et al. [61] argued that this irregularity is one of the
main challenges to overcome on the road to high-performance graph pro-
cessing. Many graph processing systems were developed since then [17, 37,
44, 45, 49, 66, 69, 97, 102]; however, the impact of input dependence and ir-
regularity is rarely covered in the discussion of implementation techniques
used in these systems.

The literature focuses almost exclusively on the efficiency with which
implementations can be mapped to the underlying hardware; or other ben-
efits, such as allowing higher-level optimisations or ease of programming.

This chapter is based on work previously presented in:
Merijn Verstraaten et al. “Quantifying the Performance Impact of Graph Structure on Neigh-
bour Iteration Strategies for PageRank”. In: ”Euro-Par 2015: Parallel Processing Work-
shops”. Springer, Cham. ”Springer International Publishing”, 2015, pp. 528–540. isbn:
”978-3-319-27308-2”
Merijn Verstraaten et al. Using Graph Properties to Speed-up GPU-based Graph Traversal:
A Model-driven Approach. 2017. eprint: arXiv:1708.01159
Merijn Verstraaten et al. “Mix-and-Match: A Model-driven Runtime Optimisation Strategy
for BFS on GPUs”. In: Proceedings of the 8th Workshop on Irregular Applications: Archi-
tectures and Algorithms. IEEE. 2018, pp. 53–60

41

arXiv:1708.01159

4. Quantifying Performance Impact

The reason for this omission is straightforward. There has been very
little systematic investigation into the link between graph structure and
the performance of different implementation techniques. The large number
of algorithms, techniques, and graphs makes it seem infeasible to perform
a systematic investigation of their interplay and quantify their impact on
performance.

By limiting ourselves to a single implementation technique and leverag-
ing the further restrictions imposed by the GPGPU programming model,
we reduce this seemingly infeasible problem space to a more manageable
size.

In this chapter we cover the neighbour iteration primitive; discuss the
possible methods for parallelising this primitive on the Graphical Process-
ing Unit (GPU); show how to implement Breadth-First Search (BFS) and
PageRank [73] using neighbour iteration; and show how different implemen-
tations of neighbour iteration affect the performance of these algorithms
across graphs.

4.1 Neighbour Iteration Primitive

There are numerous graph algorithms and people keep inventing new ones
and new variations of existing ones. As a result, it is clearly intractable
to investigate the impact of graph structure for each individual algorithm.
To have any hope of success, we need to ensure that our investigation is
applicable to many algorithms.

One common method for problems like this is to identify a set of prim-
itive operations that occur across different algorithms. If we can identify
a small set of primitives that occur often and make up the bulk of each
algorithm, we can then limit our investigation to these primitives.

Attempts to define such a set of graph processing primitives have been
made from several fields. In 2010, Buluç defined a set of primitives based
on linear algebra [13]. Hong et al. created Green-Marl, a Domain Specific
Language (DSL) for graph algorithms [43].

Other graph processing work did not set out to define a set of primitive
operations, but ended up doing so implicitly as a result of limitations of
their implementation.

Google’s Pregel [63], and the Pregel-inspired Giraph [33], advocate a
“think like a vertex”-model. This model requires vertex-centric code, where
the only operations are updating vertex state and sending messages to
neighbouring vertices.

Similarly, GraphLab [60] defines fold, merge, and apply primitives that
let user code update vertex state, aggregate information across multiple
vertices, and control the parallel execution of these.

42

4.2. Parallelisation Strategies for Neighbour Iteration

While there is some overlap in the primitives defined by these various
approaches, there is no consensus on what the best or most complete set
of primitives for graph processing is or what the right level of abstraction
is.

For example, in HPC communities BFS is commonly treated as an
algorithm, whereas the model checking community thinks of BFS as a
step or primitive in a larger model checking algorithm.

We limit ourselves to neighbour iteration, as it is the most common
operation across the above frameworks. Almost all graph processing frame-
works include it as either an explicitly built-in operation or implicitly as a
trivial application of the implemented operations.

Neighbour iteration, as the name implies, is a primitive that applies an
operation to each of a vertex’ neighbours, doing this for all vertices in the
graph.

In Section 4.2 we show different ways we can parallelise neighbour iter-
ation on the GPUs, and in Sections 4.4 and 4.5 we show how to use it to
implement PageRank and BFS.

4.2 Parallelisation Strategies for Neighbour Iteration

Limiting our investigation to neighbour iteration already reduces our prob-
lem space considerably, but the programming model and hardware con-
straints of GPUs let us reduce it even further.

In Section 2.3 on page 14 we observed that the key to effective graph
processing on GPUs is to maximise the use of memory bandwidth. Max-
imising the use of memory bandwidth requires us to saturate the GPU
with enough parallel work to maximise latency hiding.

We concluded that, given these restrictions, there are two “main” par-
allelisation strategies: vertex-centric (i.e., one thread per vertex) and edge-
centric (i.e., one thread per edge). In this section we cover how these two
parallelisation strategies can be applied to neighbour iteration, resulting
in 6 main implementations of neighbour iteration.

4.2.1 Edge List & Reverse Edge List
These edge-centric implementations launch one Compute Unified Device
Architecture (CUDA) thread per edge. Each thread is assigned an edge
(v, w) ∈ E to operate on. Threads read information from either the desti-
nation or origin vertex and process it. The common case is reading data
from the origin and propagating it to the destination.

Edge list based implementations use the outgoing edges of every vertex,
whereas reverse edge list based implementations use the incoming edges of
every vertex. This difference affects the amount of memory coalescing and
the access patterns exhibited at run time.

43

4. Quantifying Performance Impact

The advantage of these edge-centric parallelisation strategies is that
they never suffer from workload imbalance, every thread in a warp performs
the same amount of work. Edges with the same origin vertex are likely
to end up in the same warp, which helps with coalescing memory accesses.
The downside of this is that parallel updates result in highly contested
atomic updates.

4.2.2 Vertex Push & Vertex Pull
These vertex-centric implementations launch one CUDA thread per vertex.
Each thread is assigned a vertex and a list of neighbours to operate on.
The push and pull terminology originates from work on undirected graphs.

For undirected graphs there is no difference between the incoming and
outgoing edges of a vertex, as a result there are two common ways to pro-
cess the neighbours of a vertex. A thread can read data from its assigned
vertex, iterate over the neighbour list, and push that data out to each
neighbour. Or a thread can iterate over the neighbour list, pull data from
its neighbour, and update the data of its assigned vertex.

Since we assume directed graphs in this thesis, we can no longer use the
same data representation for both these versions. Push implementations
operate on the outgoing edges of a vertex, whereas pull implementations
operate on the incoming edges. This difference in input data mirrors the
difference between edge lists and reverse edge lists.

Both types of implementation are susceptible to workload imbalance
— and thus performance loss — if vertices with wildly different degrees
are grouped in the same warp. Push implementations, similar to edge-
centric implementations, generate a lot of concurrent updates, requiring
many atomic operations. However, they avoid the many redundant reads
performed by edge list implementations.

Pull implementations require no atomic operations as there is only a
single thread updating the data of each vertex. However, care needs to be
taken that the data read from neighbours is not data that the neighbours
are updating.

4.2.3 Virtual Warp Push & Pull
Virtual warps are a technique proposed by Hong et al. [45] to reduce the
workload imbalance created by vertex-centric GPU implementations.

The CUDA warps are divided into smaller “virtual warps” of N threads.
Each of these virtual warps is assigned N vertices to process. Instead of
having every thread process a single vertex, like the previous section, all
N threads in the virtual warp process the neighbours of a single vertex in
parallel. Then all N threads process the next vertex, and so on until all
N vertices assigned to the virtual warp have been processed.

44

4.3. Intermezzo: Comparing Implementations

Implementation Graph 1 Graph 2 Average
A 100 300 200
B 150 150 150
C 300 100 200

Table 4.1: An example of the difficulty of comparing run times across
multiple inputs.

This reduces the amount of load imbalance occurring within a virtual
warp, since the workload of a virtual warp is spread out equally across
that virtual warp. However, determining the optimal virtual warp size is
challenging.

Moreover, different graphs can have different optimal virtual warp sizes.
So instead of 2 implementations virtual warp push and virtual warp pull
actually represent a family of implementations with different virtual warp
sizes.

4.3 Intermezzo: Comparing Implementations

The implementation sections of this chapter, as well as the rest of this
thesis, have us comparing different implementations of the same algorithms.
However, the data dependence of these implementations makes meaningful
comparison hard. In this intermezzo we explain the methodology and
terminology we use to compare implementations in this chapter and the
rest of this thesis.

Comparing the performance of implementations on a single graph is
straightforward, simply compare the run times and done. Once we want
to talk about the performance of an implementation “in general”, things
become problematic.

Consider the example implementations, graphs, and run times shown
in Table 4.1. The best implementation differs for each graph and imple-
mentation B is never the fastest, but has the lowest average time.

For a few graphs we can sidestep this issue and simply tabulate all the
results in a single table, like our example. This is the approach taken by
many current graph processing papers, but it is often unclear how repre-
sentative their chosen graphs are and whether we can truly generalise from
the shown results.

The experiments in this thesis involve hundreds or thousands of runs
of our implementations. While the full results are publicly available [90],
it is simply not feasible to tabulate them in a thesis. The pages are too
small and human intuition and pattern recognition cannot handle numbers
at that scale.

45

4. Quantifying Performance Impact

Algorithm Total Avg 1–2× >5× >20× Worst
Edge List 28.47× 4.58× 50% 22% 3% 66.98×

Table 4.2: An example performance aggregate table.

We need one or more aggregate metrics that let us talk about the
performance of an implementation over a set of data. To the best of
our knowledge there are no standard metrics or representations for such
aggregate performance data.

4.3.1 Aggregate Tables
Tables serve as our main method of displaying this aggregate performance
data, listing per-implementation summaries of the aggregate performance
over a set of variants1. Table 4.2 shows an example table. In the rest of
this subsection we explain how to read these tables.

We start by defining an “optimal” time for every variant. This “opti-
mal” time represents the fastest time possible for that variant, based on
the times in our dataset. For PageRank this is equivalent to the fastest im-
plementation for a variant. However, for BFS we have timings per “step”
available. This allows us to take the fastest implementation at every BFS
step of a variant and add their run times together to arrive at an “optimal”
time that is better than merely the fastest overall implementation.

We can rank the performance of implementations by accumulating the
run times of each implementation across all variants, getting their total
time over all variants. If we divide the total time of each implementation by
the total “optimal” time, we have a measure of the slowdown compared to
the optimum possible over the entire dataset. We call this the normalised
total, shown in the “Total” column of Table 4.2.

However, the normalised total alone is not enough. Deviations from the
optimal on big graphs with long run times are punished disproportionately.
A 10% deviation from optimal on a large graph can outweigh being the
fastest implementation on many small graphs.

This disproportionate impact of large graphs is not a problem if deter-
mining the best performing implementation is all we care about. In that
case, the performance on bigger/slower graphs should weigh more heavily
than the performance on graphs that are fast to process anyway.

However, if we want to understand the performance of our implementa-
tions we need a more nuanced view. Such as an idea of how these deviations
are spread across the variants. Are there only a few outliers with huge de-
viations from optimal? Are they many small deviations from optimal.
1 A variant is one, algorithm specific, configuration for a graph.

46

4.3. Intermezzo: Comparing Implementations

To compare deviations from optimal across graphs of different sizes, we
need to normalise the run times of each variant. We do this by taking the
run time of each implementation and dividing it by the optimal time for
that variant. The result is the slowdown compared to the optimal time.
Consider the example in Table 4.1 on page 45. The normalised run time of
C for graph 1 is 3, i.e., implementation C is 3× slower than the “optimal”
implementation A.

These normalised run times give us a consistent indication of how much
an implementation deviates from the optimum. We can accumulate the
normalised run times for all implementations, divide by the number of
variants, and compute the average deviation from optimal. We call this
the average error, shown in the “Avg” column of Table 4.2 on the preceding
page.

The average error alone does not give too much insight in how these er-
rors are spread over the variants we consider. So, in addition to considering
the average error across a dataset, we also compute for the percentage of
times where an implementation is 1–2× of optimal, the percentage of times
it is >5× of optimal, the percentage of times it is >20× of optimal, and
the worst case in the entire dataset. These are shown in their respective
columns of Table 4.2 on the facing page.

4.3.2 Measurement Accuracy
We use the aggregate tables, described in the previous section, throughout
this thesis to compare the “overall” performance of various implementa-
tions. The validity of these aggregate comparisons is dependent on:

1. the accuracy of our measurements, and

2. absence of catastrophic error propagation.

Let us address the error propagation first. Our aggregate tables show
implementation run times as a percentage or ratio of the optimal run time
in our dataset. The run times of both the optimal and specific implemen-
tation are obtained by summing their respective mean run times across
the entire dataset. As each measurement is independent, we assume their
errors to be independent too. As a result, the error on the sum is bounded
by the sum of the individual errors.

This means that the Relative Standard Error (RSE) of a summation is
bounded by the largest RSE of its summands — if the largest RSE of all
summands is X% then the sum of errors can never exceed X% of the sum.

The propagation of errors for division is:

RSE(
X

Y
) =

√
RSE(X)

2
+RSE(Y)

2

47

4. Quantifying Performance Impact

If we assume the same RSE X for the both the numerator and denom-
inator, we get: √

X2 +X2 =
√
2 ·X2 =

√
2 ·
√
X2 ≈ 1.4X

So, the upper bound on the RSE of our ratios is approximately 1.4× the
RSE of our sums and the RSE of our sums is bounded by the RSE of our
individual measurements. Ruling out any catastrophic error propagation
from our measurements to our aggregates.

So, how accurate are our measurements? Our data [90] has timings of
995,931 full runs and 25,242,678 individual steps. The average RSE of the
full runs is 0.6%, with only 7,845 (or 0.8%) of measurements having an
RSE of over 5%. Similarly, the average RSE for the step timings is 0.5%,
with only 51,750 (or 0.2%) of measurements having an RSE of over 5%.

Of course, averages only tell us so much. What we really care about
are the outliers. What is the maximum measurement error in our results
and how strongly do these impact our aggregates. At first glance we are
in trouble. The maximum RSE is 99% for the full runs and 91% for the
steps. With errors this big, our aggregates become meaningless.

Fortunately, all is not lost. Upon further investigation we discover that
measurements with large RSEs fall largely into two categories:

1. Our dynamic implementations (see Chapter 7 on page 99), and

2. runs with short overall run times.

We will address the reason behind the large RSEs of our dynamic im-
plementations in Chapter 7 on page 99, as well as the reason why these
large errors do not impact out results.

If we disregard the measurements from our dynamic implementations,
we are left with 3,045 (or 0.3%) of the full runs and 34,404 (or 0.1%) of
the steps having a Relative Standard Error larger than 5%. These mea-
surements are notable for their short run times, compared to the others.

The average run time of these 3,045 full runs is 0.24% of the overall
average run time; and totalling up to only 0.0007% of the overall total
run time. Similarly, the average run time of the 34,404 steps is only 2.8%
of the average of overall step. In other words, the measurements with
large RSEs are predominantly measurements that are too small to have
significant impact on the overall result.

We computed, for every implementation, the fraction of the total run
time that is made up by measurements with RSEs larger than 5%. The
percentage of total run time made up by these “bad” measurements is,
in the absolute worst case, 0.004% for the full runs and 0.02% for the
individual steps.

We conclude that we can ignore the large Relative Standard Error on
these measurements as they simply cannot meaningfully affect our overall

48

4.3. Intermezzo: Comparing Implementations

Id Graph # Vertices # Edges Dataset
1 actor-collaboration 382,219 30,076,200 KONECT
2 amazon0601 403,394 3,387,390 KONECT
3 flixster 2,523,390 15,837,600 KONECT
4 jester1 73,512 8,272,720 KONECT
5 patentcite 3,774,770 16,518,900 KONECT
6 wikipedia_link_en 12,151,000 378,142,000 KONECT
7 wiki_talk_ru 457,017 919,790 KONECT
8 higgs-social_network 456,626 14,855,800 SNAP
9 sx-stackoverflow-c2q 1,655,350 11,226,800 SNAP

Table 4.3: Selection of graphs to highlight interesting differences between
implementations.

results. They make up such a tiny percentage of the overall run time that
it would not meaningfully shift the ratios in our aggregate tables — even
if our measurements were off by 10×.

4.3.3 Bar Plot Graph Selection
The aggregate tables from the previous section provide a good overview of
the aggregate behaviour of implementations. However, sometimes we want
to contrast individual runs and, as the popular adage goes, a picture is
worth a thousand words.

For these comparisons we use bar plots with implementations grouped
per variant to visualise how the run times differ between variants. We
normalise the run times to ensure the differences between implementations
on the same variant remain visible when plotting multiple variants in one
graph.

For this normalisation we take the slowest, plotted, implementation on
each variant and plot all run times on that variant as percentage of the
slowest. Different variants will all have the same 0–100% scale, even if
the actual run times differ by orders of magnitude, while preserving the
relative performance of implementations for each variant.

We use a small set of graphs, shown in Table 4.3, to highlight interesting
differences in the behaviour of implementations. We selected these graphs
using the Plot report command described in Section 3.3.4 on page 37 to
identify graphs/variants that exhibit statistically “interesting” behaviour.

Behaviours of interest include: Variants with either large or small dif-
ferences between the best and worst implementation, skewness of the run
times, or variants where implementations deviate from their “average” per-
formance.

49

4. Quantifying Performance Impact

4.4 Implementing PageRank

PageRank is an algorithm for ranking vertices in a graph based on their
importance [74]. Here, the importance of a vertex is defined as the chance of
visiting that vertex while randomly walking the graph with a fixed chance
of stopping and picking a new random starting point. PageRank was
initially developed at Stanford, but is best known as the original algorithm
upon which Google’s search empire was built.

Given a graph G = (V,E) the PageRank of a vertex v ∈ V is given by
the fixed point function PR defined in Eq. (4.1).

PR(v) =
1− d

|V |
+ d

∑
w∈N(v)

PR(w)

ρ(w)
(4.1)

The damping factor d represents the chance of continuing a random
walk after each step, the degree function ρ(w) gives the outgoing degree of
a vertex w ∈ V . N(v) denotes the neighbourhood of vertex v ∈ V , where
the neighbourhood of a vertex is defined as:

w ∈ N(v) ⇐⇒ (w, v) ∈ E

We can define the uniform random chance of abandoning a random
walk and starting a new random walk from a random other vertex as:

1− d

|V |

The chance of randomly walking from vertex w ∈ N(v) to vertex v is:

d
PR(w)

ρ(w)

That is, the chance of randomly walking to w, divided by the number
of destinations reachable from w, multiplied by the chance d of continuing
our random walk at all.

We can approximate the PageRank fixed point via an iterative algo-
rithm. First, we assign each vertex an initial PageRank. As PageRank is
a fixed point, the actual initial value is irrelevant; it only affects how long
it takes to converge to a result. The convention is to assign every vertex
an initial PageRank of 1

|V | .
After the initial PageRank assignments, we alternate two steps until

convergence. In the first step we compute the incoming PageRank value
for each incoming edge. The incoming PageRank value of an edge is the
current PageRank value of its origin, divided by the outgoing degree of the
origin.

50

4.4. Implementing PageRank

In the second step we apply the damping factor to the total incoming
PageRank value, update the PageRank value for each vertex, and finally
check whether the result has converged.

We determine convergence by either: (1) Checking that every vertex
has a PageRank difference below a fixed δ, or (2) checking that the sum of
all PageRank differences is below a fixed δ.

4.4.1 Implementations
Our GPU implementation of PageRank mirrors the two-step iterative ap-
proximation described above. One kernel computes the new PageRank
value for every vertex, a second kernel applies the damping factor, updates
the PageRank values and checks for convergence against our δ.

In Section 4.2 on page 43 we covered the 6 possible parallelisation
strategies for neighbour iteration. In Algorithms 1 to 5 on pages 51–53 we
give pseudocode implementations that show how these strategies apply to
the first step of PageRank.

Algorithm 1 Edge List Update & Reverse Edge List Update
function EdgeList(edges, pageranks, new_pageranks, idx)
do

origin← edges[idx].origin
dest← edges[idx].destination
outgoingRank ← 0

if degree(origin) ̸= 0 then
outgoingRank ← pageranks[origin]

degree(origin)

atomically do
new_pageranks[dest] += outgoingRank

end function

The edge-centric implementations use an array of edges (i.e., pairs of
origin and destination vertices) and a degree array that stores the outgoing
degrees of each vertex. Resulting in a space complexity of 2 · |E|+ |V |.

The vertex centric implementations are based on a Compressed Sparse
Row (CSR) representation. With CSR we store an edge array holding
the destination of each edge and an offset array that indicates where each
vertex’ edges start in the edge array. This leads to a space usage of |V |+
1 + |E|.

For the vertex push and vertex push warp implementations the out-
going degree of a vertex v can be computed directly from the CSR, by
taking the edge array offset of v + 1 and subtracting the offset of v. The
vertex pull and vertex pull warp implementations use a separate degree

51

4. Quantifying Performance Impact

Algorithm 2 Vertex Push Update
function VertexPush(

vertices,
pageranks,
new_pageranks,
idx

) do
outgoingRank ← 0

if degree(idx) ̸= 0 then
outgoingRank ← pageranks[idx]

degree(idx)

for nbr ∈ vertices[idx].neighbours do
atomically do

new_pageranks[nbr] += outgoingRank

end function

Algorithm 3 Vertex Pull Update
function VertexPull(

vertices,
pageranks,
new_pageranks,
idx

) do
newRank ← 0

for nbr ∈ vertices[idx].neighbours do
newRank += pageranks[nbr]

degree(nbr)

new_pageranks[idx]← newRank
end function

52

4.4. Implementing PageRank

Algorithm 4 Vertex Push Warp Update
function VertexPushWarp(

warp_size,
vertex_chunk,
vertices,
pageranks,
new_pageranks,
idx

) do
for v ∈ vertex_chunk do

outgoingRank ← 0

if degree(v) ̸= 0 then
outgoingRank ← pageranks[v]

degree(v)

num_nbr ← degree(v)

for nbr from 0 to num_nbr by warp_size do
atomically do

new_pageranks[nbr] += outgoingRank

end function

Algorithm 5 Vertex Pull Warp Update
function VertexPullWarp(

warp_size,
vertex_chunk,
vertices,
pageranks,
new_pageranks,
idx

) do
for v ∈ vertex_chunk do

newRank ← 0
num_nbr ← degree(v)

for nbr from 0 to num_nbr by warp_size do
newRank += pageranks[nbr]

degree(nbr)

atomically do
new_pageranks[v] += newRank

end function

53

4. Quantifying Performance Impact

array, like the edge-centric implementations, requiring an additional |V |
elements worth of space.

In the second step of PageRank we take all the newly computed incom-
ing PageRank values, apply the damping factor, and update the δ of this
PageRank iteration. The implementation of this second kernel, shown in
Algorithm 6, can be shared by all the previous update kernels; a vertex
centric parallelisation is the only one that makes sense for this operation.

Algorithm 6 Consolidate PageRanks
function ConsolidatePageRanks(

pageranks,
new_pageranks,
idx

) do
newRank ← 1−d

|V | + (d · new_pagerank[idx])

diff ← abs(newRank − pageranks[idx])

updateDeltaDiff(diff)

pageranks[idx]← newRank
new_pageranks[idx]← 0

end function

Looking at the kernel for vertex pull and vertex pull warp, we observe
that it is performing more work than strictly necessary. Computing the
incoming rank from every neighbour means that vertices that share neigh-
bours unnecessarily replicate work of dividing the rank. We could simply
move this division into the consolidation kernel, performing this compu-
tation once per vertex. We show pseudocode for these variations of the
kernels in Algorithms 7 to 9 on pages 55–56.

For our edge-centric implementations, we implemented both a Struc-
ture of Arrays (SoA) and an Array of Structures (AoS) implementation of
the edge data. In Central Processing Unit (CPU) code, the choice between
these two representations affects the ability to vectorise code, use Single
Instruction, Multiple Data (SIMD), and influences cache behaviour. It is
not clear whether the same trade-offs apply on the GPU. By implement-
ing both we can compare the results across graphs and see if there’s any
significant benefit to either approach.

4.4.2 Results
For our PageRank experiments we used a damping factor of 0.85. We ran
each implementation for 100 iterations, rather than running until conver-

54

4.4. Implementing PageRank

Algorithm 7 Vertex Pull NoDiv Update
function VertexPullNoDiv(

vertices,
pageranks,
new_pageranks,
idx

) do
newRank ← 0

for nbr ∈ vertices[idx].neighbours do
newRank += pageranks[nbr]

new_pageranks[idx]← newRank
end function

Algorithm 8 Vertex Pull Warp NoDiv Update
function VertexPullWarpNoDiv(

warp_size,
vertex_chunk,
vertices,
pageranks,
new_pageranks,
idx

) do
for v ∈ vertex_chunk do

newRank ← 0
num_nbr ← degree(v)

for nbr from 0 to num_nbr by warp_size do
newRank += pageranks[nbr]

atomically do
new_pageranks[v] += newRank

end function

55

4. Quantifying Performance Impact

Algorithm 9 Consolidate PageRanks NoDiv
function ConsolidatePageRanksNoDiv(

vertexDegrees,
pageranks,
new_pageranks,
idx,
notF inal

) do
newRank ← 1−d

|V | + (d · new_pagerank[idx])

if notF inal then
newRank ← newRank

vertexDegrees[idx]

diff ← abs(newRank − pageranks[idx])
updateDeltaDiff(diff)

pagerank[idx]← newRank
new_pageranks[idx]← 0

end function

gence. This is because the number of iterations needed to converge can
be affected by the order of operations, as floating-point operations are not
commutative. The results presented here consist of the time the PageRank
computation took, averaged over 30 runs, excluding data transfers to and
from the GPU.

Our original experiments [94] were performed on an NVIDIA K20 GPU
using version 5.5 of the CUDA toolkit. The results presented in this chapter
use an updated version of the code, fixing an important performance issue
and adding several extra implementations.

The experiments shown in this thesis were done using an NVIDIA Ti-
tanX GPU and version 10.0 of the CUDA toolkit on the Distributed ASCI
Supercomputer 5 (DAS5) [7] cluster. Both the code [89] and results [90]
for this thesis are available, archived on Zenodo. The most recent version
of the code is available at https://github.com/merijn/Belewitte.

We ran all 19 variations of the 7 PageRank implementation strategies
shown above on the graphs from the SNAP [56] and KONECT [51] datasets.
The aggregate performance across both datasets is shown in Table 4.4 on
the facing page. For brevity’s sake we include only the fastest virtual warp
implementations.

In Fig. 4.1 on the next page we show the normalised run times for the
graphs mentioned in Section 4.3.3 on page 49. This figure highlights the
performance volatility of our implementations. The run times for graph 5
are all fairly close, whereas graph 7 shows vertex push being 1–2 orders

56

https://github.com/merijn/Belewitte

4.4. Implementing PageRank

Algorithm Total Avg 1–2× >5× >20× Worst

Struct Edge List 1.15× 1.09× 98% 0% 0% 3.48×
Edge List 1.18× 1.16× 98% 0% 0% 3.54×
Vertex Pull NoDiv 2.29× 2.84× 55% 11% 0% 18.80×
Reverse Edge List 2.54× 2.15× 71% 8% 0% 10.60×
Reverse Struct Edge List 2.55× 2.14× 71% 8% 0% 10.76×
Vertex Push Warp 16–64 2.57× 4.05× 36% 17% 2% 66.63×
Vertex Pull Warp NoDiv 16–64 3.25× 5.32× 12% 38% 1% 27.46×
Vertex Pull Warp 16–64 4.49× 6.79× 5% 49% 3% 35.05×
Vertex Push 5.28× 12.20× 37% 34% 8% 642.08×
Vertex Pull 13.20× 16.14× 13% 60% 28% 143.45×

Table 4.4: Aggregate performance of our core PageRank implementations
across graphs from KONECT and SNAP. See Section 4.3 on page 45
for a detailed explanation on how to read this data and its measurement
accuracy.

1 2 3 4 5 6 7 8 9
Graph

0% 0%

20% 20%

40% 40%

60% 60%

80% 80%

100% 100%

No
rm

al
ise

d
Ru

nt
im

e

Edge List
Reverse Edge List
Reverse Struct Edge List
Struct Edge List

Vertex Pull
Vertex Pull NoDiv
Vertex Push

Vertex Pull Warp 16 64
Vertex Pull Warp NoDiv 16 64
Vertex Push Warp 16 64

Figure 4.1: Normalised run times of our PageRank implementations for
the graphs from Table 4.3 on page 49.

magnitude away from the other implementations.
We see the edge list implementations performing well on most of the 9

selected graphs. This follows our expectations from the results in Table 4.4,
we see the two edge list implementations perform the best overall, both in
terms of average error from the optimum and the total time.

At the same time we see that there is room for improvement. We see
“Vertex Pull NoDiv” beating the edge list implementations by 2–3× on
graphs 5 and 9. On graph 9 we also see the reverse versions improving on
the edge list implementations.

57

4. Quantifying Performance Impact

4.5 Implementing Breadth-First Search

BFS is a traversal algorithm. It was first invented in 1943–1945 by Konrad
Zuse to find connected components of a graph as part of his work on
Plankalkül [38, 103], however his thesis on the subject was not published
until 1972. In 1959, Moore independently reinvented BFS to find the
shortest path out of a maze [68].

Other applications of BFS include: wire routing [55], copying garbage
collection [22], single source shortest path in unweighted graphs, and max-
imum flow [32].

Algorithm 10 Breadth-First Traversal
frontier ← {v}

while frontier ̸= ∅ do
newFrontier ← ∅

for w ∈ frontier do
for u ∈ N(w) do

if NotV isited(u) then
newFrontier ← newFrontier ∪ {u}

frontier ← newFrontier

Algorithm 10 shows a pseudocode implementation of a BFS traversal.
In this pseudocode N(v) denotes the neighbourhood of vertex v ∈ V , where
the neighbourhood of a vertex is defined as:

w ∈ N(v) ⇐⇒ (v, w) ∈ E

They key distinction between the use of neighbour iteration in BFS
and PageRank is the frontier. Where PageRank always iterates over the
neighbours of every vertex, BFS only has to iterate over the neighbours of
vertices in the frontier. We can use either a Gather-Apply-Scatter (GAS) or
masking based approach to handle the frontier during neighbour iteration.

With a GAS-based approach we construct a temporary data structure
for the frontier — the gather step. Then run our parallel neighbour itera-
tion per the strategies described in Section 4.2 on page 43 — the application
step. Finally, the results from the temporary data structure are written
back to the original data structure — the scatter step.

The downside of a GAS approach is that the gather and scatter steps
introduce extra overhead to copy data into and out of the temporary data
structure, this overhead is linear in the size of the frontier. Additionally,

58

4.5. Implementing Breadth-First Search

implementing an efficient queue or work list on the GPU is a non-trivial
challenge due to the memory consistency model.

With the masking approach we keep the 1 thread per vertex or edge
parallelism described in Section 4.2 on page 43, but wrap the code of each
thread in a conditional check that determines if the thread belongs to the
frontier.

The downside of a masking approach is that threads which are not
in the frontier are idle for the duration of the entire computation, while
taking up slots in thread blocks and the scheduler of the Streaming Multi-
processors (SMs). This reduces the SMs’ efficiency with the same ratio as
the ratio between frontier size and graph size.

In the rest of this section we restrict ourselves to the easier to implement
masking variants of BFS.

4.5.1 Implementations
Our GPU implementation of BFS follows straightforwardly from the pseu-
docode in Algorithm 10 on the preceding page and parallelisation strategies
described in Section 4.2 on page 43 and the start of this section.

We allocate an array of depths, that stores the distance between each
vertex and our root vertex. We initialise the depth of the root vertex
to 0 and all other vertices to infinity. The core loop of BFS consists of
processing all nodes in the current frontier, updating the depths of their
neighbours and the frontier, and then repeating until the frontier is empty.

Algorithms 11 to 15 on pages 60–61 show pseudocode implementations
of the strategies from Section 4.2 on page 43 applied to BFS.

With our masking based approach, the first thing every thread does is
check whether they are part of the frontier. The edge list implementations
do this by comparing the depth of the edge’s origin with the current depth,
while the push and push warp implementations do this by comparing the
depth of their assigned vertex with the current depth.

For the pull and pull warp implementations the threads in the frontier
are not directly derived from the vertices in the BFS frontier. Instead, all
threads corresponding to vertices that do not yet have a depth are part of
the frontier, since only vertices without a depth can find a new depth by
iterating over their neighbours.

At every BFS level, zero or more new vertices are discovered, forming
the frontier for the next level. The size of this frontier needs to be tracked,
since the algorithm terminates when no new vertices are discovered. We
do this by having each thread track how many new vertices it discovers,
and aggregating these counts at the end of each BFS level to compute the
new frontier size.

We implemented four different aggregation variants for this frontier
count. Our first variant uses a global variable, with every thread perform-

59

4. Quantifying Performance Impact

Algorithm 11 Edge List BFS & Reverse Edge List BFS
function EdgeList(edges, depths, current_depth, idx)
do

origin← edges[idx].origin
dest← edges[idx].destination

if depths[origin] ̸= current_depth then
return

atomically do
depths[dest]← min(depths[dest], current_depth+ 1)

end function

Algorithm 12 Vertex Push BFS
function VertexPush(vertices, depths, current_depth, idx)
do

if depths[idx] ̸= current_depth then
return

for nbr ∈ vertices[idx].neighbours do
atomically do

depths[nbr]← min(depths[nbr], current_depth+ 1)

end function

Algorithm 13 Vertex Pull BFS
function VertexPull(vertices, depths, current_depth, idx)
do

if depths[idx] <= current_depth then
return

for nbr ∈ vertices[idx].neighbours do
if depths[nbr] = current_depth then

depths[idx]← current_depth+ 1

end function

60

4.5. Implementing Breadth-First Search

Algorithm 14 Vertex Push Warp BFS
function VertexPushWarp(

warp_size,
vertex_chunk,
vertices,
depths,
current_depth,
idx

) do
for v ∈ vertex_chunk do

if depths[v] ̸= current_depth then
continue

for nbr from 0 to num_nbr by warp_size do
atomically do

depths[nbr]← min(depths[nbr], current_depth+ 1)

end function

Algorithm 15 Vertex Pull Warp BFS
function VertexPullWarp(

warp_size,
vertex_chunk,
vertices,
depths,
current_depth,
idx

) do
for v ∈ vertex_chunk do

if depths[v] <= current_depth then
continue

for nbr from 0 to num_nbr by warp_size do
atomically do

depths[nbr]← min(depths[nbr], current_depth+ 1)

end function

61

4. Quantifying Performance Impact

Algorithm Total Avg 1–2× >5× >20× Worst
Vertex Push Warp 16–64 2.17× 3.53× 48% 9% 3% 82.26×
Edge List 3.97× 1.75× 83% 4% 0% 51.59×
Struct Edge List 4.77× 1.97× 81% 5% 0% 64.96×
Vertex Pull Warp 16–64 5.16× 9.88× 13% 29% 8% 1174.28×
Vertex Push 7.47× 18.56× 41% 37% 10% 1197.23×
Reverse Edge List 7.48× 2.67× 74% 9% 1% 93.75×
Reverse Struct Edge List 8.05× 2.83× 72% 12% 1% 108.14×
Vertex Pull 12.53× 25.23× 33% 37% 14% 2227.77×

Table 4.5: Aggregate performance of our core BFS implementations across
graphs from KONECT and SNAP. See Section 4.3 on page 45 for a detailed
explanation on how to read this data and its measurement accuracy.

ing atomic operations directly on this variable. Our second variant tries to
alleviate the atomic operation penalty by batching the atomic operations
performed by a single thread.

The literature suggests that the number of atomic operations and con-
tention can be reduced further by performing a reduction within a warp
or block [41] before performing the global atomic operations. Thus, our
third and fourth variants perform a warp and a warp-and-block reduction,
respectively, before updating the frontier size from only 1 thread per warp.

4.5.2 Results
Our original experiments [92, 93] were performed on an NVIDIA TitanX
GPU using version 8.0 of the CUDA toolkit. As with PageRank, the results
presented in this chapter use an updated version of the code, adding several
extra implementations.

The new experiments shown in this thesis were done on an NVIDIA
TitanX GPU and version 10.0 of the CUDA toolkit on the DAS5 [7] cluster.
Both the code [89] and results [90] for this thesis are available, archived
on Zenodo. The most recent version of the code is available at https:
//github.com/merijn/Belewitte.

Adding in the 4 different frontier aggregation variants and different vir-
tual warp sizes, we end up with 56 different implementations based on the 6
implementation strategies shown above. We ran these 56 implementations
on the graphs of both KONECT and SNAP averaging our timings over
30 runs. The aggregate performance across both datasets is shown in Ta-
ble 4.5. For brevity’s sake we include only one of the 4 frontier aggregation
methods and only the fastest virtual warp implementation.

We immediately see that BFS behaves different from PageRank. The
edge list implementations again have the smallest average error, but the

62

https://github.com/merijn/Belewitte
https://github.com/merijn/Belewitte

4.5. Implementing Breadth-First Search

1 2 3 4 5 6 7 8 9
Graph

0% 0%

20% 20%

40% 40%

60% 60%

80% 80%

100% 100%

No
rm

al
ise

d
Ru

nt
im

e
Edge List
Reverse Edge List
Reverse Struct Edge List

Struct Edge List
Vertex Pull
Vertex Push

Vertex Pull Warp 16 64
Vertex Push Warp 16 64

Figure 4.2: Normalised run times of our BFS implementations for the
graphs from Table 4.3 on page 49.

error is several times bigger than it was for PageRank. Most notable, when
comparing with the PageRank results, is that the edge lists implementa-
tions lost the top position to the virtual-warp-based push implementation.

The edge list implementation is within 1–2× of optimal 83% of the
time and has an average error of only 1.75×. The virtual warp push
implementation is within 1–2× only 48% of the time and has an average
error of 3.53×. Yet, despite being worse in all these metrics it is almost
twice as fast as the edge list implementation.

The most likely explanation for this behaviour is that large graphs that
take long to process have a much bigger impact on the total run time. If
graph A has an optimal time of 100 seconds and graph B has an optimal
time of 100,000 seconds, as 10% error on graph B is going to impact the
total more than a 10% error on graph A. These numbers indicate that the
“Vertex Push Warp” implementation does significantly better on the large
graphs than the “Edge List” implementation.

In Fig. 4.2 we show the normalised BFS run times on the graphs from
Table 4.3 on page 49. We see that the BFS run times are even more volatile
than PageRank. Where the PageRank edge list implementations were at
the top for most graphs, here we see considerable variation. For graph
4 the edge list implementation beat the rest by 1–2 orders of magnitude.
Whereas they are among the worst implementation for graph 3.

So far we assumed that the “optimal” time is simply the time of the
fastest implementation, as we have with PageRank. However, the be-
haviour of BFS is not nearly as static as PageRank is. At every superstep
there is a different frontier of active threads, with the run time of each
implementation differing at every step of the BFS, sometimes by multiple
orders of magnitude.

In Fig. 4.3 on the next page we have plotted the run times of our core

63

4. Quantifying Performance Impact

0 1 2 3 4 5 6 7 8 9
Levels

0.0×10 0.0×10

2.0×10 2.0×10

4.0×10 4.0×10

6.0×10 6.0×10
Ru

nt
im

e
(n

s)

Edge List
Reverse Edge List
Reverse Struct Edge List

Struct Edge List
Vertex Pull
Vertex Push

Vertex Pull Warp 16 64
Vertex Push Warp 16 64

Figure 4.3: Run times of different BFS implementations per level of the
actor-collaborations graph from KONECT.

BFS implementations across all the BFS levels on the actor-collaboration
graph. Here we see “Vertex Pull” performing terribly in the first three
levels of the BFS, but from level 3 on it is consistently faster than the
other implementations.

We also see that the edge list implementation is substantially slower
than the best implementation at each level. However, its more stable
performance across levels lead to it seeming competitive when considering
the entire graph.

This leads to a new “optimal” time, where we use the best possible
implementation at every level of our BFS. In Table 4.6 on the facing page
we compare the performance numbers of our implementations against this
new optimal time. The new “Best Non-switching” entry refers to our old
optimal — i.e., picking the best implementation for each graph and using
it for all levels of the BFS.

The results in Table 4.6 on the next page and Fig. 4.4 on the facing
page show that, even if we magically know the best implementation for
each graph ahead of time, we are still leaving a considerable amount of
performance on the table.

4.6 Summary

Our results demonstrate that performance of different implementations
of a basic graph operation varies across different input graphs. This is
shown by the significant fluctuations in run time and relative performance
between our parallelisation strategies. These fluctuations appear in both
our implementation of PageRank and BFS, and even within different levels
of the same BFS traversal.

64

4.6. Summary

Algorithm Total Avg 1–2× >5× >20× Worst
Best Non-switching 3.17× 2.32× 69% 8% 0% 37.82×
Vertex Push Warp 16–64 6.88× 8.20× 11% 29% 8% 234.05×
Edge List 12.60× 3.62× 54% 18% 1% 53.69×
Struct Edge List 15.15× 4.10× 50% 22% 2% 67.60×
Vertex Pull Warp 16–64 16.39× 17.71× 1% 68% 16% 1322.72×
Vertex Push 23.70× 39.87× 25% 53% 22% 1394.06×
Reverse Edge List 23.74× 5.87× 44% 28% 6% 97.57×
Reverse Struct Edge List 25.54× 6.19× 43% 30% 6% 112.54×
Vertex Pull 39.77× 39.48× 13% 58% 24% 2509.39×

Table 4.6: Aggregate performance of optimal BFS compared to our core
BFS implementations across graphs from KONECT and SNAP. See Sec-
tion 4.3 on page 45 for a detailed explanation on how to read this data
and its measurement accuracy.

1 2 3 4 5 6 7 8 9
Graph

0% 0%

20% 20%

40% 40%

60% 60%

80% 80%

100% 100%

No
rm

al
ise

d
Ru

nt
im

e

Edge List
Reverse Edge List
Reverse Struct Edge List

Struct Edge List
Vertex Pull
Vertex Push

Vertex Pull Warp 16 64
Vertex Push Warp 16 64
Optimal

Figure 4.4: Normalised run times of our BFS implementations compared
to “optimal” for the graphs from Table 4.3 on page 49.

One of our starting assumptions from the introduction is that the graph
structure has a significant impact on performance. That is, we expect it
to be (one of) the biggest influences on the observed performance.

In Sections 2.3 and 4.2 on page 14 and on page 43 we gave several
examples of how the structure can affect the performance of different par-
allelisation strategies and our implementations. For example, the workload
imbalance of vertex centric implementations depends on the degree distri-
bution of vertices within a single warp, and thus the order in which vertices
are stored in our CSR representation.

However, the results presented in this chapter are not sufficient to con-
clude that the shown performance differences can be attributed to graph

65

4. Quantifying Performance Impact

structure. Some of these performance differences may arise from a combi-
nation of the graph’s structure and the actual in-memory representation of
the graph. Such as the amount of memory coalescing and cache behaviour.

We present our efforts to establish a link between the performance
differences shown in this chapter and graph structure in Chapters 5 to 7
on the next page, on page 85, and on page 99.

66

CHAPTER 5
Graph Generation

One of our starting assumptions is that the structure of graphs has a
significant impact on performance. In the previous chapter we established
that the run time of implementations can differ by an order of magnitude
or more on the same graph. We also established that the best performing
implementation differs from graph to graph. This leaves us to show that
these performance differences can be attributed to the structure of these
graphs.

This immediately leads us to the following problem: How do we define
the “structure” of a graph? There are many properties describing the
structure of graphs, the KONECT handbook [50], for example, identifies
over 40 properties. However, there is no consensus on a standard set of
properties for classifying graphs.

A complicating factor is that most of these structural properties are
strongly correlated. Consider the case of the number of edges and the
average degree of a graph. If we increase the number of edges, this clearly
also increases the average degree of the graph. To the best of our knowl-
edge there is no known set of independent properties that describes the
structure/topology of a graph.

This lack of consensus leaves us to come up with our own set of prop-
erties to investigate. Our focus is on properties related to the degree dis-
tribution of the graph for two reasons. First, of all the possible properties

This chapter is based on work previously presented in:
Merijn Verstraaten et al. “Synthetic Graph Generation for Systematic Exploration of Graph
Structural Properties”. In: ”Euro-Par 2016: Parallel Processing Workshops”. Springer,
Cham. ”Springer International Publishing”, 2016, pp. 557–570. isbn: ”978-3-319-58943-5”

67

5. Graph Generation

they are some of the easiest and fastest to compute. Second, there are
several ways the degree of vertices can effect the efficiency of various paral-
lelisation strategies, as discussed in Sections 2.3 and 4.2 on page 14 and on
page 43.

In an ideal world we would have a comprehensive dataset of graphs,
where we vary one of our structural properties at a time, keeping the
others the same. For example, changing the average degree of vertices,
without affecting the diameter, number of edges, etc. In that scenario,
investigating which properties impact performance and by how much is
straightforward. Simply run all implementations against each graph and
relate changes to properties to change in performance.

However, it is unlikely that such a dataset exists — or even can exist —
due to most structural properties being correlated. In the absence of such
an ideal dataset, we need to work with what is available. Which means
relying on either publicly available real world datasets or on synthetically
generated graphs.

The SNAP [56] and KONECT [51] repositories used in the previous
chapter, and rest of this thesis, are the two largest and most well-known
public graph repositories. Other notable repositories include the Network
Repository [78] and House of Graphs [12].

These repositories consist of a large variety of real world graphs, includ-
ing various networks, such as road, communication, social, and collabora-
tion networks, but also rating and metadata databases. These repositories
include graphs ranging from 10 vertices and 14 edges to 68 million vertices
and 2.6 billion edges.

As such, these repositories provide good coverage of a wide variety of
different graphs. However, they suffer from a problem that is common in
many real world datasets. The data is noisy. When comparing two graphs
in these datasets, we see that nearly every structural property differs. This
makes systematic investigation on the impact of specific properties infeasi-
ble.

The other method of getting input graphs for experiments is to use
synthetic graph generators. The advantage of synthetic generators is that
we can generate as many graphs as needed of any size that is needed.
This lets us generate datasets that are less noisy than real world datasets;
allowing a more systematic exploration of the impact of changes between
graphs.

However, in practice, most generators can only generate graphs from
a single class or a small set of classes. Thus, synthetic generators only
help us do systematic comparison between graphs of a single “class”. The
definition of a “class of graphs” here is rather broad and informal. We
will cover the generator specific definitions of “class” in more details in the
related work, Section 5.1 on the facing page.

68

5.1. Related Work

We can combine graphs from different generators to get a more diverse
set of graphs, but this is not a panacea. Different generators can have
overlap in the types of graphs they produce and parts of the potential
graph search space may not be covered at all.

Earlier we observed that our main interest was in generating graphs
with specific degree distributions, allowing a systematic investigation of
how this impacts performance. Furthermore, we wanted to explore this
impact in combination with other structural properties.

We set out to create a generator, as none of the existing graph gener-
ators serve our use case well. In this chapter we present the design and
implementation of our generator [89].

The results of our generator were promising while generating small
graphs, but degraded quickly as we scaled up to larger graphs. This meant
we were unable to generate the dataset we would need for the kind of
systematic performance benchmarking we had in mind.

We identified a problem with our initial implementation that can ex-
plain the degradation as we scale up the graph size, but addressing this
issue requires a considerable amount of engineering time. This engineering
investment and the uncertainty of success led us to abandon the graph gen-
eration approach in favour of using our data from the SNAP and KONECT
datasets.

5.1 Related Work

Graph generation has been an active area of research since the ’60s [30]
and remains so to this day [1, 35]. This is the result of two complementary
reasons:

1. Real data might be unavailable, because it is proprietary or cannot
be obtained [59], or

2. a better understanding of what the essential features of a given type
of graph are is wanted or needed. [19]

5.1.1 Analytical Models
One of the first and best known models for graph generation is the Erdös-
Rényi model [30]. However, this model did not adequately capture the
properties of many real world graphs. For example, it does not follow the
power law degree distribution found in many real world graphs [2, 8, 77].

The Erdös-Rényi model was later subsumed as a special case of the
R-MAT model [20], which can model power law degree distributions as
well as deviations from it.

69

5. Graph Generation

Kronecker graphs [57] use the Kronecker product of a matrix to gener-
ate graphs. The authors presented a tool for fitting the graphs generated
using this method to the parameters of existing graphs, showing that the
method can approximate real world graphs. Moreover, this model lets one
use the fitted parameters to study the properties of graphs similar to the
fitted input.

Neither the R-MAT nor the Kronecker approach gave us sufficient con-
trol over the degree distributions of the generated graphs. The Kronecker
graph tools have an associated fitting tool, which can fit the degree dis-
tribution of a generated graph to match another graph. However, if we
had all the necessary graphs available for fitting, we would not need to
generate them in the first place.

5.1.2 Evolutionary Approaches
Generating graphs is also a topic of interest in the neural network commu-
nity in AI. As the problem complexity in the field increased, so did the
complexity of the used neural network topologies. Researchers started to
look for methods to automate the generation of these complex networks.
One of the more promising approaches, introduced in 1996, was NeuroEvo-
lution of Augmenting Topologies (NEAT) [83, 84].

NEAT is based on evolutionary computing. The algorithm starts with
a minimal neural network and incrementally adds vertices and edges to it.
This works well, but encountered significant scaling issues.

This constructive approach of adding individual vertices and edges
makes this approach time-consuming and memory intensive to produce
large neural networks. Additionally, the larger the neural networks be-
comes, the harder it is to produce the complex topologies required to solve
the AI problems encountered in the field.

Follow-up research tried to scale NEAT to neural networks of millions
of vertices since the principle of NEAT works for small neural networks.
The result of this research is a new algorithm, called HyperNEAT.

In HyperNEAT [36, 82] the evolutionary algorithm does not directly
evolve the resulting neural network. Instead, it evolves a generating func-
tion for the eventual neural network. These generating functions are de-
signed to more easily produce complex and recurring patterns, such as
symmetry, anti-symmetry, and repetition with variation. In practice, Hy-
perNEAT succeeds in producing neural networks that are orders of magni-
tude larger than those generated with NEAT.

The work on NEAT and HyperNEAT are not the only attempts to use
evolutionary algorithms for graph generation. The work of both Bach et al.
and Bailey et al. uses evolutionary algorithms to evolve generators/models
for the generation of graphs [4, 5]. These generators consist of sequences of

70

5.1. Related Work

operations that insert or construct certain motifs or permute the existing
graphs.

Unlike NEAT, which evolves a single graph, and HyperNEAT, which
evolves a generating function for a single graph, both Bach et al. and Bailey
et al. evolve a graph generator. Producing a graph generator instead of
a graph has two advantages: Instead of generating single graphs, we can
produce sets of graphs. It is also easier to extend them to produce more
complex patterns and structures.

Both papers show that they can successfully produce very diverse kinds
of graphs. The produced generators use iterative, constructive approaches
for generating graphs. A downside of this approach is that it is slow and
memory intensive to generate larger graphs. The largest graphs generated
in [5] are about 1,000 vertices; the generator from [4] already struggles
with graphs of this size.

5.1.3 Comparative Analysis
The graph processing community’s interest in understanding how algo-
rithms behave on real graphs of different shapes and sizes is one of the
main drivers of graph generation research. As a result, most of the field
is focussed on analytical models for real world graphs, as described in
Section 5.1.1 on page 69.

These models let researchers generate additional “real” input data for
experiments, as well as help inform algorithm implementation methods.
Unfortunately, this focus on mimicking specific classes of real world graphs
means there has not been a lot of attention to more general and flexible
generators.

Our interest in the impact of structural properties on algorithm per-
formance is more abstract. The limited flexibility and reduced number
of tunable parameters in the analytical model hinders our ability to use
existing tools to generate the graphs we need.

Investigating the link between structural properties and performance
does not require graphs that resemble real world data. Instead, we need
datasets with less noise and variation between properties. Graphs in such
datasets are unlikely to resemble real world graphs, but would simplify our
investigation significantly.

The evolutionary approaches to graph generation discussed in Sec-
tion 5.1.2 on the facing page are less focussed on mimicking specific types
of real world graphs and show they can generate widely varying types of
graphs. However, there are concerns regarding the scalability and control-
lability of these approaches.

To analyse the performance impact of structural properties we want to
investigate the impact of these properties over a wide range of different
graph sizes. Furthermore, we need to ensure that the compute times for

71

5. Graph Generation

our algorithms are long enough that any performance differences between
algorithm implementations do not get lost in the measurement noise. As
a result, the inability for NEAT and the methods proposed by [4] and [5]
to scale to larger graphs is worrisome.

Additionally, it is unclear whether HyperNEAT’s generating functions
or the motif- and generator-based approaches in [4] and [5] are sufficiently
expressive to generate all the graphs of interest.

Finally, one of the steps in HyperNEAT consists of mapping a hyper-
cube pattern (produced by the generating function) to a lower-dimensional
space to obtain the actual graph. This is one the techniques that lets Hy-
perNEAT generate such complex topologies. However, depending on the
mapping method chosen, this can result in superlinear complexity. For
scalability reasons it is preferable for the complexity to be linear in the
number of vertices and/or edges.

5.2 A New Graph Generator Design

Neither existing real world datasets nor existing graph generators provide
us with the kind of test data needed for the kind of sensitivity analysis we
envision. In this section we discuss our requirements for a graph generator
and how our algorithm design accommodates these requirements.

5.2.1 Requirements
Our end goal is to generate graphs that allow us to explore the impact of
different graph properties systematically. Ideally, our generator is capa-
ble of generating graphs matching a user-specified set of desired values for
structural properties — e.g., number of vertices, edges, connected compo-
nents, and/or degree distribution. A generator well-suited for this type of
systematic investigation should support:

• Fine granularity: vary as little as a single property at a time.

• Possibility to expand: add new structural properties.

• Scalability: generate small and large graphs within a reasonable time
budget.

In essence, our graph generation problem translates to the search prob-
lem of finding graph(s) conforming to a set of structural properties in the
search space of potential graphs. This search is complicated by the fact
that many structural properties are either correlated or interdependent.

Evolutionary computing is well-known for its ability to efficiently search
large spaces with complex interdependencies and/or correlations between
parameters. And we are not the first to have this idea. Several of the

72

5.2. A New Graph Generator Design

related research covered in Section 5.1 on page 69 use evolutionary com-
puting for graph generation. However, different goals led them to make
different design decisions in their application of these algorithms.

5.2.2 Evolutionary Computing for Graph Generation
Evolutionary computing is the collective name given to a range of tech-
niques based on principles of natural evolution, such as natural selection
and inheritance.

A key feature of evolutionary computing techniques is their ability to
produce good results when dealing with large search spaces and large num-
bers of interdependent parameters; these properties makes evolutionary
computing an appealing starting point for our problem.

The basic principle behind most evolutionary computing algorithms is
simple:

1. Generate an initial population of candidate solutions.

2. Select a number of solutions for reproduction based on their quality.

3. Perform crossover1 between selected solutions.

4. With a small probability, randomly mutate the candidate solutions.

5. Select survivors for the next generation based on quality.

There are endless variations on how to select parents, the probability of
random mutations, how to select survivors, and how many new solutions
should be generated in every generation. There are several standard choices
that appear to work well for most algorithms, avoiding the need to perform
substantial benchmarking to determine the right choices.

However, the remaining choices are problem specific and have a large
impact on performance and success. Since evolutionary algorithms are
stochastic, an important point of concern is the time it takes to converge
to a set of acceptable result graphs.

As we want both fine-grained tuning and large scale graphs, we are
faced with a large search space and long-running algorithm. For exam-
ple, the larger graphs in SNAP have over 4 million vertices and 68 mil-
lion edges (e.g., soc-Livejournal). Assuming a vertex-centric approach the
search space for generating an undirected graph of 4 million vertices has a
search space of 24,000,000 possible unique graphs.

1 With crossover parts of the “genetic code” of different solutions are recombined to
form new solutions

73

5. Graph Generation

Enumerating this search space is infeasible, even if we had an efficient
heuristic for pruning uninteresting candidates. To obtain acceptable con-
vergence speeds we have to ensure that the primitives used for generating
new candidates cover enough of the search space quickly.

The key idea behind the crossover operation is that it combines suc-
cessful or interesting parts of solutions, resulting in an even better solution.
As such, selecting a good crossover operation is critical to acceptable con-
vergence speeds.

Another important choice is the rate of mutation: too low and the
algorithm takes too long to explore promising related solutions; too high
and the algorithm may never converge on any optimal points, continuously
hopping over them.

5.2.3 Candidate Graph Representations
How to represent candidate solution graphs is an essential choice for graph
generation, because it impacts which crossover and mutation primitives we
can efficiently implement. Several sensible choices exist:

• Individual graphs represented as a connectivity matrix.

• Individual graphs represented as an edge list.

• Generating functions, i.e., a function that generates one specific
graph.

• Graph generators, i.e., a generator that generates graphs according
to some patterns.

5.2.3.1 Connectivity Matrices

A connectivity matrix represents a graph by encoding it as a 2-dimensional
matrix. A graph G of N vertices is represented as an N ×N matrix. An
edge (n,m) in G is encoded as Gn,m = 1. All matrix elements without a
corresponding edge are 0.

In this representation the most straightforward implementation of mu-
tation consist of randomly inserting or deleting edges. This is implemented
by generating random indices and flipping them from 0 to 1 or vice versa.

For crossover there are three simple methods:

Edge-wise, for every index in the connectivity matrix, randomly select a
parent and keep its value.

Vertex-wise, for every vertex in the graph, randomly select a parent and
keep the edges associated with that vertex.

74

5.2. A New Graph Generator Design

Single-point, select a random point in the matrix and for every edge
before it, keep the edges of the first graph, for the remaining edges,
keep those of the second graph.

Edge-wise crossover results in a very thorough mixing of two candidate
solutions, keeping roughly 50% of the edges from the first and 50% of
the second parent. Additionally, it is easy to implement. However, indis-
criminately picking edges from either parent will almost certainly destroy
any interesting subsections of the graph, the exact thing that crossover is
supposed to maintain.

Vertex-wise crossover preserves significantly more structure from the
individual parents, since all vertices from one parent will keep parts of
their environment from that parent.

Single-point crossover is even more conservative, since it always pre-
serves sequential sets of vertices. However, since vertices are not necessar-
ily sequentially connected it is unclear if this preserves significantly more
structure than vertex-wise crossover would. It is also unclear whether this
actually produces a net benefit for convergence.

With this representation it is easiest to keep the number of vertices
constant. Mutations that insert or delete vertices are not particularly
hard to implement, but these change the size of the matrix representing
the graph. This, in turn, complicates the crossover primitive, as it is
unclear how the above crossover primitives should be interpreted when
performing crossover on two matrices of differing sizes.

5.2.3.2 Edge Lists

As the name implies, an edge list represents a graph as a list of edges —
i.e., a sequence of vertex pairs. Edge insertion or deletion mutations are
as easy to implement as they are for connectivity matrices; simply delete
a pair from or insert a pair into the sequence.

Additionally, edge lists admit a new mutation primitive that is hard
to implement for connectivity matrices: remapping edges. We can pick a
random edge in the sequence in change either its origin or destination to
another random vertex. We can even extend this mutation to allow it to
remove or create new vertices.

The crossover primitives for connectivity matrices apply equally well
for edge lists. Edge-wise crossover iterates over both parents sequences
and picks a random one for the new graph. Vertex-wise crossover requires
slightly more implementation work, but remains conceptually the same.
Single-point crossover is straightforward to implement too: We pick a ran-
dom index in the sequence, for parent 1 keep all pairs before that index
and for parent 2 we keep all pairs after that index.

75

5. Graph Generation

The biggest difference with connectivity matrices is that certain restric-
tions are easier to impose on the generation process. For example, with
edge lists it is simpler to generate graphs with a fixed number of edges.
Start with the desired number of edges and do not use any mutations that
insert or delete edges. That is, only allow mutations that change the origin
and/or destination of existing edges.

On the other hand, edge list representations make it more complex to
guarantee that the number of vertices in a graph stays constant across
crossover and/or mutation. This property is simple to maintain when
performing crossover and/or mutation on connectivity matrices. Thus, the
two representations are complementary depending on the kind of graphs
we wish to generate.

5.2.3.3 Generating Functions

The biggest problem with the straightforward representations proposed
above is that their entirely random permutations can take a long time to
converge on more complicated structures that might be needed to achieve
the desired values for more properties, such as clustering coefficient.

One solution is to not evolve a graph directly, but rather evolve a
function that generates a graph. These generating functions are made by
combining smaller, independent functions together. The idea is that these
smaller functions capture part of the graph’s structure. This makes it
easier to generate more complex structures and recombine them into new
graphs, hopefully speeding up the convergence to desired result graphs.

HyperNEAT, for example, uses this technique. HyperNEAT evolves
Compositional Pattern Producing Networks (CPPNs); these are, essen-
tially, generating functions for neural networks. These CPPNs were de-
signed to be effective at generating complex structures, such as symmetries,
repetition, and repetition with variation. The results from HyperNEAT
show that this method can successfully produce complex neural networks.
However, there are two important concerns about this representation.

First, the indirection of first running the generating function to produce
a graph, means that the performance of this generating function becomes
a crucial bottleneck in the algorithms speed. There are no details on
HyperNEAT’s performance in terms of wall-clock time, which makes it
unclear how effective it would for generating large numbers of graphs.

Second, while CPPNs have been shown to be capable of generating
complex graphs, this does not mean they are flexible enough to generate
any possible graph. It is an open question whether CPPNs are general
enough for the systematic benchmarking we would like to do.

76

5.3. Implementation

5.2.3.4 Generators

All the previous representations deal with a single graph, but this is not the
only approach we can take. During our discussion of generating functions
we implicitly assumed these functions where deterministic. If we built
functions out of stochastic components instead, we do not get a generating
function for a single graph, but instead one that can generate many similar
graphs.

This approach was proven possible by Bailey et al. [5] and Bach et al. [4].
However, their approach raises the same concerns as generating functions:
It is unclear whether the evolved generators are sufficiently flexible and
expressive to generate all graphs of interest.

Additionally, the generators have to be fast enough to be able to quickly
evaluate their suitability. Initial tests showed that implementation used by
Bach et al. has scalability problems, even for very small graphs (∼1, 000
vertices). Similarly, in [5] there is no discussion about which types of
graphs are ruled out by the design of their generator. Additionally, the
authors do not seem to have tried to scale the approach beyond a few 100
vertices.

5.3 Implementation

Our prototype implementation evolves connectivity matrices directly. The
reasons for using connectivity matrices over edge lists are twofold:

1. It was simpler to implement with our existing file format, and

2. we are more interested in generating graphs with a fixed and pre-
dictable number of vertices.

The first step with any evolutionary algorithm is to define the fitness
function. The purpose of this function is to map candidate solutions to
a quality metric that indicates the quality of the candidate solution. We
are mostly interested in generated graph with specific degree distributions,
so our focus for the generator is to produce weakly connected graphs with
specific degree distributions.

Matching the distribution of degrees in a graph to a specific distribu-
tion is straightforward. The Kolmogorov-Smirnov (KS) test for goodness
of fit [64] compares an Empirical Distribution Function (EDF) with a Cu-
mulative Distribution Function (CDF) and gives us the absolute difference
between the two.

Our null hypothesis is that the EDF and CDF come from the same
distribution. This null hypothesis should be rejected if the absolute differ-
ence between the EDF and CDF exceeds our critical value. The critical

77

5. Graph Generation

Significance Critical Value
p = 0.20 1.07/

√
N

p = 0.15 1.14/
√
N

p = 0.10 1.22/
√
N

p = 0.05 1.36/
√
N

p = 0.01 1.63/
√
N

Table 5.1: Critical values for KS goodness-of-fit test, with sample size
N > 35.

value depends on both the desired significance and number of samples. In
Table 5.1 we list appropriate critical values for sample sizes larger than 35.

We also need a fitness metric for the weak connectivity of graphs. A
simple and efficiently computable metric is the percentage of the graph’s
vertices that are in the same weakly connected component2.

The connectivity and KS metrics above give us two independent fitness
metrics, which we need to reduce to a single metric that can be easily
compared for our evolutionary algorithm. Two common ways to combine
multiple metrics into one are the weighted sum of metrics or using a Pareto
ranking.

Initial experiments showed that the weak connectivity of all generated
graphs converges to 1 in a few generations. At which point the KS goodness
of fit becomes the sole method of ranking graphs. So, we opt for a simpler
solution: We treat the connectivity percentage as value between 0 and 1
and multiply the KS goodness of fit with this value. This way the weak
connectivity functions as a penalty whenever it drops below 1.

Our final algorithm design consists of:

Population size: 100 candidate solutions.

Parent selection: Weighted random selection.

Number of children: 100 new children every generation.

Crossover: Edge-wise, vertex-wise, and single-point.

Mutation rate: 1
0.1N2 , where N is the number of vertices.

Survivors: Keep best 20% plus weighted random selection.

Our initial population consists of 100 randomly generated graphs. We
create these initial graphs by computing the approximate number of edges
expected for a given number of nodes and a distribution, and then uniform
randomly setting that many edges in our connectivity matrix.
2 Specifically, the weakly connected component containing vertex 0

78

5.4. Results

To generate 100 new children we use weighted random selection to pick
100 pairs of graphs from the current population to serve as parents. We
perform crossover between these two parents, followed by uniform random
mutation of the edges in the resulting graph.

Finally, we merge the child and parent populations. The survivor pop-
ulation is created by taking the top 20% of the combined population, and
supplementing it with a weighted random selection of the remaining 80%.

Our choice of population size, parent selection mechanism, and number
of children are standard values in the evolutionary computing literature.
These values provide decent results for most problems and adjusting them
is unlikely to improve convergence speed or result quality much. Our
choices for crossover, mutation, and survivor selection are important for
convergence and result quality.

Mutations are responsible for exploring the neighbourhood of existing
candidate solutions. With a high mutation rate candidate solutions drift
apart at a higher rate, diverging from their parents at a faster rate, speed-
ing up the exploration of the search space. A low mutation rate explores
the search space around existing solutions more thoroughly.

If the mutation rate that is too low turns the algorithm into an in-
efficient exhaustive search; a mutation rate that is too high results in
instability and risks skipping over good solutions.

Crossover combines, hopefully successful, sections of different graphs
together, exploring the search space between those two graphs. The idea
is that some children will combine valuable, differing parts of both parents
into a single graph, producing a graph with a better fitness than either
parent.

However, this does require crossover to preserve enough “valuable” sub-
structure. We implemented each of the crossover methods discussed in
Section 5.2 on page 72 to investigate which approach is more effective.

5.4 Results

There are two main criteria for evaluating our graph generator:

1. The success rate, i.e., its ability to find graphs matching our require-
ments, and

2. the convergence rate, i.e., the speed with which solutions are found.

The success and convergence rates are closely related. A generator
that produces the desired graphs, but takes 1,000 years to do so is, for
all practical purposes, indistinguishable from a generator that does not
succeed at all…

For our first test we wanted to show that our generator can successfully
produce different degree distributions. These tests were done with small

79

5. Graph Generation

 0

 1

 2

 3

 4

0 10 20 30 40 50 60 70 80 90 100
110

N
u
m
b
e
r
o
f
V
e
rt
ic
e
s

Vertex Degree

Uniform Distribution (0 - 100)

Uniform Degree Distribution

Figure 5.1: Empirical degree distribution of graph generated with uniform
degree distribution (0–100).

graphs of 100 vertices to ensure fast convergence. In Figs. 5.1 to 5.3 on
pages 80–81 we show the actual degrees and expected values for uniform,
exponential, and Gaussian distributions respectively.

These results are after 1,000 generations, but for graphs this small
comparable fitness values start occurring after 100–200 generations. The
empirical distributions are a good fit for the target distributions, per our
KS tests. Thus, we conclude that our generator is able to generate graphs
whose degree distributions match our three target distributions. We do
not see any theoretical reasons why this would not generalise to other
distributions.

Having shown that our generator can produce graphs with different
distributions, it is time to consider how long it takes to produce these
result graphs. It should be self-evident that the time T to produce a (set
of) graphs is:

T = N × Tgen

Where N is the number of generations until a result and Tgen is the time
it takes to handle one generation. That is, the time it takes to generate a
set of children, evaluate their fitness, and select survivors from the children
and parents.

Our chosen population size is only 100, so the survivor selection takes
a negligible amount of time and can safely be ignored. The main com-
putational cost for a generation is the creation of new children and the

80

5.4. Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0 10 20 30

N
u
m
b
e
r
o
f
V
e
rt
ic
e
s

Vertex Degree

Exponential Distribution (λ = 0.1)

Exponential Degree Distribution

Figure 5.2: Empirical degree distribution of graph generated with expo-
nential degree distribution (λ = 0.1).

 0

 1

 2

 3

 4

 5

 6

 7

0 10 20 30 40 50 60 70 80 90 100
110

120

N
u
m
b
e
r
o
f
V
e
rt
ic
e
s

Vertex Degree

Normal Distribution (μ = 50, σ = 10)

Normal Degree Distribution

Figure 5.3: Empirical degree distribution of graph generated with normal
degree distribution (µ = 50, σ = 10).

81

5. Graph Generation

computation of their fitness. Both of these operations are trivially par-
allelisable, which means that Tgen is proportional to the time it takes to
create and evaluate one new graph.

The number of required generations N depends on how effective our
primitives are at finding the promising parts of the search space. In other
words, the convergence rate of our generator is determined by two factors:
The scalability of our primitives and their effectiveness.

The end goal for our prototype is to generate graphs that are big enough
to require a significant amount of compute time on the Graphical Pro-
cessing Unit (GPU). If the compute time is too short, any performance
differences due to structural properties are lost in the measurement noise.

It is unclear exactly how large our graphs need to be. The largest
graphs in SNAP and KONECT consist of millions of vertices and billions
of edges. The median seems to be on the order of hundreds of thousands
of vertices and millions of edges, so we expect to need graphs of at least
that size.

For a graph of 300,000 vertices, the entire process of crossover, mu-
tation, and fitness computation takes 3 seconds. This time increases to
approximately 35 seconds for a graph of 3,000,000 vertices. For 1,000 gen-
erations at these sizes, we get a total run time of 50 minutes at the small
end and up to 10 hours at the large end. This means graphs of millions of
vertices are on the edge between feasible and infeasible to generate.

The above time frames assume that we find acceptable graphs in 1,000
or fewer generations at these scales. The 100 vertex graphs in Figs. 5.1
to 5.3 on pages 80–81 converged in 100–200 generations. For graphs of
1,000 vertices we see rapid improvements in fitness for the first 100 gen-
erations, after which the improvements plateau for a long time. It takes
well over 1,000 generations before the correspondence between graphs and
target distribution becomes statistically significant.

For even bigger graphs we do not reach statistical significance at all.
Again, we see rapid improvement in fitness for the first ∼200 generations,
after which we hit a plateau. Improvement over this plateau is slow enough
that the algorithm does not terminate. At least, not in the time frame that
we allowed the algorithm to run.

This raises an important question: Are these plateaus a result of the
fundamental difficulty of producing graphs that meet our requirements or
are our crossover and mutation primitives insufficient?

The importance of good crossover and mutation primitives is well-
known in the evolutionary computing world. This was reconfirmed by our
own experiments with different combinations of crossover and mutation
rates. In our experiments we saw that edge-wise crossover takes consid-
erably longer to converge to good results, even on small graphs. With
vertex-wise crossover the required number of generations was 1–2 orders
of magnitude lower.

82

5.5. Conclusion

The biggest concern with our current primitives is our implementation
of mutation. Our implementation is a simplistic uniform random mutation
on all the potential edges. A graph with N vertices has an N × N con-
nectivity matrix of potential edges. We mutate the connectivity matrix by
selecting a uniform random number of these potential edges and flipping
them. Changing non-existent edges into edges and vice versa.

The unforeseen flaw of this approach is that it implicitly biases our
graph generation towards graphs where 50% of the connectivity matrix is
made up of edges. The ratio of edges and non-edges in our uniform ran-
dom sample reflects the ratio in the overall connectivity matrix. Combined
with our “bit flip” mutation mechanics, it follows that a sample that has
less than 50% edges will introduce more edges than it removes. Vice versa,
a sample with more than 50% edges will remove more than it introduces.
Over time this converges to the equilibrium state where 50% of the con-
nectivity matrix consists of edges. At which point we expect all samples
to have 50% edges and have no net effect on the number of edges.

5.5 Conclusion

We set out to build a synthetic graph generator to generate graphs with
specific structural properties, as the existing analytical models and graph
generators, discussed in Section 5.1 on page 69, did not accommodate the
structural properties we were interested in. Our goal was to use these
graphs to perform a systematic exploration of the impact of structural
properties on performance.

Most structural properties of graphs are correlated and it is not always
clear whether a graph with a predefined set of properties exists. Our pro-
posed generator is based on evolutionary computing, a search method that
is known to produce good results in the presence of complex, correlated,
or even conflicting requirements. Additionally, previous work has shown
promise for evolutionary computing in graph generation (see Section 5.1.2
on page 70).

In Section 5.4 on page 79 we show that our proposed generator is capa-
ble of generating graphs with specific degree distributions at smaller graph
sizes, but runs into trouble as we scale up to larger graph sizes. We show
that the primitives are fast enough for graphs up to 300 thousand or 3
million vertices iff the generator converges to an acceptable solution in a
reasonable number — e.g., around 1,000 — of generations.

At these sizes, 1,000 generations take about 50 minutes to 10 hours to
run with maximal parallelism. However, as we scaled up our experiments
to larger graph sizes (10,000–100,000 vertices) we ran into problems. After
100 generations of rapid improvement, the graph quality plateaus and does
not improve to an acceptable quality in the remaining 900 generations.

83

5. Graph Generation

Even doubling our experiments to 2,000 generations, doubling our run
time too, we were unable to get acceptable results. With a run time of 20
hours or more — assuming maximal parallelism — it was infeasible for us
to use this method of generation for our GPU experiments.

The likely root cause of this plateauing effect is that the crossover and
mutation primitives are not sufficient. In Section 5.4 on page 79 we noted
that uniform random mutation tends to a graph where 50% of potential
edges are present; this makes very sparse and very dense graphs unlikely
to occur and rules out large portions of the search space.

One way to address the bias in our mutation primitive is to switch from
a “bit flip” mutation to a primitive where the odds of inserting an edge
and the odds of removing an edge are independent. Another interesting
variation would be to include these mutation rates in the representation.
This would allow the mutation rate to evolve along the graphs and vary as
part of the search. Similarly, we might want to experiment with crossover
implementations that preserve more structure than the existing primitives.

There are practically infinitely many avenues to tweak the crossover
and mutation approaches. These would, hopefully, allow us to successfully
produce the larger size graphs we need for our experiments. This explo-
ration makes for interesting research, but takes a considerable amount of
engineering.

The required engineering effort, combined with the uncertainty of any
results led us to abandon the graph generation avenue in favour of our
existing KONECT and SNAP datasets in Chapters 4, 7, and 8 on page 41,
on page 99, and on page 111.

84

CHAPTER 6
Analytical Performance

Modelling

In Chapter 4 on page 41 we highlight how the performance of imple-
mentations varies dramatically across input graphs. We use analytical
modelling to try to understand the relationship between input graph and
the observed performance.

In this chapter we present our PageRank workload model and our ef-
forts to predict the parallel performance of our PageRank implementations
from this workload. We focus on PageRank as it is more regular than
Breadth-First Search (BFS) and therefore easier to model.

6.1 Workload Models

The computational workload of PageRank is negligible, as shown by the
implementations in Section 4.4.1 on page 51. Like BFS, and many other
graph algorithms, the PageRank kernels consist mostly of reading and
writing memory. Because of this memory-bound behaviour, we focus on
modelling the memory access behaviour.

We start by creating a workload model for each implementation. In this
workload model we only consider the total operations performed, ignoring

This chapter is based on work previously presented in:
Merijn Verstraaten et al. “Quantifying the Performance Impact of Graph Structure on Neigh-
bour Iteration Strategies for PageRank”. In: ”Euro-Par 2015: Parallel Processing Work-
shops”. Springer, Cham. ”Springer International Publishing”, 2015, pp. 528–540. isbn:
”978-3-319-27308-2”

85

6. Analytical Performance Modelling

Graphical Processing Unit (GPU) parallelism for now. We identify three
classes of memory accesses: global memory reads, global memory writes,
and global atomic operations.

Within these three classes there is still a lot of variability. Two ac-
cesses within the same class can have wildly different access times due to
cache effects and/or atomic contention. For now, we ignore these actual
performance cost of operations and treat them as unknown constants.

We represent the cost of a random global read as Tread, the cost of a
random global write as Twrite, and the cost of a global atomic add operation
as Tatom.

6.1.1 Abstract Workload Models
For our abstract workload models we refer back to pseudocode in Sec-
tion 4.4.1 on page 51. Our edge list kernel in Algorithm 1 on page 51
uses one thread per edge, performing 4 reads: 2 to find the destination
and origin, 1 to get the origin’s degree, and 1 to get the old PageRank
value. Finally, each thread performs an atomic addition to update the
new PageRank value of the destination vertex, resulting in:

Tedge =
∑
e∈E

(4 ∗ Tread + Tatom)

= 4 ∗ |E| ∗ Tread + |E| ∗ Tatom

With vertex push we use one thread per vertex. In Algorithm 2 on
page 52 we see that each thread performs 2 reads: 1 to read the vertex’
degree and 1 to read its PageRank value. This is followed by d atomic
addition operations, where d is the degree of that vertex. The number of
operations performed by vertex push thus boil down to:

Tpush =
∑
v∈V

(2 ∗ Tread + dv ∗ Tatom)

= 2 ∗ |V | ∗ Tread + |E| ∗ Tatom

In Algorithm 3 on page 52 we see that the vertex pull kernel performs
2 reads for each of its vertex’ neighbours, and then performs a non-atomic
write to store the new PageRank result. The total operations performed
by vertex pull thus boil down to:

Tpull =
∑
v∈V

(2 ∗ dv ∗ Tread + Twrite)

= 2 ∗ |E| ∗ Tread + |V | ∗ Twrite

86

6.1. Workload Models

The consolidation kernel, shown in Algorithm 6 on page 54, is the
same for each of the above kernels, performing 2 reads: one for the new
incoming rank value and one for the old PageRank value, followed by an
atomic addition and 2 writes to store the new PageRank and reset the
incoming rank:

Tcon =
∑
v∈V

(2 ∗ Tread + 2 ∗ Twrite + Tatom)

= 2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom

For our NoDiv implementation of vertex pull, shown in Algorithm 7 on
page 55, the workload model is:

TNoDiv =
∑
v∈V

(dv ∗ Tread + Twrite)

= |E| ∗ Tread + |V | ∗ Twrite

The corresponding consolidation, shown in Algorithm 9 on page 56
boils down to:

TconNoDiv =
∑
v∈V

(3 ∗ Tread + 2 ∗ Twrite + Tatom)

= 3 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom

We can now combine the workload of the update and their correspond-

87

6. Analytical Performance Modelling

ing consolidation kernels and get:

Tedge = (4 ∗ |E| ∗ Tread + |E| ∗ Tatom)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom)

= (4 ∗ |E|+ 2 ∗ |V |) ∗ Tread + 2 ∗ |V | ∗ Twrite

+ (|V |+ |E|) ∗ Tatom

Tpush = (2 ∗ |V | ∗ Tread + |E| ∗ Tatom)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom)

= 4 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + (|V |+ |E|) ∗ Tatom

Tpull = (2 ∗ |E| ∗ Tread + |V | ∗ Twrite)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom)

= 2 ∗ (|E|+ |V |) ∗ Tread + 3 ∗ |V | ∗ Twrite + |V | ∗ Tatom

TNoDiv = (|E| ∗ Tread + |V | ∗ Twrite)

+ (3 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom)

= (3 ∗ |V |+ |E|) ∗ Tread + 3 ∗ |V | ∗ Twrite + |V | ∗ Tatom

6.1.2 Concrete Workload Models

The abstract workload models above are based on the pseudocode descrip-
tions of our implementations. The real world is messy and accommodating
it can force our real implementations to deviate from the simplicity of our
pseudocode. In this subsection we contrast the abstract workload mod-
els derived from the pseudocode above, with the actual memory accesses
found in the Parallel Thread Execution (PTX) assembly generated by the
Compute Unified Device Architecture (CUDA) compiler.

The simplicity of our PageRank kernels makes it straightforward to
do this analysis manually. The relevant PTX assembly can be found in
Appendix B on page 151. We can simply count load (ld) and store (st)
instructions, accounting for repetitions due to loops is straightforward with
the reference C++ included in the assembly.

Note that our kernels were written using “grid-stride loops” [40] to
accommodate workloads larger than the maximum grid size. However,
none of the graphs in our datasets exceed this size, so we can ignore them
in this analysis.

88

6.1. Workload Models

6.1.2.1 Edge List

Appendix B.1 on page 151 shows the PTX assembly for our edge list imple-
mentation. In this assembly listing we identify the following operations: 1
load per edge of the u64 edge count; 2 loads per edge of the u64 edge array
pointers; 2 loads per edge of the u32 the origin and destination vertices; 1
load per edge of the u32 degree of the origin vertex; 1 load per edge of the
f32 origin vertex PageRank value; and 1 atomic add per edge of the f32
destination vertex PageRank value. Giving:

Tedge = 7 ∗ |E| ∗ Tread + |E| ∗ Tatom

or, expressed in bytes read or written, rather than individual reads or
updates:

Tedge = 40 byte ∗ |E| ∗ Tread

+ 4 byte ∗ |E| ∗ Tatom

6.1.2.2 Vertex Push

The PTX assembly listing for vertex push, shown in Appendix B.2 on
page 154, we find: 1 load per vertex of the u64 vertex count; 2 loads per
vertex of the u64 vertex and edge array pointers; 2 loads per vertex of the
u32 vertex offsets in the edge array; 1 load per vertex of the f32 PageRank
value; 1 load per outgoing edge of the u32 destination vertex; and 1 atomic
add per outgoing edge of the f32 destination PageRank value. Giving:

Tpush = 6 ∗ |V | ∗ Tread + |E| ∗ Tread + |E| ∗ Tatom

or, expressed in bytes read or written, rather than individual reads or
updates:

Tpush = 36 byte ∗ |V | ∗ Tread

+ 4 byte ∗ |E| ∗ Tread

+ 4 byte ∗ |E| ∗ Tatom

6.1.2.3 Vertex Pull

Our vertex pull listing, shown in Appendix B.3 on page 162, we find: 1 load
per vertex of the u64 vertex count; 2 loads per vertex of the u64 reverse
vertex and edge array pointers; 2 loads per vertex of the u32 vertex offsets
in the edge array; 2 loads per incoming edge of the u32 origin vertex and
its degree; 1 load per incoming edge of the f32 PageRank value; and 1
store per vertex of the f32 new PageRank value. Giving:

89

6. Analytical Performance Modelling

Tpull = 5 ∗ |V | ∗ Tread + 3 ∗ |E| ∗ Tread + |V | ∗ Twrite

or, expressed in bytes read or written, rather than individual reads or
updates:

Tpull = 32 byte ∗ |V | ∗ Tread

+ 12 byte ∗ |E| ∗ Tread

+ 4 byte ∗ |V | ∗ Twrite

6.1.2.4 Vertex Pull NoDiv

The NoDiv listing of vertex pull, shown in Appendix B.4 on page 170, has:
1 load per vertex of the u64 vertex count; 2 loads per vertex of the u64
reverse vertex and edge array pointers; 2 loads per vertex of the u32 vertex
offsets in the edge array; 1 load per incoming edge of the u32 origin vertex;
1 load per incoming edge of the f32 PageRank value; and 1 store per vertex
of the f32 new PageRank value. Giving:

TNoDiv = 5 ∗ |V | ∗ Tread + 2 ∗ |E| ∗ Tread + |V | ∗ Twrite

or, expressed in bytes read or written, rather than individual reads or
updates:

TNoDiv = 32 byte ∗ |V | ∗ Tread

+ 8 byte ∗ |E| ∗ Tread

+ 4 byte ∗ |V | ∗ Twrite

6.1.2.5 Consolidate

Our consolidate implementation, shown in Appendix B.5 on page 177, per-
forms: 2 loads per vertex of the f32 old and new PageRank; 2 stores per
vertex of the f32 old and new PageRank; and 1 atomic add per 32 vertices.
Giving:

Tcon = 2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom

or, expressed in bytes read or written, rather than individual reads or
updates:

90

6.1. Workload Models

Tcon = 8 byte ∗ |V | ∗ Tread

+ 8 byte ∗ |V | ∗ Twrite

+ 4 byte ∗ |V |
32
∗ Tatom

6.1.2.6 Consolidate NoDiv

And for our NoDiv version of consolidate, shown in Appendix B.5 on
page 177, we find: 2 loads per vertex of the f32 old and new PageRank; 2
stores per vertex of the f32 old and new PageRank; 1 load per vertex of
the u32 vertex degree; and 1 atomic add per 32 vertices. Giving:

TconNoDiv = 3 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom

or, expressed in bytes read or written, rather than individual reads or
updates:

TconNoDiv = 12 byte ∗ |V | ∗ Tread

+ 8 byte ∗ |V | ∗ Twrite

+ 4 byte ∗ |V |
32
∗ Tatom

6.1.2.7 Concrete Totals

We can combine the concrete models for the update and consolidation
kernels to get the total memory accesses in the PTX assembly, as shown
below:

Tedge = (7 ∗ |E| ∗ Tread + |E| ∗ Tatom)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom)

= (7 ∗ |E|+ 2 ∗ |V |) ∗ Tread + 2 ∗ |V | ∗ Twrite + (|E|+ |V |
32

) ∗ Tatom

Tpush = (6 ∗ |V | ∗ Tread + |E| ∗ Tread + |E| ∗ Tatom)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom)

= (8 ∗ |V |+ |E|) ∗ Tread + 2 ∗ |V | ∗ Twrite + (|E|+ |V |
32

) ∗ Tatom

91

6. Analytical Performance Modelling

Tpull = (5 ∗ |V | ∗ Tread + 3 ∗ |E| ∗ Tread + |V | ∗ Twrite)

+ (2 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom)

= (7 ∗ |V |+ 3 ∗ |E|) ∗ Tread + 3 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom

TNoDiv = (5 ∗ |V | ∗ Tread + 2 ∗ |E| ∗ Tread + |V | ∗ Twrite)

+ (3 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom)

= (8 ∗ |V |+ 2 ∗ |E|) ∗ Tread + 3 ∗ |V | ∗ Twrite +
|V |
32
∗ Tatom

6.1.3 Relation Between Workload Models and
Performance

Now that we have both our abstract workload models and their concrete
counterparts, we can compare them and see what the deviation between
pseudocode and reality is. Comparing the models from the previous two
sections, we find the following differences between the abstract and con-
crete models:

Tedge = 3 ∗ |E| ∗ Tread −
31

32
∗ |V | ∗ Tatom

Tpush = (4 ∗ |V |+ |E|) ∗ Tread −
31

32
∗ |V | ∗ Tatom

Tpull = (5 ∗ |V |+ |E|) ∗ Tread −
31

32
∗ |V | ∗ Tatom

TNoDiv = (5 ∗ |V |+ |E|) ∗ Tread −
31

32
∗ |V | ∗ Tatom

We can eliminate the common factors from these equations, as these
cannot affect the ranking of implementations compared to the abstract
models. After eliminating these common factors we are left with the fol-
lowing deviation between abstract and concrete models:

Tedge = 2 ∗ |E| ∗ Tread

Tpush = 4 ∗ |V | ∗ Tread

Tpull = 5 ∗ |V | ∗ Tread

TNoDiv = 5 ∗ |V | ∗ Tread

In general, we expect |E| of a graph to be significantly larger than
|V |. If we look at both the abstract and concrete workload models from

92

6.2. Parallelising Workload Models

the previous sections with this in mind, then we see that the edge-centric
implementation perform many more operations than all the other imple-
mentations. Looking at the discrepancies between the abstract and con-
crete workload models, we see that these only exacerbate this difference in
workload.

However, when we look at the performance data for PageRank in Sec-
tion 4.4.2 on page 54 we see that the edge-centric implementation is one
of the best performing implementations overall.

This confirms that the parallelisation strategy has considerable impact
on the overall performance of our GPU graph algorithms1. In order to
conclude anything about performance from our workload models we need
to model how each implementation parallelises its workload on the GPU.

6.2 Parallelising Workload Models

The most naive approach to modelling the parallelisation of our workload
models is: take the total workload and divide it by the number of paral-
lel execution units. However, this approach clearly does not work. The
resulting ranking would be identical to the total workload ranking, as we
are using the same hardware and same number of parallel execution units
for each implementation.

Clearly, our workload parallelisation needs to account for implementa-
tion specific run time behaviour. The difficulty in approximating this run
time behaviour mainly stems from two factors:

1. Workload imbalance between threads within a warp, and

2. non-uniform memory access times due to coalescing, caching, and
atomic contention.

In Section 2.3 on page 14 we already covered how vertex-centric paral-
lelisation strategies are susceptible to efficiency loss due to load imbalance.
This happens when push or pull kernels process vertices with differing de-
grees within a single warp. The loop processing the outgoing/incoming
edges diverges, causing some cores in the warp to be idle. On the other
hand, the edge-centric version does not suffer from divergence at all, at
the cost of performing more memory accesses, as shown by our workload
models.

In Section 6.1 on page 85 we pretended the cost of reading or writing a
memory location is constant. In reality, the memory subsystem on modern
GPUs performs all kinds of tricks that make this untrue.

Threads within a single warp accessing the same or adjacent memory
can have their accesses coalesced into a single global memory operation. Or
1 It is always reassuring when obvious things are true…

93

6. Analytical Performance Modelling

Id Ordering
1 Unordered
2 Absolute degree
3 Absolute degree (Pessimal)
4 In degree
5 In degree (Pessimal)
6 Out degree
7 Out degree (Pessimal)

Table 6.1: Memory orderings of actor-collaboration used in Fig. 6.1
on the next page. Pessimal orderings arrange the vertices for maximal
difference in degree within each GPU warp.

the global memory operation can be avoided altogether, if that memory is
already loaded into one of the caches. The result of this is that the access
pattern of all the threads has a non-linear impact on the cost of reads and
writes.

This can help explain the good performance of the edge list implemen-
tation in Section 4.4.2 on page 54. The edge list implementations are very
likely to do coalesced access as a result of the memory layout of the data
structure used by them.

For atomic operations the cost is dependent on the amount of con-
tention. Concurrent atomic operations need to be serialised to obtain cor-
rect behaviour, which leads to atomic operations becoming slower when
multiple threads try to atomically update the same memory location.

6.2.1 Static Approximation of Performance
From the above it should be clear that we cannot have accurately cost of
Tread, Twrite, and Tatom without modelling the entire dynamic scheduling
and caching behaviour of the GPU running the code. However, to predict
the best performing implementation we only require an approximation that
is “accurate enough” to correctly rank our workloads.

To do this we need to approximate the cost of Tread, Twrite, and Tatom
per implementation.

These approximations need to be per implementation; following the
discussion in Section 6.1.3 on page 92. There we observed that the work-
load model for edge list always does the most work, despite being one of
the fastest overall implementation.

This leaves the question: Are the access patterns of each implementa-
tion static enough that we can, for a given GPU, approximate these costs
for each of our workload models.

94

6.2. Parallelising Workload Models

1 2 3 4 5 6 7
Graph

0.0×10 0.0×10

5.0×10 5.0×10

1.0×10 1.0×10

1.5×10 1.5×10

2.0×10 2.0×10

2.5×10 2.5×10

Ru
nt

im
e

(n
s)

Edge List
Reverse Edge List
Reverse Struct Edge List
Struct Edge List

Vertex Pull
Vertex Pull NoDiv
Vertex Push

Vertex Pull Warp 16 64
Vertex Pull Warp NoDiv 16 64
Vertex Push Warp 16 64

Figure 6.1: Comparison of PageRank run times for different in memory
orderings of actor-collaboration. See Table 6.1 on the preceding page
for the memory ordering of each group.

The answer appears to be: “no”. In Fig. 6.1 we show the results
of running our implementations on different in-memory orderings of the
actor-collaboration graph. These reordered version are structurally
identical to the original graph, just with the vertices laid out in a different
order in memory.

These graphs show performance differences of 2–3× across the different
orderings for most implementations. This is surprising, as these different
orderings are identical in terms of graph structure and thus total workload
as predicted by our workload models.

That the in-memory order of the graphs has such a big impact on the
performance demonstrates that the cost of Tread, Twrite, and Tatom must
depend on this order. This leads us to conclude that we cannot statically
approximate of these values, even on a per implementation basis.

6.2.2 Approximation via Performance Counters

While working on the workload models above, we tracked the GPU perfor-
mance counters during several experiments. Partly to validate our abstract
workload models and partly to see if we could find a “smoking gun” that
explains the performance differences we saw in Chapter 4 on page 41.

For our edge list implementation these counters correspond beautifully
with our concrete workload model. If we work backwards from the per-
formance counter gld_transactions_per_request, which represents “32
byte memory accesses per warp”, and gld_transactions, which tracks
“global memory loads”, we see the loads for edge list corresponding per-
fectly with the 7 reads from our concrete workload model for edge list.

95

6. Analytical Performance Modelling

Kernel Order 1 2 3 4 5 6 7

Edge
List

Random 9.1 · 106 9.65 32.0 · 106 9.4 · 106 150.4 · 106 22.85 433
Abs 10.2 · 106 10.86 – – – – 449
Worst 11.0 · 106 11.72 – – – – 455

Vertex
Push

Random 20.5 · 106 4.52 21.4 · 106 9.2 · 106 43.8 · 106 9.51 449
Abs 16.3 · 106 17.33 7.8 · 106 2.0 · 106 16.8 · 106 16.53 1,257
Worst 21.4 · 106 2.24 23.5 · 106 19.2 · 106 48.1 · 106 5.00 693

Table 6.2: Relevant performance counter values for PageRank on the
actor-collaboration graph, column legend in Table 6.3.

Unfortunately, this is hard to repeat for the other implementations.
Most of the performance counters aggregate operations at the warp level,
which makes it impossible to get detailed insight into what is going on
when kernels exhibit divergence within a warp.

As part of our performance counter investigation, we tried to predict
the best performing implementation from just the performance counters.
This is not directly applicable without a way to predict how the counters
behave for our implementations. However, it lets us explore how well we
understand the dynamic behaviour of the GPU if we cheat and assume we
already have performance counters.

What we find is that — even with this “perfect” run time information
— it is impossible to relate the GPU behaviour to wall-clock time. In
Table 6.2 we show memory related performance counters and timings for
2 kernels on 3 different memory orderings of the actor-collaboration
graph.

The “random” ordering corresponds to the order of the data after con-
version from the original files to our format, with no other processing. The
“abs” ordering has vertices ordered by their absolute degree — i.e., incom-
ing and outgoing edges — ensuring that vertices within a warp have the
same or similar degrees.

Finally, the “worst” ordering takes the previous absolute degree order-
ing and pairs vertices so that every warp has both one of the highest and
one of the lowest degree vertices, maximising divergence in each warp.

In Table 6.2 we see that the memory ordering of the graph has almost
no impact on the performance counters of the edge list implementation
and the actual run times are roughly the same. Meanwhile, we see that
vertex push on the random order graph has the same run time as edge list,
despite wildly different values for the performance counters.

We see that vertex push on the random ordering has roughly double the
number of atomic operations, with half the atomic coalescing; it also does
two-thirds less global loads, but with half the coalescing. While having
the same run time as the edge list implementation. We do not have any

96

6.3. Conclusion

Index Performance Counter
1 atomic_transactions
2 atomic_transactions_per_request
3 ldst_issued
4 ldst_executed
5 gld_transactions
6 gld_transactions_per_request
7 Time (in ms)

Table 6.3: Legend for performance counter columns in Table 6.2.

estimated costs for these counters, so it is possible that these changes just
happen to trade off equally, but that seems unlikely.

Things get even messier when we start considering the vertex push run
on the “abs” sorted version of the graph. We see that for each of the
performance counters the run on the “abs” sorted graph performs signif-
icantly less memory accesses, while having significantly higher coalescing.
However, despite every performance counter indicating that this run per-
forms fewer operations and performs these operations more efficiently, we
see that it has nearly triple the run time as the random run.

This is a recurring event when we investigate the performance counters
of different implementations and runs. Sometimes the fastest implementa-
tion is the one that does the least work and has the highest efficiency. In
other cases we see that an implementation/run that is objectively worse
according to all the performance counters we track, still ends up being the
fastest.

As a result, even when we have “perfect” information about the run
time behaviour of our implementations, in the form of the actual perfor-
mance counters, we are still unable to predict the best performing imple-
mentation based on this information.

6.3 Conclusion

In this chapter we set out to create an analytical model that allows to pre-
dict the best performing implementation of a graph algorithm — PageRank
in this case — purely from the structural properties of the input graph.

We created abstract workload models for the pseudocode implemen-
tations in Section 4.4.1 on page 51 and show that the deviation of these
abstract models from the actual generated PTX assembly is limited to
small constant factors.

We see that the workload models, without parallelism taken into ac-
count, do not accurately reflect the observed wall-clock times for our im-

97

6. Analytical Performance Modelling

plementations. This is most clearly demonstrated by the edge list imple-
mentation. The edge list workload model shows that it always performs
more work than the other implementations, yet it is one of the fastest
PageRank implementations overall.

We show that there is no way statically approximate values for Tread,
Twrite, and Tatom. Additionally, we show these values cannot be statically
approximated per implementation either, as reordering the memory layout
of significantly alters the wall-clock time.

Further analysis of the performance counters shows that, even when
we have perfect information about the performance counters of each im-
plementation, we are still unable to correctly predict which of these imple-
mentations is the fastest.

It is theoretically possible to account for all the dynamic scheduling,
coalescing, and caching behaviour of the GPU. However, doing so requires
black box reverse engineering of the exact dynamic behaviour of the GPUs
as their chipset designs are generally not made public by manufacturers. So
we are forced to conclude that a successful analytical performance model
is infeasible.

98

CHAPTER 7
Data-driven Performance

Modelling

In Chapter 4 on page 41 we showed that our Graphical Processing
Unit (GPU) implementations of graph algorithms exhibit significant per-
formance differences across input graphs. However, showing that graphs
have different structure and different performance, is not sufficient to at-
tribute all or most that performance difference to the difference in struc-
ture.

In Chapter 6 on page 85 we attempted to create an analytical model
to establish a direct link between graph structure and performance. We
introduced an analytical workload model that maps input graphs to a
number of memory accesses.

We showed that relating these memory accesses to parallel execution
time is infeasible, as it depends on unknown details of the hardware in use.
Conceptually, it is possible to reverse engineer these hardware details via
microbenchmarking, but this is time consuming and specific to a single
hardware platform. Our aim is to model the performance impact of graph
structure without becoming overly hardware specific.

This chapter is based on work previously presented in:
Merijn Verstraaten et al. Using Graph Properties to Speed-up GPU-based Graph Traversal:
A Model-driven Approach. 2017. eprint: arXiv:1708.01159
Merijn Verstraaten et al. “Mix-and-Match: A Model-driven Runtime Optimisation Strategy
for BFS on GPUs”. In: Proceedings of the 8th Workshop on Irregular Applications: Archi-
tectures and Algorithms. IEEE. 2018, pp. 53–60

99

arXiv:1708.01159

7. Data-driven Performance Modelling

In this chapter we present a data-driven approach to performance mod-
elling GPU graph algorithms, based on Binary Decision Trees (BDTs).
First, we provide an overview of how BDTs work, what their strong and
weak points are, and what makes them suitable for our problem.

We then demonstrate the effectiveness of our BDT based modelling on
Breadth-First Search (BFS). Selecting the right implementation at every
BFS level provides a speedup of roughly 2×. However, there are overheads
associated with switching implementations at run time. We built a pro-
totype BFS traversal to see how big this overhead is. This BFS traversal
dynamically switches implementations based on our BDT models.

We show that, in a limited comparison, our adaptive BFS outperforms
two state-of-the-art GPU graph processing systems. Our performance
improves up to 1.8× over Gunrock [97] and more than 40× over Lones-
tarGPU 2.0 [17].

7.1 Binary Decision Trees

Decision trees are a non-parametric, supervised learning technique [11].
They come in two flavours, classifiers and regressors, used for categorisa-
tion and numerical approximation respectively.

The starting point for the construction of a decision tree is a training set
of (X,Y) pairs. Here, X is a tuple of 1 or more inputs to the decision tree
predictor and Y is a tuple of 1 or more output values we wish to predict.
The working assumption is that the original learning set is representative
of all observable input/output pairs.

To construct a (binary) decision tree we recursively partition the train-
ing set along one of the N input parameters, preferring the parameter (and
value) that has the strongest discriminating power — i.e., the one that pro-
duces a partitioning closest to 50–50. We assign all elements where the
parameter is less than our threshold to the left branch and the others to
the right branch. We repeat this process until we reach a stopping criterion

— e.g., the maximum tree height, minimal bucket size, etc.
When we reach the stop condition, we compute the predicted output

for each leaf node. If all elements of a leaf node have the same value, the
prediction is simply that value. However, it is possible for a leaf node to
have multiple different output values. In this case the values need to be
converted to a single output.

For regressions this usually done by averaging all values in the bucket.
For classification, this is usually by selecting the “most likely” value in the
bucket, although more complicated strategies exist.

Computing the prediction for an input tuple t is a matter of walking
down the tree’s structure. At each level we compare the values in t against

100

7.1. Binary Decision Trees

the parameter threshold stored in the tree, and recurse down the correct
branch. Once we reach a leaf node, we have the prediction for t.

Different decision tree algorithms use different methods to compute
which parameters and values are used to split the tree. We used the BDT
implementation in the Python library scikit-learn [75]. This library uses
an algorithm based on the Classification And Regression Trees (CART) [11]
algorithm.

This algorithm splits the training set based on which parameter pro-
duces the largest reduction in Gini impurity. Gini impurity is a measure of
how often an element in a subset would be labelled wrong if all elements in
the subset were labelled randomly, according to the distribution of labels
in that subset. In other words, it is a measure of how much the variation
in subsets is reduced.

Due to the way trees are constructed, overfitting issues can become
more pronounced if the input parameters in the learning set are not uni-
formly distributed across the range we intend to predict against. Addition-
ally, as the number of input parameters increases it becomes exponentially
more costly to compute the best discriminator, which in turn makes the
algorithm slower and increases the risk of bias and overfitting.

The main advantage of BDTs over newer, more popular, machine learn-
ing approaches — such as Support Vector Machines (SVMs), Convolu-
tional Neural Networks (CNNs), and deep learning — is the fact that
BDTs are not black box models. The resulting models can be inspected
and analysed. One of the main problems with black box machine learning
is that it is never clear what, exactly, the model learned, so they cannot
help refine our analytical understanding.

For example, CART BDTs let us compute the importance of each in-
put parameter. We can estimate this importance by computing the Gini
importance. The Gini importance of a parameter is the total, normalised
reduction of Gini impurity by all the splits on that parameter.

Similar importance measures exist for other decision tree algorithms,
meaning that we can relatively easily compute the importance of each pa-
rameter in our input. This lets us analyse which of our training parameters
have the biggest impact and can help inform future analytical modelling.

To summarise the advantages of decision trees:

• They are simple to understand and interpret;

• Small trees can be visualised;

• They require little to no data preparation;

• Prediction cost is logarithmic in the number of data points used;

• They can handle both categorical and numerical data;

101

7. Data-driven Performance Modelling

• Parameter importance is known after training.

The main downsides of decision trees are:

• Small differences in data can result in drastically different results
(i.e., unstable models);

• Constructing optimal decision trees is NP-complete under several
aspects of optimality;

• They cannot represent all concepts easily (XOR, parity, multiplexer
problems);

• They are prone to overfitting if the training set is biased;

• Biased trees are easily created if some classes dominate.

7.2 Modelling BFS Performance

In this section we elaborate how our BDT training and evaluation process
integrates with our toolchain from Chapter 3 on page 17. In Section 3.3.3
on page 35 we explained how we store the metadata needed to train ma-
chine learning models. Including our seeded Pseudo Random Number
Generator (PRNG)-based approach to generating training and validation
sets, allowing us to reconstruct past training and validation sets from a
single seed and the model specific configuration.

Figure 7.1 on the next page shows an extended version of our high
level schema, including BDT-specific training metadata. In addition to
the data covered in Section 3.3.3 on page 35, we store the following model
metadata:

• The feature importances of the properties used by the model, and

• the unknown or ambiguous predictions in the model.

The former are useful for informing future analytical modelling efforts
and considering what information is important for our models. The latter
refers to the information about leaves in our BDT that do not have a
single prediction results (see Section 7.1 on page 100). By storing detailed
information about these ambiguous leaves we can experiment with different
strategies for refining ambiguous predictions.

We mainly focus on the graph size and degree distribution, as our
experience and our efforts in Chapter 6 on page 85 lead us to believe that
these factors have the biggest impact when it comes to BFS traversals.

Additionally, work on adaptive BFS [9, 58, 65] and run time changes
across levels in our dataset [90], indicate that the behaviour at each level

102

7.2. Modelling BFS Performance

Global Property
Importance

Name
Value

Step Property
Importance

Name
Value

Unknown
Prediction Set

Count

Unknown
Prediction Name

Type

Implementation

0..*

1
1

0..*

1

0..*

1

1..*

0..* 1

Name
Training Seed
Training Filters
BDT Model
Total Unknown
Date

Prediction
Model

Name
Dataset

Name
Algorithm

Name
Value

Graph Property
Step
Name
Value

Step Property

Name
Timing Data
Date

Total Timer

Name
Timing Data
Date

Step Timer

1..*

1
0..*

0..*

0..*

0..*
0..*

0..*
1..*

0..*

0..*

0..*

Name
Configuration

Hardware
Platform 1

0..*

1

Figure 7.1: BDT specific extension of the schema from Fig. 3.8 on page 36.

correlates with the size of the BFS frontier and the percentage of the graph
that has already been explored.

Therefore, we consider the following relevant features for our model:

Graph size:
the number of vertices and edges in the graph.

Frontier size:
either as absolute number of vertices or as percentage of the graph’s
vertices.

Discovered vertex count:
either as absolute number of vertices or as percentage of the graph’s
vertices.

Degree distribution:
represented by the five-number summary1, mean, and standard de-
viation of the in, out, or absolute degrees of vertices.

1 That is, the minimum, lower quartile, median, upper quartile, and maximum

103

7. Data-driven Performance Modelling

Algorithm Total Avg 1–2× >5× >20× Worst
Mix-and-Match (Predicted) 1.74× 2.16× 97% 1% 1% 1344.17×
Best Non-switching 3.51× 2.42× 64% 10% 0% 38.89×
Vertex Push Warp 16–64 7.54× 9.94× 18% 30% 11% 233.97×
Edge List 14.13× 3.73× 52% 22% 2% 53.65×
Vertex Pull Warp 16–64 16.27× 20.13× 5% 64% 19% 1322.53×
Struct Edge List 17.03× 4.27× 49% 25% 2% 67.56×
Reverse Edge List 27.34× 6.39× 42% 32% 7% 97.53×
Vertex Push 27.87× 52.42× 28% 50% 26% 1394.00×
Reverse Struct Edge List 29.34× 6.75× 40% 34% 8% 112.50×
Vertex Pull 37.17× 46.79× 22% 57% 29% 2509.21×

Table 7.1: Predicted Mix-and-Match performance compared to our BFS
implementations and the theoretical optimum over all KONECT graphs.
See Section 4.3 on page 45 for a detailed explanation on how to read this
data and its measurement accuracy.

We base our BDT modelling on the performance data collected in Chap-
ter 4 on page 41 [90]. We ran our 56 BFS implementations and variations
on each of the 247 graphs from KONECT [51]; for each of these graphs
we performed traversals starting from 10 different starting vertices, and
collected the features and run times for each traversed level.

This dataset lets us determine the fastest implementation for each BFS
level of each graph. From this we built a dataset where we associate
every BFS level with the structural properties of the corresponding graph,
the level specific properties, and the fastest implementation. We then
train a BDT that predicts the fastest implementation from those level and
structural properties.

7.3 Model Evaluation

For our proof-of-concept BDT model we use every feature of the previous
section. We train our model on a uniform random selection of 70% of
the data points. The first step in evaluating our model’s effectiveness
is determining whether the predicted implementation switching improves
BFS performance. If so, is this improvement significant?

For the evaluations and comparisons in this chapter we use the ap-
proach as described in Section 4.3 on page 45. As in Section 4.5 on page 58,
we use the term “Best Non-switching” implementation to refer to the per-
formance we would get if we had an oracle to pick the fastest non-switching
implementation for each graph in our dataset.

In Table 7.1 we compare the performance of our BDT model, the oracle-

104

7.3. Model Evaluation

based best non-switching implementation, and the different implementa-
tions from Section 4.5 on page 58 against the optimal run time. Over the
entire set of KONECT graphs our BDT model’s predictions lead to a total
run time of 1.74× of optimal — effectively, a 74% slowdown.

This does not sound great, but it is considerably better than the best
non-switching implementation, which has a total run time of 3.51× of
optimal, a whopping 251% slowdown. In other words, our model can
obtain a speedup of 2× over the best non-switching implementation. In
practice, the gain is even more significant, because there is no known model
or oracle for selecting the fastest non-switching implementation.

7.3.1 Dynamic BFS Challenges
From the previous section we conclude that there are considerable perfor-
mance gains to be had by switching between BFS implementations. How-
ever, there are two hurdles between the predicted performance gains above
and the performance of a real world switching BFS implementation.

The first issue is the overhead introduced by predicting which implemen-
tation to use at every BFS level. Fortunately, BDTs are straightforward
to implement efficiently, which was one of the reasons we settled on using
them.

We tested our BDT implementation against our entire dataset. Pre-
dictions were computed in, on average, about 100–200 nanoseconds. This
overhead is negligible, as the fastest kernel execution we observed in the
dataset takes 20 microseconds to complete.

The second and more fundamental problem is the in-memory represen-
tation of input graphs. Most of our implementations operate on different
representations. Thus, switching between implementations involves switch-
ing between their in-memory representations of the graph. To do so, we
need to either: (1) bring new representations into GPU memory on-the-fly,
or (2) keep all representations in memory simultaneously.

We considered option (1) infeasible, as transferring data to and from
the GPU is slow; doing so repeatedly would be prohibitively expensive.
Instead, we chose to consider this as a classical time-space trade-off, where
we trade memory for faster compute time by keeping each necessary rep-
resentation of the graph in memory.

We estimate that the memory overhead introduced by this approach is
manageable. The two main graph representations we use are Compressed
Sparse Row (CSR) for the vertex-centric implementations and edge list for
the edge-centric implementations.

We can combine these two by simply storing the origin vertex for every
edge in our CSR. This increases the storage from 1 int per vertex and
1 int per edge (for CSR) and 2 int per edge (for edge list), to 1 int per

105

7. Data-driven Performance Modelling

Algorithm Total Avg 1–2× >5× >20× Worst
Mix-and-Match (Predicted) 1.74× 2.16× 97% 1% 1% 1344.17×
Mix-and-Match (Actual) 2.21× 2.61× 90% 3% 1% 1338.80×
Best Non-switching 3.51× 2.42× 64% 10% 0% 38.89×
Vertex Push Warp 16–64 7.54× 9.94× 18% 30% 11% 233.97×
Edge List 14.13× 3.73× 52% 22% 2% 53.65×
Vertex Pull Warp 16–64 16.27× 20.13× 5% 64% 19% 1322.53×
Struct Edge List 17.03× 4.27× 49% 25% 2% 67.56×
Reverse Edge List 27.34× 6.39× 42% 32% 7% 97.53×
Vertex Push 27.87× 52.42× 28% 50% 26% 1394.00×
Reverse Struct Edge List 29.34× 6.75× 40% 34% 8% 112.50×
Vertex Pull 37.17× 46.79× 22% 57% 29% 2509.21×

Table 7.2: Actual Mix-and-Match performance compared to our BFS im-
plementations and the theoretical optimum over all KONECT graphs. See
Section 4.3 on page 45 for a detailed explanation on how to read this data
and its measurement accuracy.

vertex and 2 int per edge. Assuming a 4 byte int, this boils down to a
mere 38 MiB for a graph of 10,000,000 edges.

Accommodating the reversed representations too doubles the required
space, but given the memory sizes available on modern GPUs this does not
seem too problematic. We conclude that both the prediction overhead and
extra space requirements for a dynamically switching BFS can be overcome
without too much effort.

7.3.2 Mix-and-Match Performance
We validated the above conclusion that prediction and memory overhead
can be overcome by implementing “Mix-and-Match”, an adaptive BFS
implementation. Mix-and-Match can switch between our BFS implemen-
tations based on BDT predictions.

We measured the performance of our Mix-and-Match BFS across all
of the KONECT graphs. The results of these experiments are shown in
Table 7.2. We see that there is non-trivial overhead to switching imple-
mentations at run time. Our model predicts run time of 1.74× of optimal,
while our Mix-and-Match implementation using that model only achieves
a run time of 2.21× of optimal.

Back in Section 4.3.2 on page 47 we discussed that a tiny percentage of
our measurements have extremely large Relative Standard Errors (RSEs)
and that a large portion of those measurements relate to the dynamic
implementations from this chapter. Upon examining the measurements

106

7.3. Model Evaluation

1 2 3 4 5 6 7 8 9
Graph

0% 0%

20% 20%

40% 40%

60% 60%

80% 80%

100% 100%

No
rm

al
ise

d
Ru

nt
im

e
Mix-and-Match (Actual)
Best Non-switching

Optimal
Gunrock

Lonestar 2.0

Figure 7.2: Comparison of run times of our optimal baseline, non-switching
best, Mix-and-Match, Gunrock, and LonestarGPU 2.0 BFS implementa-
tions.

for this chapter we found that the maximum timings were up to 2 orders
of magnitude larger than the averages, resulting in equally large RSEs.

So, why is the maximum timing so much larger than the average? Our
Mix-and-Match implementation uses a BDT model that is stored in a sep-
arate dynamic library. Since we made no efforts to ensure a hot cache
it is likely that our BDT model is not loaded into memory until the first
prediction is made. Accessing the disk in a critical, timed section would
explain the giant outlier and resulting large errors for our dynamic imple-
mentations.

The main effect is that the results of our Mix-and-Match implemen-
tation look worse than they would under optimal conditions. We opted
to keep these measurements as a more accurate reflection of “real world”
speedup. As, despite this handicap, our Mix-and-Match implementation is
still 1.6× faster than our best non-switching oracle and 3.4× faster than the
fastest overall implementation. These results show that our model leads
to considerable speedup compared to our individual implementations.

However, speedup results are only as good as our baseline. To see where
we stand, We compare our optimal baseline, the best non-switching ora-
cle, and Mix-and-Match against two existing, state-of-the-art GPU graph
processing frameworks: Gunrock [97] and LonestarGPU 2.0 [17].

In Fig. 7.2 we show how these implementations compare against the
graph selection from Table 4.3 on page 49 in Section 4.3.3 on page 49.

In Table 7.3 on the next page we compare Mix-and-Match against
Gunrock and LonestarGPU 2.0 across a random selection of 148 different
KONECT graphs. Over this entire dataset, Gunrock achieves of 2.66× of
our “optimal”. LonestarGPU 2.0 manages 61.36× of optimal. Mix-and-
Match only takes 1.44× of optimal, meaning that we are, overall, 1.8×
faster than Gunrock and over 40× faster than LonestarGPU 2.0.

107

7. Data-driven Performance Modelling

Algorithm Total Avg 1–2× >5× >20× Worst
Mix-and-Match (Actual) 1.44× 1.54× 91% 1% 0% 17.90×
Gunrock 2.66× 6.17× 9% 48% 1% 25.82×
Best Non-switching 3.64× 2.81× 47% 11% 0% 11.16×
Lonestar 2.0 61.36× 62.13× 5% 80% 43% 1449.72×

Table 7.3: Comparison of BFS performance for Mix-and-Match, Gunrock,
and LonestarGPU 2.0 over all KONECT graphs. See Section 4.3 on page 45
for a detailed explanation on how to read this data and its measurement
accuracy.

Generality and portability of the model are two big concerns for our
model. The above results demonstrate that we can improve the perfor-
mance of our BFS traversals, both in theory and in practice. However,
the existence of one model that improves performance on one dataset is
not a compelling argument that our model is more general and applies to
multiple datasets.

BDTs perform best when the inputs are uniformly sampled from the
parameter space and are known to become biased by bias in the input data.
So the generality of our model strongly depends on how representative the
KONECT graphs are for real world applications. We will address these
issues in more detail in Chapter 8 on page 111.

7.4 Related Work

There have been many advances in large-scale graph traversal algorithms,
such as dynamic implementation selection [65], direction switching BFS [9],
distributed memory BFS [14], and matrix based graph processing solu-
tions [16]. However, there’s still no single best BFS traversal implementa-
tion.

This is a result of the input dependence of BFS, with different im-
plementations suffering from different bottlenecks. When combined with
complex, massive parallel machines like the GPUs [15], the performance
gaps are even more difficult to predict.

Instead of adding yet another BFS implementation, we focus on extract-
ing the best possible performance out of an existing set of implementations
by dynamically selecting implementations for each level of a traversal.

This is similar to [58], but our approach combines more algorithms and
uses a more deterministic, systematic switching criterion. Moreover, our
approach can be extended to incorporate additional BFS versions, as long
as sufficient performance data are available for training.

108

7.5. Conclusion

Our Mix-and-Match BFS relies heavily on machine learning based per-
formance prediction. Performance prediction based on machine learning
models has been successful in the past [48, 54, 62, 80, 99, 101], but using
machine learning online to dynamically switch implementations introduces
several challenges.

Using machine learning in an online setting means we have to be careful
that the overhead of collecting features and computing predictions does
not cost more time than we gain. There are also engineering concerns,
as we need to integrate the feature collection, prediction, switching to
different implementations, and accommodate implementations that work
on different data structure. To the best of our knowledge, we are the first
to have successfully done this in a generic way that can be extended with
any BFS implementation and any BDT model.

7.5 Conclusion

In this chapter we proposed taking a data-driven approach to modelling the
performance of GPU graph processing algorithms. We use Binary Decision
Trees (BDTs), because they offer a good balance between accuracy and
prediction speed.

Although BDT models do not provide any direct insight into the cor-
relations between graph properties and performance, we can still analyse
them for insights as BDTs are not a black box method. For example,
we can extract the importance of individual properties to from our models,
which helps determine the most important properties to consider in further
modelling.

We demonstrate the validity of our approach by training a BDT on the
BFS performance data gathered in Section 4.5 on page 58 and showing
that our BDT model can be used to improve the performance of BFS
by dynamically switching between implementations to accommodate the
input data.

We implemented Mix-and-Match, an adaptive BFS implementation
that can switch between on our existing BFS implementations based on
predictions from a BDT. Our experiments demonstrate that, despite the
introduced overhead Mix-and-Match is considerably faster than the alter-
natives.

Our Mix-and-Match is within 1–2× of our optimal baseline in ∼90%
of cases, and outperforms our (fictitious) best non-switching oracle by
1.6×. We also compare Mix-and-Match against Gunrock [97] and Lon-
estarGPU 2.0 [17], two state-of-the-art GPU graph processing frameworks.
Mix-and-Match outperforms both with an average gain of 1.8× over Gun-
rock and over 40× for LonestarGPU 2.0. We make no portability claims
or guarantees of the Mix-and-Match model presented in this chapter. We

109

7. Data-driven Performance Modelling

will address these generality and portability concerns of our models in
Chapter 8 on the facing page.

Instead, we want to focus on the training and prediction processes
used. These are systematic, straightforward, and generic, and can be eas-
ily applied again different training data, hardware, or algorithms in future
studies. We conclude that this systematic benchmarking and modelling
approach is a step forward in exploiting the knowledge of structural graph
properties for better performance.

110

CHAPTER 8
Model Portability

In Chapter 7 on page 99 we used our Mix-and-Match Breadth-First Search
(BFS) to demonstrate that we can improve the performance of BFS by
using Binary Decision Trees (BDTs) to predict the best performing imple-
mentation for different stages of a BFS traversal. But this is not enough
to defend more general claims we made earlier in this thesis.

Specifically, in Chapters 1, 4, and 6 on page 1, on page 41, and on
page 85 we make the following claims:

1. Performance of Graphical Processing Unit (GPU) graph processing is
a function of structural properties of the graph, the algorithm being
computed, and the hardware.

2. The Single Instruction, Multiple Threads (SIMT) and Stream Pro-
cessor (SP) based design of General Processing on GPUs (GPGPUs)
has not fundamentally changed in the past decade and seems unlikely
to be abandoned in the near future.

3. Only a few parallelisation strategies for graph processing can be im-
plemented efficiently on the current SIMT GPGPU architectures.

From the above claims we expect to be able to predict the best GPGPU
implementation for an algorithm, based only on structural properties of the
graph. The Mix-and-Match BFS from Chapter 7 on page 99 is a proof of
concept for BDT-based adaptive BFS. It shows that we can exploit infor-
mation about a dataset to speed up BFS on that dataset and demonstrates
the feasibility of online switching between implementations.

111

8. Model Portability

However, Mix-and-Match does not demonstrate that:

1. Our BDT models predict the relation between graph structure and
performance, as opposed to simply memorising the results for our
dataset.

2. That this relation between graph structure and performance is stable
across GPU architectures.

In this chapter we address these issues. We demonstrate that the BDT
models do not simply memorise the dataset they are trained on. Showing
that the models perform well when trained small subsets of our data (Sec-
tion 8.1) and when used to do predictions on a completely separate dataset
(Section 8.2 on page 115).

We also show that the relation between structure and performance
is stable across multiple GPU architectures by using our models to do
predictions against runs on multiple different generations and architectures
of NVIDIA GPUs (Section 8.3 on page 119).

The models and comparisons in this chapter are based on the experi-
ments from Chapter 4 on page 41. For brevity’s sake the tables and graphs
in this chapter will only include a subset of our implementations. The
GPU implementations for these experiments [89], full results of the exper-
iments [90], and code to generate the tables and plots in this chapter [89]
are digitally available for interested readers.

8.1 Model Accuracy by Amount of Training Data

We train BDT models for both BFS and PageRank on subsets of our
dataset [90] and compare how the performance of models is impacted by
the amount of training data.

8.1.1 Breadth-First Search
Our BFS data includes 10 different variants1 for 247 graphs from the
KONECT [51] graph repository. For every level of these BFS variants
we have the average performance of each of our implementations.

Since there are multiple different variants for each graph in the dataset
there are a number of different ways to select training data for our BDT
models:

1. Uniform random subset of graphs,

2. uniform random subset of variants, and
1 Each variant starts the BFS from a different starting vertex.

112

8.1. Model Accuracy by Amount of Training Data

3. uniform random subset of steps.

Different selection methods result in different potential biases in the
data and resulting model. Training against a random subset of the graphs
ensures that all different variants of a single graph are seen. We expect
this makes it the impact of the dynamic properties of each BFS level more
pronounced and the impact of the static graph properties less pronounced.

Training against a random subset of variants ensures that data from
more different graphs is seen, but the model does not see all the different
variations in a graph. We expect this reduces the risk of overfitting to a
specific set of graphs in the dataset.

Training against a random subset of all steps ensures the model has a
truly uniform random view of the data. This should eliminate any risk of
overfitting to specific graphs, but may not be as effective in learning the
impact of dynamic properties, since the model may end up not seeing data
from different variants on the same graph at all.

For each of these selections methods we train models on training sets
ranging from 10% to 100% of the data using 10% increments, resulting
in 30 different BDT models for BFS. Since not all graphs and variants
have the same number of steps the percentages of the graph and variant
selection methods do not directly correspond to percentages of the total
data.

If our BDT models are simply learning the entire dataset we would
expect the quality of models to drop rapidly as the size of training data de-
creases. On the other hand, if the models are actually learning the relation
between graph structure and implementation performance, we would ex-
pect the model performance to have a more gradual and slow deterioration
as the training data decreases.

In Table 8.1 on the following page we compare these 30 models with
each other and a selection of non-adaptive implementations, using the
approach described in Section 4.3 on page 45. The entries in this table
are sorted by their performance across the entire KONECT dataset.

We also include data for “best non-switching” for comparison. This
entry mimics the result of having an oracle predicting the best non-adaptive
BFS implementation for each variant. Such an oracle does not exist, but
it gives a sense for the best attainable result without an adaptive BFS.

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (90% Steps) 1.28× 1.37× 98% 1% 0% 335.38×
KONECT on TitanX (100% Graphs) 1.43× 1.47× 98% 1% 0% 412.03×
KONECT on TitanX (90% Variants) 1.47× 1.57× 97% 1% 0% 412.03×
KONECT on TitanX (100% Steps) 1.48× 1.47× 98% 1% 0% 412.03×
KONECT on TitanX (100% Variants) 1.50× 1.48× 98% 1% 0% 412.03×
KONECT on TitanX (80% Variants) 1.57× 1.62× 97% 1% 0% 412.05×
KONECT on TitanX (80% Steps) 1.59× 1.61× 97% 1% 0% 412.03×

113

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (70% Variants) 1.65× 1.87× 96% 1% 0% 448.61×
KONECT on TitanX (70% Steps) 1.74× 2.16× 97% 1% 1% 1344.17×
KONECT on TitanX (60% Variants) 1.75× 2.19× 95% 2% 1% 950.48×
KONECT on TitanX (40% Variants) 1.79× 2.06× 93% 3% 1% 336.01×
KONECT on TitanX (60% Steps) 1.80× 1.90× 97% 1% 1% 482.20×
KONECT on TitanX (80% Graphs) 1.92× 3.06× 92% 2% 1% 430.42×
KONECT on TitanX (90% Graphs) 2.01× 3.01× 94% 2% 1% 610.80×
KONECT on TitanX (50% Steps) 2.04× 2.14× 94% 3% 1% 335.38×
KONECT on TitanX (30% Variants) 2.39× 3.06× 91% 4% 1% 567.48×
KONECT on TitanX (70% Graphs) 2.53× 5.27× 91% 4% 2% 854.48×
KONECT on TitanX (50% Variants) 2.62× 2.50× 93% 3% 1% 454.23×
KONECT on TitanX (40% Steps) 2.76× 2.91× 92% 4% 1% 561.52×
KONECT on TitanX (20% Steps) 2.86× 3.91× 86% 8% 3% 749.13×
KONECT on TitanX (60% Graphs) 3.08× 6.22× 89% 5% 3% 857.67×
KONECT on TitanX (50% Graphs) 3.10× 5.97× 87% 4% 2% 847.82×
KONECT on TitanX (20% Variants) 3.16× 6.74× 87% 7% 3% 763.81×
KONECT on TitanX (30% Steps) 3.19× 3.11× 91% 5% 2% 925.58×
KONECT on TitanX (40% Graphs) 3.50× 6.85× 84% 7% 2% 856.27×
Best Non-switching 3.51× 2.42× 64% 10% 0% 38.89×
KONECT on TitanX (10% Variants) 3.51× 5.31× 81% 9% 3% 856.28×
KONECT on TitanX (30% Graphs) 3.61× 6.80× 76% 10% 3% 856.42×
KONECT on TitanX (10% Steps) 3.95× 5.39× 82% 8% 3% 879.75×
Vertex Push Warp 16–64 7.54× 9.94× 18% 30% 11% 233.97×
KONECT on TitanX (20% Graphs) 7.72× 9.07× 75% 14% 5% 457.57×
KONECT on TitanX (10% Graphs) 7.81× 24.41× 57% 22% 11% 1344.36×
Edge List 14.13× 3.73× 52% 22% 2% 53.65×
Vertex Pull Warp 16–64 16.27× 20.13× 5% 64% 19% 1322.53×
Struct Edge List 17.03× 4.27× 49% 25% 2% 67.56×
Reverse Edge List 27.34× 6.39× 42% 32% 7% 97.53×
Vertex Push 27.87× 52.42× 28% 50% 26% 1394.00×
Reverse Struct Edge List 29.34× 6.75× 40% 34% 8% 112.50×
Vertex Pull 37.17× 46.79× 22% 57% 29% 2509.21×

Table 8.1: Aggregate performance of BDT models trained on different
training set sizes compared to non-switching BFS implementations. See
Section 4.3 on page 45 for a detailed explanation on how to read this data
and its measurement accuracy.

Models trained using the graph based selection strategy perform con-
siderably worse than the other two training strategies. This matches our
intuition and expectations, although the effect is more pronounced than
expected. The other two selection strategies, step and variant based, per-
form comparably well. Models trained on as little as 30% of the dataset
already outperform both our (non-existent) best non-switching oracle and
the best non-adaptive implementation we have.

114

8.2. Portability Across Datasets

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (100% Graphs) 1.01× 1.00× 100% 0% 0% 1.16×
KONECT on TitanX (90% Graphs) 1.02× 1.01× 100% 0% 0% 2.24×
KONECT on TitanX (60% Graphs) 1.02× 1.04× 99% 0% 0% 2.29×
KONECT on TitanX (70% Graphs) 1.05× 1.05× 98% 0% 0% 4.09×
KONECT on TitanX (50% Graphs) 1.08× 1.05× 100% 0% 0% 6.14×
KONECT on TitanX (30% Graphs) 1.08× 1.12× 98% 1% 0% 13.11×
KONECT on TitanX (20% Graphs) 1.08× 1.59× 86% 4% 0% 15.58×
KONECT on TitanX (10% Graphs) 1.09× 1.50× 90% 4% 0% 15.58×
KONECT on TitanX (40% Graphs) 1.10× 1.07× 98% 0% 0% 6.14×
Struct Edge List 1.13× 1.07× 99% 0% 0% 2.58×
KONECT on TitanX (80% Graphs) 1.13× 1.06× 99% 0% 0% 7.89×
Edge List 1.16× 1.14× 99% 0% 0% 2.62×
Vertex Pull NoDiv 2.43× 2.93× 59% 14% 0% 18.80×
Reverse Edge List 2.49× 2.09× 71% 7% 0% 8.81×
Reverse Struct Edge List 2.50× 2.09× 71% 7% 0% 8.85×
Vertex Push Warp 16–64 2.71× 4.75× 37% 19% 4% 66.63×
Vertex Pull Warp NoDiv 16–64 3.51× 5.42× 13% 37% 1% 27.46×
Vertex Pull Warp 16–64 4.74× 6.88× 5% 47% 4% 35.05×
Vertex Push 5.86× 16.66× 41% 34% 12% 642.08×
Vertex Pull 14.59× 16.68× 17% 60% 27% 143.45×

Table 8.2: Comparison of BDT models against PageRank implementations.
See Section 4.3 on page 45 for a detailed explanation on how to read this
data and its measurement accuracy.

8.1.2 PageRank

Unlike BFS, PageRank does not have different variants per graph nor does
it have multiple steps with changing behaviour. This means the three dif-
ferent selection strategies discussed in the previous section are equivalent,
so we can limit ourselves to models trained on 10% through 100% of the
graphs.

In Table 8.2 we compare these 10 models with each other and other
implementations, again using the approach described in Section 4.3 on
page 45. We see similar results as before with BFS, with nearly all models
outperforming the non-predictive implementations.

8.2 Portability Across Datasets

In the previous section we established that our BDT models work, even
when trained on small subsets of the available data. Indicating that these
models are not simply memorising the result of our entire data set. In
this section we want to establish that the behaviour learned by our models
generalises beyond the training dataset. That is, it is not specific to the
KONECT results they were trained on.

115

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (60% Steps) 1.06× 1.26× 97% 0% 0% 5.72×
KONECT on TitanX (80% Steps) 1.09× 1.38× 93% 1% 0% 39.25×
KONECT on TitanX (70% Variants) 1.09× 1.33× 96% 1% 0% 13.97×
KONECT on TitanX (80% Variants) 1.10× 1.35× 93% 1% 0% 14.09×
KONECT on TitanX (60% Variants) 1.12× 1.36× 91% 0% 0% 11.04×
KONECT on TitanX (50% Steps) 1.12× 1.34× 95% 1% 0% 39.32×
KONECT on TitanX (50% Variants) 1.13× 1.40× 92% 1% 0% 21.00×
KONECT on TitanX (70% Steps) 1.13× 1.45× 92% 1% 0% 39.25×
Best Non-switching 2.19× 1.81× 83% 5% 0% 37.34×
Vertex Push Warp 16–64 3.80× 3.75× 22% 19% 0% 37.34×
Vertex Push 4.82× 11.01× 33% 58% 12% 134.41×
Edge List 5.57× 2.85× 66% 10% 1% 49.05×
Struct Edge List 6.59× 3.21× 64% 15% 1% 59.99×
Reverse Edge List 7.46× 4.19× 57% 17% 3% 79.07×
Reverse Struct Edge List 8.36× 4.41× 56% 20% 3% 84.25×
Vertex Pull Warp 16–64 16.79× 11.71× 0% 64% 9% 409.26×
Vertex Pull 51.31× 22.46× 12% 59% 13% 796.82×

Table 8.3: KONECT BFS models evaluated against SNAP dataset. See
Section 4.3 on page 45 for a detailed explanation on how to read this data
and its measurement accuracy.

To do this we take our measurements from the SNAP dataset, feed
the prediction parameters to our models trained on KONECT, and use
the run time of the predicted implementation. If the model’s behaviour is,
indeed, general, we expect to see similar results as we do on KONECT (see
Tables 8.1 and 8.2 on page 114 and on the previous page). We then do the
same in reverse, taking models trained on our SNAP dataset measurements
and evaluating them against our KONECT data.

For brevity’s sake, we limit ourselves to models trained on 50–80% of
the dataset using steps and variants. In the machine learning literature 80–
20 and 70–30 splits between training and validation data are common, and
training on variants and steps results in a more robust uniform sampling
of data. This way we can cover the most realistic training setups without
resulting in unnecessarily verbose tables.

8.2.1 KONECT to SNAP
The results for our KONECT BFS models evaluated against SNAP are
shown in Table 8.3. As before, all the models outperform the non-switching
implementations and our non-switching oracle. Our models performance
compared to optimal seems to be even better than KONECT — with
the best model achieving 1.06× of optimal on SNAP versus 1.28× on the
KONECT dataset.

Table 8.4 on the next page shows similar results for PageRank models,

116

8.2. Portability Across Datasets

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (80% Graphs) 1.04× 1.06× 99% 0% 0% 3.48×
KONECT on TitanX (60% Graphs) 1.08× 1.07× 98% 0% 0% 3.48×
KONECT on TitanX (70% Graphs) 1.14× 1.11× 97% 0% 0% 4.10×
Vertex Pull NoDiv 1.42× 2.60× 52% 5% 0% 8.78×
Struct Edge List 1.54× 1.14× 96% 0% 0% 3.48×
Edge List 1.55× 1.21× 96% 0% 0% 3.54×
Vertex Pull Warp NoDiv 16–64 1.69× 5.12× 8% 45% 0% 15.11×
Reverse Edge List 2.20× 1.66× 83% 2% 0% 10.60×
Reverse Struct Edge List 2.25× 1.64× 83% 2% 0% 10.76×
Vertex Push Warp 16–64 2.27× 3.03× 28% 11% 0% 7.47×
Vertex Pull Warp 16–64 3.03× 6.50× 1% 54% 0% 19.10×
Vertex Push 3.08× 6.75× 36% 44% 6% 44.76×
Vertex Pull 4.57× 15.03× 11% 62% 32% 68.48×

Table 8.4: KONECT PageRank models evaluated against SNAP dataset.
See Section 4.3 on page 45 for a detailed explanation on how to read this
data and its measurement accuracy.

once again showing that our models outperforms the other implementa-
tions on SNAP. This supports our argument that the relation between
performance and graph structure can be generalised from KONECT to
other datasets.

8.2.2 SNAP to KONECT
In Tables 8.5 and 8.6 on the following page we show the reverse of Sec-
tion 8.2.1 on the preceding page. We take models that were trained on our
SNAP result and evaluate them against the KONECT results.

Unfortunately, the results in this direction are less promising. For BFS
the models perform considerably worse, with all models performing worse
than the best non-switching oracle and the push warp implementation.
While the models perform slightly better on PageRank, you are still better
off simply always using either of the edge list implementations.

8.2.3 Conclusions on Dataset Portability
One possible explanation for the poorer performance when going from
SNAP to KONECT is that (the part of) the SNAP dataset we used has
considerably less variation in the types and sizes of graphs it includes. This
could result in a model biased towards some classes of graphs, leading
to reduced generality and thus poorer performance on the more varied
KONECT dataset.

Intuitively, it makes sense that our training dataset(s) need to be “suffi-
ciently varied” to produce general models. But defining “sufficiently varied”
is a complex problem. As we have also discussed in Chapter 5 on page 67

117

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

Best Non-switching 3.51× 2.42× 64% 10% 0% 38.89×
Vertex Push Warp 16–64 7.54× 9.94× 18% 30% 11% 233.97×
SNAP on TitanX (80% Steps) 11.03× 10.89× 69% 15% 6% 751.01×
SNAP on TitanX (70% Variants) 13.00× 17.01× 65% 18% 13% 838.19×
Edge List 14.13× 3.73× 52% 22% 2% 53.65×
SNAP on TitanX (60% Variants) 14.54× 16.31× 65% 20% 12% 838.29×
SNAP on TitanX (80% Variants) 15.93× 15.86× 69% 16% 10% 869.29×
Vertex Pull Warp 16–64 16.27× 20.13× 5% 64% 19% 1322.53×
SNAP on TitanX (70% Steps) 16.85× 17.09× 69% 17% 11% 954.19×
Struct Edge List 17.03× 4.27× 49% 25% 2% 67.56×
SNAP on TitanX (60% Steps) 17.04× 16.46× 69% 18% 12% 1093.98×
Reverse Edge List 27.34× 6.39× 42% 32% 7% 97.53×
Vertex Push 27.87× 52.42× 28% 50% 26% 1394.00×
Reverse Struct Edge List 29.34× 6.75× 40% 34% 8% 112.50×
Vertex Pull 37.17× 46.79× 22% 57% 29% 2509.21×

Table 8.5: SNAP BFS models evaluated against KONECT dataset. See
Section 4.3 on page 45 for a detailed explanation on how to read this data
and its measurement accuracy.

Algorithm Total Avg 1–2× >5× >20× Worst

Struct Edge List 1.13× 1.07× 99% 0% 0% 2.58×
Edge List 1.16× 1.14× 99% 0% 0% 2.62×
SNAP on TitanX (80% Graphs) 1.33× 1.21× 95% 2% 0% 6.14×
SNAP on TitanX (70% Graphs) 2.16× 1.41× 91% 3% 0% 7.98×
SNAP on TitanX (60% Graphs) 2.39× 2.06× 84% 9% 0% 18.80×
Vertex Pull NoDiv 2.43× 2.93× 59% 14% 0% 18.80×
Reverse Edge List 2.49× 2.09× 71% 7% 0% 8.81×
Reverse Struct Edge List 2.50× 2.09× 71% 7% 0% 8.85×
Vertex Push Warp 16–64 2.71× 4.75× 37% 19% 4% 66.63×
Vertex Pull Warp NoDiv 16–64 3.51× 5.42× 13% 37% 1% 27.46×
Vertex Pull Warp 16–64 4.74× 6.88× 5% 47% 4% 35.05×
Vertex Push 5.86× 16.66× 41% 34% 12% 642.08×
Vertex Pull 14.59× 16.68× 17% 60% 27% 143.45×

Table 8.6: SNAP PageRank models evaluated against KONECT dataset.
See Section 4.3 on page 45 for a detailed explanation on how to read this
data and its measurement accuracy.

118

8.3. Portability Across GPUs

there is no comprehensive way of classifying graphs, meaning there is also
no way to classify the variety of datasets.

This problem could be approached empirically by gathering up many
unique graphs, taking the powerset of that collection to create a large
number of unique datasets, then comparing the performance of models
trained on each of these datasets against all the others.

However, this approach is rather costly and still leaves open the ques-
tion whether the initial set of graphs was “representative”2. We consider
this question beyond the scope of this thesis.

The excellent performance of the KONECT models on SNAP do pro-
vide evidence that models trained using out workflow can be more gener-
ally applicable beyond the dataset that they were trained. Additionally,
these results strengthen our argument that our BDT models are not simply
“memorising” the results for the dataset they are trained on.

8.3 Portability Across GPUs

So far we have looked at the data requirements of our BDT models and
how portable they are across datasets. However, all this has been in the
context of data gathered using a single type of GPU, the NVIDIA TitanX.

At the beginning of this chapter we described how — in earlier chapters
— we assume that our models can predict the best implementation based
only on the structure of the graph and the implementations. That is,
independent of the actual GPU. In this section we will show that this is
indeed the case.

We have performed all our BFS measurements on the KONECT dataset
on 4 different GPUs from different generations and with different architec-
tures:

NVIDIA K20, a Kepler microarchitecture card from 2012

NVIDIA GTX980, a Maxwell microarchitecture card from 2014

NVIDIA TitanX, a Maxwell microarchitecture card from 2014

NVIDIA RTX2080 Ti, a Turing microarchitecture card from 2018

We trained our BFS models for each of these 4 GPUs. If our hypothesis
is correct, we expect our models to predict the “correct” implementation
to use for a graph, even if that model was trained on data produced by a
different GPU.

In Table 8.7 on the next page we show the results of models trained on
each of the 4 GPUs when predicting implementations on the K20 GPU. We
2 However we choose to define representative…

119

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (80% Steps) 1.25× 1.68× 97% 1% 0% 384.67×
KONECT on K20 (70% Steps) 1.26× 1.57× 97% 1% 0% 410.27×
KONECT on TitanX (80% Variants) 1.29× 1.71× 96% 1% 0% 384.66×
KONECT on GTX980 (80% Variants) 1.29× 1.61× 96% 1% 0% 384.66×
KONECT on GTX980 (70% Variants) 1.30× 1.54× 97% 1% 0% 384.66×
KONECT on K20 (80% Steps) 1.33× 1.88× 98% 1% 0% 463.57×
KONECT on GTX980 (60% Steps) 1.35× 1.80× 96% 1% 0% 435.84×
KONECT on K20 (70% Variants) 1.35× 1.54× 98% 1% 0% 410.27×
KONECT on K20 (80% Variants) 1.37× 1.52× 98% 1% 0% 410.28×
KONECT on GTX980 (80% Steps) 1.37× 1.67× 97% 1% 0% 435.84×
KONECT on RTX2080Ti (80% Steps) 1.38× 1.94× 97% 1% 0% 595.24×
KONECT on RTX2080Ti (80% Variants) 1.39× 1.87× 97% 1% 0% 443.58×
KONECT on TitanX (60% Steps) 1.40× 1.92× 96% 1% 0% 436.15×
KONECT on GTX980 (70% Steps) 1.40× 1.74× 96% 1% 0% 435.84×
KONECT on RTX2080Ti (70% Variants) 1.41× 1.82× 97% 1% 1% 410.27×
KONECT on TitanX (70% Steps) 1.42× 2.17× 96% 1% 0% 1203.37×
KONECT on RTX2080Ti (60% Steps) 1.44× 2.20× 95% 2% 1% 410.27×
KONECT on RTX2080Ti (70% Steps) 1.47× 1.99× 96% 1% 0% 595.24×
KONECT on TitanX (60% Variants) 1.52× 2.22× 94% 2% 1% 848.46×
KONECT on TitanX (70% Variants) 1.55× 1.95× 95% 2% 0% 411.34×
KONECT on RTX2080Ti (60% Variants) 1.60× 2.57× 96% 2% 1% 415.71×
KONECT on K20 (60% Variants) 1.63× 1.85× 97% 1% 0% 415.41×
KONECT on K20 (60% Steps) 1.69× 1.89× 96% 2% 1% 463.57×
KONECT on GTX980 (60% Variants) 1.81× 2.14× 95% 2% 1% 443.58×
Best Non-switching 2.85× 2.12× 67% 7% 0% 12.37×
Edge List 4.96× 2.74× 58% 15% 0% 45.43×
Struct Edge List 5.35× 2.88× 57% 16% 0% 52.01×
Vertex Push Warp 16–64 7.80× 11.33× 7% 45% 12% 232.17×
Reverse Edge List 11.42× 5.32× 42% 30% 4% 129.94×
Reverse Struct Edge List 11.73× 5.40× 42% 30% 4% 134.00×
Vertex Push 17.97× 47.52× 27% 50% 24% 1248.00×
Vertex Pull Warp 16–64 19.03× 22.30× 2% 85% 21% 1438.64×
Vertex Pull 35.70× 43.71× 19% 56% 27% 2530.27×

Table 8.7: KONECT BFS models against K20. See Section 4.3 on page 45
for a detailed explanation on how to read this data and its measurement
accuracy.

120

8.4. Conclusion

see that all the models outperform our best non-switching implementation
by a decent margin, regardless of the hardware they were trained on.

We also compare our 4 sets of models against the results of the GTX980
(Table 8.8 on the following page), the results of the TitanX (Table 8.9 on
page 123), and the results of the RTX2080 Ti (Table 8.10 on page 124).
We see similar results in each of these tables. There is some variation
across the different hardware, but in each case the model outperform our
non-switching oracle.

This validates our assumption that the architecture of GPUs over the
past decade and for the foreseeable future are similar enough that we
can attribute most of the observed performance differences to the match
between graph structure and parallelisation strategy (see Section 4.2 on
page 43).

8.4 Conclusion

In this chapter we set out to demonstrate two things:

1. That our BDT models do not simply memorise results, but predict
the relation between graph structure and performance.

2. That this relation between graph structure and performance is stable
across GPU architectures.

In Section 8.1 on page 112 we showed that the BDT models perform
well, even if they see only small amounts of our dataset. And in Section 8.2
on page 115 we show that the models, to some extent, even work when
used with datasets they have not seen at all. Thus, we conclude that the
BDT model is, indeed, not simply memorising the training data.

In Section 8.3 on page 119 we showed that the performance of the
models is largely independent of the GPU they were trained on. Leading
us to conclude that the performance of our BDT models is stable across
GPU architectures, as expected.

121

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (80% Variants) 1.61× 1.66× 97% 1% 0% 411.25×
KONECT on TitanX (80% Steps) 1.61× 1.64× 97% 1% 0% 411.23×
KONECT on TitanX (70% Variants) 1.68× 1.92× 96% 1% 0% 463.61×
KONECT on GTX980 (70% Variants) 1.77× 1.53× 97% 1% 0% 411.23×
KONECT on TitanX (70% Steps) 1.79× 2.17× 97% 2% 1% 1268.31×
KONECT on TitanX (60% Variants) 1.82× 2.26× 95% 2% 1% 990.60×
KONECT on TitanX (60% Steps) 1.83× 1.92× 97% 1% 1% 481.89×
KONECT on GTX980 (80% Variants) 1.92× 1.58× 97% 1% 0% 411.23×
KONECT on GTX980 (80% Steps) 1.98× 1.59× 97% 1% 0% 481.79×
KONECT on GTX980 (60% Variants) 2.26× 2.20× 96% 2% 1% 532.47×
KONECT on K20 (60% Steps) 2.27× 2.18× 95% 2% 1% 570.81×
KONECT on GTX980 (60% Steps) 2.43× 1.80× 96% 2% 0% 481.79×
KONECT on GTX980 (70% Steps) 2.52× 1.71× 96% 1% 0% 481.79×
KONECT on RTX2080Ti (60% Steps) 2.56× 2.35× 95% 3% 1% 517.63×
KONECT on RTX2080Ti (80% Steps) 2.61× 2.13× 96% 2% 1% 655.70×
KONECT on RTX2080Ti (70% Steps) 2.65× 2.22× 95% 2% 1% 655.70×
KONECT on K20 (60% Variants) 2.77× 2.16× 95% 2% 1% 517.65×
KONECT on RTX2080Ti (70% Variants) 2.77× 2.07× 95% 2% 1% 517.63×
KONECT on K20 (70% Steps) 2.79× 1.83× 96% 2% 1% 517.63×
KONECT on K20 (80% Steps) 2.80× 2.18× 96% 2% 1% 570.81×
KONECT on K20 (70% Variants) 2.85× 1.82× 96% 2% 1% 517.63×
KONECT on RTX2080Ti (60% Variants) 2.87× 2.83× 94% 3% 1% 517.63×
KONECT on RTX2080Ti (80% Variants) 3.13× 2.12× 96% 2% 1% 532.45×
KONECT on K20 (80% Variants) 3.21× 1.79× 96% 2% 0% 517.65×
Best Non-switching 3.70× 2.36× 66% 11% 0% 42.29×
Vertex Push Warp 16–64 8.01× 10.32× 27% 31% 12% 232.96×
Edge List 11.60× 3.41× 55% 20% 1% 49.82×
Struct Edge List 13.98× 3.91× 49% 23% 2% 61.71×
Vertex Pull Warp 16–64 17.61× 20.84× 7% 60% 19% 1266.57×
Vertex Push 28.98× 52.52× 32% 48% 27% 1394.66×
Reverse Edge List 29.35× 6.51× 44% 30% 7% 123.57×
Reverse Struct Edge List 31.26× 6.93× 43% 32% 8% 137.46×
Vertex Pull 38.50× 48.16× 26% 56% 30% 2402.22×

Table 8.8: KONECT BFS models against GTX980. See Section 4.3 on
page 45 for a detailed explanation on how to read this data and its mea-
surement accuracy.

122

8.4. Conclusion

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (80% Variants) 1.57× 1.62× 97% 1% 0% 412.05×
KONECT on TitanX (80% Steps) 1.59× 1.61× 97% 1% 0% 412.03×
KONECT on TitanX (70% Variants) 1.65× 1.87× 96% 1% 0% 448.61×
KONECT on TitanX (70% Steps) 1.74× 2.16× 97% 1% 1% 1344.17×
KONECT on GTX980 (70% Variants) 1.75× 1.60× 97% 1% 0% 412.03×
KONECT on TitanX (60% Variants) 1.75× 2.19× 95% 2% 1% 950.48×
KONECT on TitanX (60% Steps) 1.80× 1.90× 97% 1% 1% 482.20×
KONECT on GTX980 (80% Variants) 1.85× 1.65× 97% 1% 0% 412.03×
KONECT on GTX980 (80% Steps) 1.95× 1.66× 97% 1% 0% 482.09×
KONECT on K20 (60% Steps) 2.21× 2.16× 95% 2% 1% 545.02×
KONECT on GTX980 (60% Variants) 2.25× 2.23× 96% 2% 1% 525.47×
KONECT on GTX980 (60% Steps) 2.33× 1.87× 96% 2% 0% 482.09×
KONECT on GTX980 (70% Steps) 2.44× 1.75× 96% 1% 0% 482.09×
KONECT on RTX2080Ti (60% Steps) 2.52× 2.37× 94% 3% 1% 475.40×
KONECT on RTX2080Ti (80% Steps) 2.55× 2.16× 95% 2% 1% 653.68×
KONECT on RTX2080Ti (70% Steps) 2.60× 2.24× 95% 2% 1% 653.68×
KONECT on RTX2080Ti (70% Variants) 2.69× 2.09× 95% 2% 1% 475.40×
KONECT on K20 (60% Variants) 2.70× 2.15× 95% 2% 1% 475.41×
KONECT on K20 (70% Steps) 2.71× 1.83× 96% 2% 1% 475.40×
KONECT on K20 (80% Steps) 2.73× 2.18× 96% 2% 1% 545.02×
KONECT on K20 (70% Variants) 2.78× 1.82× 96% 2% 1% 475.40×
KONECT on RTX2080Ti (60% Variants) 2.80× 2.85× 94% 3% 1% 475.40×
KONECT on RTX2080Ti (80% Variants) 3.03× 2.13× 95% 2% 1% 505.04×
KONECT on K20 (80% Variants) 3.14× 1.80× 96% 2% 0% 475.41×
Best Non-switching 3.51× 2.42× 64% 10% 0% 38.89×
Vertex Push Warp 16–64 7.54× 9.94× 18% 30% 11% 233.97×
Edge List 14.13× 3.73× 52% 22% 2% 53.65×
Vertex Pull Warp 16–64 16.27× 20.13× 5% 64% 19% 1322.53×
Struct Edge List 17.03× 4.27× 49% 25% 2% 67.56×
Reverse Edge List 27.34× 6.39× 42% 32% 7% 97.53×
Vertex Push 27.87× 52.42× 28% 50% 26% 1394.00×
Reverse Struct Edge List 29.34× 6.75× 40% 34% 8% 112.50×
Vertex Pull 37.17× 46.79× 22% 57% 29% 2509.21×

Table 8.9: KONECT BFS models against TitanX. See Section 4.3 on
page 45 for a detailed explanation on how to read this data and its mea-
surement accuracy.

123

8. Model Portability

Algorithm Total Avg 1–2× >5× >20× Worst

KONECT on TitanX (70% Steps) 1.59× 2.21× 96% 1% 0% 1173.71×
KONECT on RTX2080Ti (80% Steps) 1.60× 1.92× 98% 1% 1% 600.43×
KONECT on TitanX (60% Steps) 1.60× 1.86× 96% 1% 0% 373.33×
KONECT on RTX2080Ti (60% Steps) 1.66× 2.23× 96% 2% 1% 500.74×
KONECT on TitanX (80% Variants) 1.73× 1.77× 96% 1% 0% 373.24×
KONECT on RTX2080Ti (70% Variants) 1.76× 1.87× 97% 1% 1% 500.74×
KONECT on TitanX (80% Steps) 1.79× 1.70× 97% 1% 0% 373.33×
KONECT on RTX2080Ti (70% Steps) 1.79× 2.00× 97% 1% 1% 600.43×
KONECT on GTX980 (70% Variants) 1.80× 1.66× 97% 1% 0% 373.24×
KONECT on TitanX (70% Variants) 1.85× 1.94× 96% 1% 0% 373.24×
KONECT on K20 (70% Steps) 1.87× 1.75× 97% 1% 0% 500.74×
KONECT on K20 (80% Steps) 1.87× 2.07× 97% 1% 1% 500.74×
KONECT on K20 (60% Variants) 1.88× 2.00× 96% 2% 1% 500.75×
KONECT on GTX980 (80% Variants) 1.88× 1.69× 98% 1% 0% 373.24×
KONECT on RTX2080Ti (60% Variants) 1.88× 2.35× 96% 2% 1% 500.74×
KONECT on K20 (60% Steps) 1.92× 2.06× 96% 2% 1% 500.74×
KONECT on TitanX (60% Variants) 1.92× 2.32× 94% 2% 1% 808.44×
KONECT on K20 (80% Variants) 1.96× 1.68× 97% 1% 0% 500.75×
KONECT on GTX980 (60% Steps) 1.99× 1.83× 97% 1% 0% 286.65×
KONECT on GTX980 (80% Steps) 2.00× 1.58× 98% 1% 0% 300.14×
KONECT on K20 (70% Variants) 2.00× 1.73× 97% 1% 0% 500.74×
KONECT on GTX980 (70% Steps) 2.02× 1.77× 98% 1% 0% 437.74×
KONECT on RTX2080Ti (80% Variants) 2.09× 1.90× 97% 1% 1% 500.74×
KONECT on GTX980 (60% Variants) 2.28× 2.18× 96% 2% 1% 454.09×
Best Non-switching 3.08× 2.06× 71% 9% 0% 18.14×
Edge List 4.22× 2.50× 64% 14% 0% 30.00×
Struct Edge List 4.70× 2.73× 60% 16% 0% 31.11×
Vertex Push Warp 16–64 8.54× 15.60× 16% 37% 15% 572.97×
Reverse Edge List 12.10× 4.57× 56% 24% 3% 62.17×
Reverse Struct Edge List 12.91× 4.87× 53% 26% 4% 70.66×
Vertex Push 19.28× 47.21× 33% 44% 25% 1217.56×
Vertex Pull Warp 16–64 21.96× 31.28× 8% 59% 23% 1543.80×
Vertex Pull 26.98× 34.98× 31% 53% 26% 1704.99×

Table 8.10: KONECT BFS models against RTX2080Ti. See Section 4.3
on page 45 for a detailed explanation on how to read this data and its
measurement accuracy.

124

CHAPTER 9
Conclusion

Performance engineering is the software engineering art of untangling the
complex interactions between algorithms, data structures, hardware, and
input to achieve the best possible performance. The challenge of perfor-
mance engineering for General Processing on GPU (GPGPU) graph pro-
cessing lies at the heart of this thesis.

As mentioned in Chapter 1 on page 1, the cost-effectiveness — both
in terms of purchase price and FLOPS per watt — and commodity na-
ture of GPGPUs led to them becoming ubiquitous in High-Performance
Computing (HPC) and this will remain the case for the foreseeable future.

The current and continued relevance of GPGPU graph processing fol-
lows from the above, combined with the versatility and usefulness of graphs
for modelling problems in many fields, such as computational linguistics,
physics, biology/bioinformatics, and social science.

9.1 Conclusions

This section shows how the work in this thesis addresses our research hy-
potheses, as described in Section 1.2 on page 3. In Section 9.1.2 on page 131
we discuss how all the individual parts fit together into a coherent method-
ology for future exploration of these performance engineering problems.
Finally, Section 9.1.3 on page 132 presents a summary of all the contribu-
tions in this thesis.

125

9. Conclusion

9.1.1 Findings per Research Goal
The findings discussed in the following subsections correspond to the five
research objectives enumerated above in Section 1.2 on page 3.

9.1.1.1 Software & Tooling

Performance engineering is a branch of empirical computer science; that
is, computer science based on experimental observation. In any empirical
science the quality of your results is only as good as your ability to repro-
duce your results. An aspect that is, unfortunately, still often overlooked
in computer science [23].

The experiments within this thesis, despite only addressing a tiny part
of graph processing on Graphical Processing Units (GPUs), involve 56
implementations of Breadth-First Search (BFS), 19 implementations of
PageRank, 247 graphs from the KONECT dataset, and 109 graphs from
the SNAP dataset. Benchmarking all these possible combinations leads
to:

(56 + 19)× (247 + 109) = 26, 700 experiments

The above 26, 700 experiments is before we even consider repeating
these experiments across multiple GPU generations or the fact that BFS
has different behaviour for every possible starting vertex in a graph. At this
scale, reproducibility becomes wishful thinking without adequate tooling
and data management.

In Chapter 3 on page 17 we present the high-level architecture of the
software pipeline we built to produce, aggregate, and analyse the results
from all our experiments. The version of the code used in this thesis is
available on Zenodo [89], the current version of the code can be found at
https://github.com/merijn/Belewitte.

The core component of our pipeline is an SQLite-based database. This
database stores all data related to our experiments and their configuration.
This includes information related to possible experiment configurations,
such as:

• known hardware platforms,

• known algorithms,

• known implementations per algorithm,

• the commit of each of the known implementations,

• known datasets, and

• known graphs per dataset.

126

https://github.com/merijn/Belewitte

9.1. Conclusions

The database also stores all the configurations for which experiments
need to be run and/or have run. One of our tools examines which con-
figurations have experiments that have not run yet, and runs any of the
necessary benchmarks. The results of these experiments are added to the
database, these include:

• timings of various stages of the algorithm,

• structural properties of the graph,

• properties of the algorithm that vary at run time,

• the date and time of the benchmark,

• whether the result of the experiment was validated1,

All of our tools for analysis and plotting also interact with this database.
The database stores the configuration used for, for example, our Binary
Decision Tree (BDT) work, allowing us to (re)evaluate a model against
both the exact same data used for training and comparing it against other
data selections. The trained BDT models of our work, as well as the im-
portant metadata from the training process are stored within the database
too.

There are additional benefits to packing all this data and metadata into
a single SQLite database, besides the reproducibility aspect. Having all the
data about experiment configuration, results, and analysis configuration in
a single database makes tracking the provenance of results much simpler.

Furthermore, the single file format and wide support for SQLite make
it trivial to share entire result sets with other researchers, letting them
build their own work on top of the existing results without having to redo
all the time consuming benchmarks themselves. The interested reader can
find all the data that went into this thesis archived on Zenodo [90].

Software engineering and programming work is often viewed as distinct
from “real computer science” and rarely as a scientific contribution on its
own. In our opinion this software pipeline is an integral part of the scientific
contributions in this thesis. It forms the backbone of the methodology we
use in this thesis and allows other to do similar investigations on other
graph algorithms, datasets, hardware, and/or implementations.

9.1.1.2 Quantifying the Performance Impact

The impact of input data — graphs, in our case — on irregular algorithm
is well-known in HPC and GPGPU communities. This irregularity was
already highlighted as the main challenge in high-performance graph pro-
cessing in 2007 [61].
1 i.e., whether it was the same as all other implementations.

127

9. Conclusion

Since then there has been little to no systematic investigation into the
link between graph structure and the performance of different implemen-
tation techniques. This impact is generally assumed to be significant, but
there is no work in quantifying what the impact actually is.

In Chapter 4 on page 41 we start by investigating the behaviour of
neighbour iteration. Neighbour iteration appears as a primitive graph
operation in many algorithms, making these results applicable beyond the
PageRank and BFS algorithms we use. In Section 4.2 on page 43 we discuss
the possible parallelisation strategies for neighbour iteration on GPGPU.

In Sections 4.4 and 4.5 on page 50 and on page 58 we show that there
is, indeed, a significant variation in the performance of each parallelisation
strategy across different input graphs. For some graphs the difference
between the best and worst parallelisation strategy can be several orders
of magnitude.

Furthermore, we show that the performance of BFS does not just vary
with the input graph, but also with the stage of the BFS traversal. We
show that correctly predicting the best implementation for each BFS step
can produce significant performance gains.

9.1.1.3 Relation Between Graph Structure and Parallelisation

When we try to relate graph structure to the behaviour of different paral-
lelisation strategies, we immediately run into a key problem: What is the
structure of a graph?

Social network graphs, road networks, collaboration networks, and vari-
ous other graphs are “obviously” different to the human eye, but classifying
these differences is hard. Additionally, human intuition breaks down when
comparing graphs with thousands or millions of vertices and edges.

We can attempt to classify the structure of a graph based in properties
of the graph. However, people keep inventing new metrics and the existing
ones are highly correlated. For example, increasing the edge count of a
graph will, invariably increase the triangle count and lower the diameter
and mean distance between nodes.

There is no consensus on which properties adequately classify the struc-
ture of a graph. So we are left to experimentally determine which proper-
ties are most important. Our intuition led us to believe that, in addition
to the size of the graph, the degree distribution is probably one of the most
important factors.

So in this thesis we have limited ourselves to: vertex count, edge count,
and a number of properties related to degree distribution. All of these can
be computed relatively cheaply even for very big graphs, as the complexity
of computing them is O(|V |).

128

9.1. Conclusions

Systematic Graph Generation

Our first attempt to relate the structural properties of graphs to the
performance of parallelisation strategies was based on systematic bench-
marking. The idea was to generate a dataset of synthetic graphs with a
uniform distribution of values across each property of interest.

This would allow us to benchmark our parallelisation strategies against
this systematic dataset and isolate the impact of each parameter on the
performance of each parallelisation strategy.

None of the existing graph datasets met the requirements for this ap-
proach and none of the existing synthetic graph generators was able to
generate the graphs we needed.

We set out to build our own synthetic graph generator. In Chapter 5
on page 67 we present our evolutionary computing based graph generator
and the design of the evolutionary computing approach it uses.

While our graph generator was successful at generating graphs at small
scales, it failed to scale up to the larger graph sizes we need to draw any
conclusions about the link between graph structure and parallelisation.

Analytical Model

We were forced to abandon the systematic benchmarking approach,
after our graph generator did not work out. Our next step was to try to
tackle the problem using analytical methods.

In Chapter 6 on page 85 we presented workload models for each of
our PageRank parallelisation strategies. We then validated our workload
models against the behaviour observed by NVIDIA’s profiling tools. There
was a good correspondence between the workload models and the results
observed using the profiling tools.

Our workload models are based on the memory accesses performed
by each implementation. They only model the total amount of memory
accesses and do not account for the parallelisation of these accesses. We
showed that the edge-centric parallelisation strategy always performs more
accesses than the other strategies, yet it is one of the fastest overall imple-
mentations.

We conclude that, as expected, the total workload is not sufficient to
predict the performance of our implementations. Our experiments with
different graph orderings show that it is not possible to statically approx-
imate the parallel execution costs of our workload models. We conclude
that accurately predicting the performance of the different parallelisation
strategies requires modelling the dynamic behaviour of the GPU.

We do not believe that modelling the parallel execution is inherently
impossible. However, details about the internals of GPUs are limited.
Without detailed information from manufacturers, these internals have to

129

9. Conclusion

be reverse engineered from observation. We consider this an infeasible
amount of work, especially for a single thesis.

BDT Modelling

Our final effort to relate graph structure to parallelisation strategy was
via machine learning on our real world datasets. In Chapter 7 on page 99
we used the 247 graphs from the KONECT [51] dataset, and ran our
implementations against all of them. We show that a BDT model trained
on our results for the KONECT dataset can predict the best parallelisation
strategy for a graph from its structural properties.

In Section 8.1 on page 112 we show that our BDT models are not simply
memorising the training data. We vary the size of the training set used to
train our models and show that models trained on a fraction of our result
set are still effective.

In Section 8.2 on page 115 we expand on this by showing that our BDT
models are not limited to the dataset they were trained on. Showing that
they capture (part of) the link between graph structure and parallelisation
strategy, rather than memorising results of a specific result set.

9.1.1.4 Exploiting the Relation Between Graph Structure and
Parallelisation

Above we established that BDTs give us a way to predict the best per-
forming parallelisation strategy from a graph’s structure. In Section 7.3
on page 104 we show that our dynamically switching Mix-and-Match im-
plementation is 1.6× faster than the (non-existent) non-switching oracle
and 3.4× faster than the overall fastest implementation.

Having established that this relationship can be exploited, the next
step, in Chapter 8 on page 111, is to investigate how general this relation-
ship is and how portable our BDT models are. In Section 8.2 on page 115
we showed that the relationship between graph structure and paralleli-
sation strategy performance is preserved across datasets, if the training
dataset is sufficiently general. A definition of “sufficiently general” is left
for future work.

9.1.1.5 GPU Invariance

One of our starting assumptions was that the biggest performance impact
of GPGPU programming comes from mapping graph algorithms to their
Single Instruction, Multiple Threads (SIMT) programming model. Lead-
ing us to belief that we can safely ignore the specifics of different GPU
generations and assume that the relative performance of different paralleli-
sation strategies stays fairly constant across GPU generations.

130

9.1. Conclusions

This is a pretty big assumption, so in Section 8.3 on page 119 we
showed, experimentally, that this assumption is true enough to be useful.
To do this we repeated the same experiments on 4 separate GPUs from
2012 through 2018, using 3 different microarchitectures. We trained BDT
models on the result set of each of these GPUs; then we evaluated the
effectiveness of each model against the results from the other GPUs.

If the GPU hardware had no impact we would expect almost no dif-
ference between the 4 sets of models or between the 4 evaluation sets. Of
course, this is not the case, as there is some variance. However, this vari-
ance is not sufficient to completely invalidate our assumption. We note
that our models outperform the non-model implementations, regardless
which dataset the models were trained on.

From this we conclude that the most significant link between graph
structure and parallelisation strategy follows from the SIMT programming
model and that variations in GPU hardware only play a limited role, al-
lowing us to generalise findings across multiple GPUs or GPU generations
to some extent.

9.1.2 Methodology
Graph processing and performance engineering are both incredibly com-
plicated subjects. The deeper you dive into either topic, the more new
problems, complications, and degrees of freedom you discover. There are
more unknowns than can be addressed in a lifetime, let alone a thesis,
even when we only consider a niche like performance engineering graph
processing on GPGPU.

Our goal in this thesis was never to provide a comprehensive solution to
the problems of performance engineering GPU graph processing2. Instead,
we hope to provide a methodology and starting point for others to explore
this problem area further.

Our software pipeline from Chapter 3 on page 17 [89] is an essential
part of this work. The results from Chapters 7 and 8 would not have
been possible without it. Furthermore, it provides a straightforward and
automated way for other researchers to explore and experiment and con-
tinue this investigation with other graph datasets, other hardware, or other
algorithms.

Repeating out experiments with different datasets and hardware can be
done without any programming effort. Other graph algorithms will require
adding these algorithms to our kernel runner (or changing the output of
existing software to match the expected output of our runner).

The infrastructure for running, aggregating, and analysing new experi-
ments can be used unchanged with any algorithm that can be implemented

2 Well…it was, but those hopes were squashed quite quickly!

131

9. Conclusion

as a Bulk Synchronous Parallel (BSP) algorithm with deterministic super-
steps.

The SQLite database for storing results and experiments can also eas-
ily be extended to include other machine learning approaches or analyses
besides the current BDT models. It is easy to write new tools that build
on top of the results of other scientists, since SQLite is a widely supported
format with libraries in almost all programming languages.

We think that this integrated and systematic approach is the key to
successful and reproducible research in empirical computer science.

9.1.3 Contributions
The main contributions of this thesis are:

• A tool for gathering performance data of graph algorithms, running
data analyses on these results, and evaluating models against our
empirical data. [89]
See Chapter 3 on page 17.

• A quantification of the performance impact of different parallelisation
strategies on graph algorithm performance. [94]
See Chapter 4 on page 41.

• A graph generator based on evolutionary computing to generate in-
put graphs for our experimentation. [95]
See Chapter 5 on page 67.

• A workload model for these parallelisation strategies and demonstrat-
ing the infeasibility of using this workload model for performance
prediction in the context of GPU execution. [94]
See Chapter 6 on page 85.

• A workflow for creating BDT models for predicting the performance
of GPU graph algorithms. [92, 93]
See Chapters 3 and 7 on page 17 and on page 99.

• A proof of concept graph traversal that uses the above BDT model
to get better performance by switching between implementations for
different steps of the traversal. [92, 93]
See Chapter 7 on page 99.

• An analysis of the portability of our BDT models across datasets and
GPU architectures. [90]
See Chapter 8 on page 111.

132

9.2. Future Work

9.2 Future Work

During the work described in this thesis3, there were many interesting
ideas, questions, and variations to explore that we simply did not have
the time to go into. In this section we highlight some areas of interest for
further investigation and future work.

One of the most interesting investigations would be to repeat our
methodology and BDT modelling approaches with additional GPU algo-
rithms and see how well the results hold for these. Candidate algorithms
are: Single-Source Shortest Path (SSSP), Betweenness Centrality (BC),
or connected components. Our modelling approach should work with any
BSP algorithm.

In Chapter 8 on page 111 we showed that BDT models trained on very
limited amount of data still perform quite well. However, this investigation
was quite limited and focussed on showing that our BDT models were not
simply memorising their input data.

It is an open question what a “representative dataset” looks like. We
noted that models trained on KONECT performed well on SNAP graphs,
but not vice versa. We argued that this was likely due to the KONECT
dataset being more diverse. However, there is still a lot of redundancy in
the form of similar graphs in the KONECT dataset.

An interesting avenue of investigation would be to see how many and
which graphs could be dropped from out KONECT training set without
affecting the model quality and the transferability to SNAP.

A similar thing could be used to construct a classification for graphs,
for a given graph, see how many and which graphs can be dropped from
the training set without worsening the model’s performance. Any graphs
that must be kept to keep the model’s performance are evidently in the
same class.

In Chapters 4 and 6 on page 41 and on page 85 we noted that there are
performance differences depending on the exact in memory representation
of graphs. We did not examine these effects in depth, as this did not seem
to effect the relative performance of different parallelisation strategies, but
it is interesting to see if and how the performance can be optimised by
altering how the graph’s structure is stored in memory.

3 And even while already writing it

133

Appendices

APPENDIX A
Current Database Schema

This section serves as a reference of the current version of our data format,
clarifying all the gory details of the schema shown in Fig. 3.3 on page 29.
Explaining which columns exist in each table and the meaning of the data
in that column. For a higher level overview of how our tools interact with
this data format we refer to Section 3.3 on page 30.

A.1 GlobalVars

CREATE TABLE IF NOT EXISTS "GlobalVars"
("name" VARCHAR NOT NULL
, "value" VARCHAR NOT NULL
, PRIMARY KEY ("name")
, CONSTRAINT "UniqGlobal" UNIQUE ("name")
);

The GlobalVars table, as the name implies, stores global variables
controlling the operation of the Ingest, Model, and Plot executables. The
table consists of name–value pairs, while both columns are listed as text,
the value column can use SQLite’s dynamic typing to store values of
different types as needed. In the current schema version this table only
stores the “run command”. That is, the runner command used to start
benchmarking runs on systems that do not use SLURM [47].

137

A. Current Database Schema

A.2 Platform

CREATE TABLE IF NOT EXISTS "Platform"
("id" INTEGER PRIMARY KEY
, "name" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, "flags" VARCHAR NULL
, "available" INTEGER NOT NULL DEFAULT 1
, "isDefault" BOOLEAN NOT NULL DEFAULT 0
, CONSTRAINT "UniqPlatform" UNIQUE ("name")
);

The Platform table stores a list of hardware platforms (in this thesis
only Graphical Processing Units (GPUs), but the applicability is broader
than that). The id column provides a unique key to refer to each platform.
The name column gives the textual name of the platform. This textual
name is dual purpose, it is used as “human-readable” platform name by
the command line interface and as argument to the SLURM [47] runner
to allocate a machine with the right platform.

The prettyName column gives an optional longer form name to be used
in tables, graphs, and other output. The flags column is an optional way
to specify what flags to use when running a set of experiments. If the value
in the flags column is present, it will override the use of the name column
in telling the SLURM runner what machine(s) to allocate.

The available column specifies the number of available machines with
this platform (e.g., GPU) are available, limiting how many parallel jobs
the runner will attempt to spawn. The isDefault column can only be true
for a single row in the table and specifies which platform should be used
as the default for to run non-benchmarking tasks on. This is the platform
that will be used to compute graph properties and validate results. Ideally,
the default platform should be one of the faster platforms or the one with
the most machines available, to maximise the speed with which these tasks
are completed.

A.3 Dataset

CREATE TABLE IF NOT EXISTS "Dataset"
("id" INTEGER PRIMARY KEY
, "name" VARCHAR NOT NULL
, CONSTRAINT "UniqDataset" UNIQUE ("name")
);

The Dataset table defines which datasets existed, which can then be
used for configuring experimental runs and computing statistics over the

138

A.4. Graph

runs on a specific dataset. The table consists of a unique numerical id
column and a name column for unique textual names for the datasets.

A.4 Graph

CREATE TABLE IF NOT EXISTS "Graph"
("id" INTEGER PRIMARY KEY
, "name" VARCHAR NOT NULL
, "path" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, "datasetId" INTEGER NOT NULL REFERENCES "Dataset"
, "timestamp" TIMESTAMP NOT NULL
, CONSTRAINT "UniqGraph" UNIQUE ("path")
, CONSTRAINT "UniqGraphName" UNIQUE ("name","datasetId")
);

The Graph table defines all the graphs available for experiments. For
every graph we store a unique numerical id, a short textual name for com-
mand line interaction, a longer prettyName used in tables, graphs, and
other output. The path column gives the filepath the graph file. The
datasetId is a foreign key to the Dataset table, defining which dataset
the graph belongs to. The timestamp table stores when the graph’s in-
formation was added to the database, this is lets us determine if a graph
was included in old experiments or the training/validation of older models
stored in the database.

A.5 Algorithm

CREATE TABLE IF NOT EXISTS "Algorithm"
("id" INTEGER PRIMARY KEY
, "name" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, CONSTRAINT "UniqAlgorithm" UNIQUE ("name")
);

The Algorithm table defines the algorithms available for experiments.
For each algorithm we store a unique numerical id, a unique short textual
name for command line interaction, and a longer prettyName used in tables,
graphs, and other output.

139

A. Current Database Schema

A.6 Implementation

CREATE TABLE IF NOT EXISTS "Implementation"
("id" INTEGER PRIMARY KEY
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "name" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, "flags" VARCHAR NULL
, "type" VARCHAR NOT NULL
, CONSTRAINT "UniqImpl" UNIQUE ("algorithmId","name")
);

The Implementation table defines all the available implementations
for each Algorithm. We have the standard unique numerical id column,
unique short textual name column, and longer textual prettyName column
used in tables, graphs, and other output. Every Implementation has a
foreign key algorithmId linking it to its corresponding Algorithm row.

By default the name column is used to tell the runner which implemen-
tation to use, but the flags column can be used to override this behaviour.
When the flags column is present, those flags are passed to the runner
instead of the name.

The type column distinguishes between Core implementations which
are unique implementations of the algorithm and Derived implementations
which are implementation that use our Binary Decision Tree (BDT) models
to switch between different Core implementations at runtime.

A.7 VariantConfig

CREATE TABLE IF NOT EXISTS "VariantConfig"
("id" INTEGER PRIMARY KEY
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "name" VARCHAR NOT NULL
, "flags" VARCHAR NULL
, "isDefault" BOOLEAN NOT NULL
, "timestamp" TIMESTAMP NOT NULL
, CONSTRAINT "UniqVariantConfig" UNIQUE ("algorithmId","name")
);

The VariantConfig table specifies the different ways an algorithm can
be run on the same input. Not every algorithm will have multiple ways to
run it. For example, Breadth-First Search (BFS) can be run with different
root nodes on the same input, whereas PageRank only has one way to run
it.

140

A.8. Variant

For every variant configuration we store a unique numerical id, the
algorithmId referencing the Algorithm it belongs to, and a short textual
name. The flags column specifies the flags needed to run the algorithm in
this configuration. The isDefault column specifies which variant config-
uration is the default to use for each algorithm. The timestamp specifies
when the configuration was added to the database, this is lets us deter-
mine if a variant configuration was included in old experiments or the
training/validation of older models stored in the database.

A.8 Variant

CREATE TABLE IF NOT EXISTS "Variant"
("id" INTEGER PRIMARY KEY
, "graphId" INTEGER NOT NULL REFERENCES "Graph"
, "variantConfigId" INTEGER NOT NULL REFERENCES "VariantConfig"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "result" BLOB NULL
, "maxStepId" INTEGER NOT NULL
, "propsStored" BOOLEAN NOT NULL
, "retryCount" INTEGER NOT NULL
, CONSTRAINT "UniqVariant" UNIQUE ("graphId","variantConfigId")
, CONSTRAINT "ForeignVariantConfig"
FOREIGN KEY("variantConfigId","algorithmId")
REFERENCES "VariantConfig"("id","algorithmId")

);

The Variant table stores results and metadata for every Graph &
VariantConfig combination. A variant has a unique numerical id, and
graphId & variantConfgifId foreign key references to the correspond-
ing Graph and VariantConfig. The algorithmId column references the
Algorithm, we use a foreign key constraint to ensure it corresponds to the
VariantConfig’s Algorithm. This is redundant, but lets us reduce the
number of joins in our Structured Query Language (SQL) queries, speed-
ing them up.

For every Variant we store the result, which is a hash of the algo-
rithm’s output, used to check that all our implementation produce the
same results. We also store the maxStepId which is the number of it-
erations/steps of our implementation it takes for computation to finish.
The propsStored column tracks whether we already computed and stored
the algorithm specific graph properties for this variant. The retryCount
columns tracks the number of failed runs have been attempted for this
variant, allowing us to stop scheduling experiments if they fail too many
times.

141

A. Current Database Schema

A.9 RunConfig

CREATE TABLE IF NOT EXISTS "RunConfig"
("id" INTEGER PRIMARY KEY
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "platformId" INTEGER NOT NULL REFERENCES "Platform"
, "datasetId" INTEGER NOT NULL REFERENCES "Dataset"
, "algorithmVersion" VARCHAR NOT NULL
, "repeats" INTEGER NOT NULL
, CONSTRAINT "UniqRunConfig"
UNIQUE ("algorithmId","platformId","datasetId","algorithmVersion")

);

The RunConfig table stores sets of past and future benchmarking exper-
iments. Each set has a unique numerical id and is made up of an algorithm
to run, the platform to run it on, and the dataset whose graphs should be
used as input. These are stored using the algorithmId, platformId, and
datasetId foreign references, respectively. The algorithmVersion stores
the version of the implementations that was/will be used for the experi-
ments. The repeats column stores the number of runs the results of each
implementation should be averaged over.

A.10 Run

CREATE TABLE IF NOT EXISTS "Run"
("id" INTEGER PRIMARY KEY
, "runConfigId" INTEGER NOT NULL REFERENCES "RunConfig"
, "variantId" INTEGER NOT NULL REFERENCES "Variant"
, "implId" INTEGER NOT NULL REFERENCES "Implementation"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "timestamp" TIMESTAMP NOT NULL
, "validated" BOOLEAN NOT NULL
, CONSTRAINT "UniqRun"
UNIQUE ("runConfigId","variantId","implId","algorithmId")

, CONSTRAINT "ForeignRunConfig"
FOREIGN KEY("runConfigId","algorithmId")
REFERENCES "RunConfig"("id","algorithmId")

, CONSTRAINT "ForeignVariant"
FOREIGN KEY("variantId","algorithmId")
REFERENCES "Variant"("id","algorithmId")

, CONSTRAINT "ForeignImplementation"
FOREIGN KEY("implId","algorithmId")
REFERENCES "Implementation"("id","algorithmId")

);

142

A.11. PropertyName

The Run table stores information tracking which of the runs speci-
fied by the RunConfig table have been completed already. A Run has
a unique numerical id. Runs correspond to a combination of a specific
RunConfig, Implementation of the algorithm, and Variant (e.g., combi-
nation of graph and algorithm specific configuration). These are stored
using the runConfigId, variantId, and implId foreign references, respec-
tively.

The algorithmId foreign reference is redundant and only present to
enforce consistency and simplify certain SQL queries. The timestamp col-
umn stores the Coordinated Universal Time (UTC) time when the Run
completed and was stored. This lets us accurately reconstruct historical
training/validation sets used when training models. The validated col-
umn tracks whether the Run’s output data match the reference results for
the given Variant, acting as verification that all implementations produce
identical results.

A.11 PropertyName

CREATE TABLE IF NOT EXISTS "PropertyName"
("id" INTEGER PRIMARY KEY
, "property" VARCHAR NOT NULL
, "isStepProp" BOOLEAN NOT NULL
, CONSTRAINT "UniqProperty" UNIQUE ("property")
);

The PropertyName table stores the properties tracked by the frame-
work. Each property has a unique numerical id, the property column
stores a unique short textual name, and the isStepProp column, as the
name implies, stores whether the property is of an algorithms (super)steps
or a property of a graph.

A.12 GraphPropValue

CREATE TABLE IF NOT EXISTS "GraphPropValue"
("graphId" INTEGER NOT NULL REFERENCES "Graph"
, "propId" INTEGER NOT NULL REFERENCES "PropertyName"
, "value" REAL NOT NULL
, PRIMARY KEY ("graphId","propId")
, CONSTRAINT "UniqGraphPropValue" UNIQUE ("graphId","propId")
);

The GraphPropValue table stores the values of graph properties. Each
row is identified by a unique pair of a graph and property, identified by the

143

A. Current Database Schema

graphId and propId foreign references, respectively. The value column
stores the value of the associated graph and property combination.

A.13 StepProp

CREATE TABLE IF NOT EXISTS "StepProp"
("propId" INTEGER NOT NULL REFERENCES "PropertyName"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, PRIMARY KEY ("propId","algorithmId")
, CONSTRAINT "UniqStepProp" UNIQUE ("propId","algorithmId")
);

The StepProp table allows multiple algorithms to share step properties
with the same name. Each row consists of a combination of a propId and
algorithmId foreign references, indicating that the property exists for the
given algorithm.

A.14 StepPropValue

CREATE TABLE IF NOT EXISTS "StepPropValue"
("variantId" INTEGER NOT NULL REFERENCES "Variant"
, "stepId" INTEGER NOT NULL
, "propId" INTEGER NOT NULL REFERENCES "PropertyName"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "value" REAL NOT NULL
, PRIMARY KEY ("variantId","stepId","propId")
, CONSTRAINT "UniqStepPropValue"
UNIQUE ("variantId","stepId","propId")

, CONSTRAINT "ForeignStepProp"
FOREIGN KEY("algorithmId","propId")
REFERENCES "StepProp"("algorithmId","propId")

, CONSTRAINT "ForeignVariant"
FOREIGN KEY("variantId","algorithmId")
REFERENCES "Variant"("id","algorithmId")

);

The StepPropValue table stores the values of step properties. Step
properties are runtime values of a given algorithm, as opposed to the static
properties of input graphs, as such they can differ between variants of the
same graph. Consider the case of BFS we would not expect the same
number of steps nor same values for BFS traversals starting from different
roots.

Step property values are therefore associated with a specific variant
and step. The propId references a step property and is associated to a

144

A.15. TotalTimer

variant via the variantId foreign reference and the step number stepId.
The value column stores the property’s value. The algorithmId foreign
reference is redundant (inferrible from the variant), but stored for query
optimisation purposes.

A.15 TotalTimer

CREATE TABLE IF NOT EXISTS "TotalTimer"
("runId" INTEGER NOT NULL REFERENCES "Run"
, "name" VARCHAR NOT NULL
, "minTime" REAL NOT NULL
, "avgTime" REAL NOT NULL
, "maxTime" REAL NOT NULL
, "stdDev" REAL NOT NULL
, PRIMARY KEY ("runId","name")
);

The TotalTimer stores named overall timers for an associated Run. A
timer consists of a runId foreign reference, a unique (per Run) short textual
name, and minimum (minTime), average (avgTime), maximum (maxTime),
and standard deviations (stdDev). The number of samples these timing
aggregates are computed from are determined by the number of repeats
specified in the corresponding RunConfig.

A.16 StepTimer

CREATE TABLE IF NOT EXISTS "StepTimer"
("runId" INTEGER NOT NULL REFERENCES "Run"
, "variantId" INTEGER NOT NULL REFERENCES "Variant"
, "stepId" INTEGER NOT NULL
, "name" VARCHAR NOT NULL
, "minTime" REAL NOT NULL
, "avgTime" REAL NOT NULL
, "maxTime" REAL NOT NULL
, "stdDev" REAL NOT NULL
, PRIMARY KEY ("runId","stepId","name")
, CONSTRAINT "ForeignRun"
FOREIGN KEY("runId","variantId")
REFERENCES "Run"("id","variantId")

);

The StepTimer stores, as implied by the name, the named step timers
for an associated Run. The runId, name, minTime, avgTime, maxTime,
stdDev fields are identical to their TotalTimer equivalents.

145

A. Current Database Schema

In addition, we also store the numerical stepId and a variantId for-
eign reference to the corresponding variant. The variantId is redundant
but stored for input validation and query optimisation purposes.

A.17 ExternalImpl

CREATE TABLE IF NOT EXISTS "ExternalImpl"
("id" INTEGER PRIMARY KEY
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "name" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, CONSTRAINT "UniqExternalImpl" UNIQUE ("algorithmId","name")
);

The ExternalImpl table stores “external” implementations, that is,
names of implementations not included in nor runnable by our tool, but
whose results are used for comparison tables and plots. They consist of a
unique numerical id, a algorithmId foreign reference to the corresponding
algorithm, a short textual name for command line interaction, and a longer
prettyName used for tables, graphs, and other output.

A.18 ExternalTimer

CREATE TABLE IF NOT EXISTS "ExternalTimer"
("platformId" INTEGER NOT NULL REFERENCES "Platform"
, "variantId" INTEGER NOT NULL REFERENCES "Variant"
, "implId" INTEGER NOT NULL REFERENCES "ExternalImpl"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "name" VARCHAR NOT NULL
, "minTime" REAL NOT NULL
, "avgTime" REAL NOT NULL
, "maxTime" REAL NOT NULL
, "stdDev" REAL NOT NULL
, PRIMARY KEY ("platformId","variantId","implId","algorithmId","name")
, CONSTRAINT "ForeignVariant"

FOREIGN KEY("variantId","algorithmId")
REFERENCES "Variant"("id","algorithmId")

, CONSTRAINT "ForeignExternalImpl"
FOREIGN KEY("implId","algorithmId")
REFERENCES "ExternalImpl"("id","algorithmId")

);

The ExternalTimer table stores the results of benchmarks using ex-
ternal implementations. These timings correspond to a combination of a

146

A.19. PredictionModel

platform, variant, and external implementation, references by platformId,
variantId, and implId. The algorithmId is redundant and inferable, but
included for data validation and query optimisation purposes.

The name column corresponds to a timer name, in case of multiple
timers per implementation. The minTime, avgTime, maxTime, and stdDev
correspond to the minimum, average, maximum times, and standard devi-
ation, respectively.

A.19 PredictionModel

CREATE TABLE IF NOT EXISTS "PredictionModel"
("id" INTEGER PRIMARY KEY
, "platformId" INTEGER NOT NULL REFERENCES "Platform"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "algorithmVersion" VARCHAR NOT NULL
, "name" VARCHAR NOT NULL
, "prettyName" VARCHAR NULL
, "description" VARCHAR NULL
, "model" BLOB NOT NULL
, "skipIncomplete" BOOLEAN NOT NULL
, "legacyTrainFraction" REAL NOT NULL
, "trainGraphs" REAL NOT NULL
, "trainVariants" REAL NOT NULL
, "trainSteps" REAL NOT NULL
, "trainSeed" INTEGER NOT NULL
, "totalUnknownCount" INTEGER NOT NULL
, "timestamp" TIMESTAMP NOT NULL
, CONSTRAINT "UniqModel" UNIQUE ("name")
);

The PredictionModel table stores trained models and metadata about
the training process. Each model has a unique numerical id, a short tex-
tual name, and was trained on data from a specific platform (platformId)
and algorithm (algorithmId). Each model has an optional description
describing it and an optional prettyName for use in output. The number of
leaf nodes with an unknown prediction is stored in the totalUnknownCount
column.

The model itself is stored as a binary blob which can be serialised
into C++ code by our tools. The timestamp indicates when the model
was trained, allowing us to reconstruct which results and measurements
were available at the time. This guarantees that graphs and tables are
reproducible even when extra results are added to the database later.

147

A. Current Database Schema

The training sets and validation sets are computed via a deterministic
Pseudo Random Number Generator (PRNG)-based sampling algorithm.
The metadata controlling this sampling are:

legacyTrainFraction,
whether to use the legacy, not fully deterministic, sampling strategy.
Exists for backwards compatibility with very old initial experiments.

skipIncomplete,
only include results for graphs here all implementations have vali-
dated measurements available.

trainGraphs,
the fraction of all graphs that should be included in the training data.

trainVariants,
the fraction of all variants that should be included in the training
data.

trainSteps,
the fraction of all steps that should be included in the training data.

trainSeed,
the seed for the sampling algorithm.

A.20 ModelTrainDataset

CREATE TABLE IF NOT EXISTS "ModelTrainDataset"
("modelId" INTEGER NOT NULL REFERENCES "PredictionModel"
, "datasetId" INTEGER NOT NULL REFERENCES "Dataset"
, PRIMARY KEY ("modelId","datasetId")
);

Models can be trained on data from graphs from multiple datasets.
The ModelTrainDataset stores which datasets a PredictionModel was
trained on, by linking the to one or more datasets via the modelId and
datasetId foreign references.

148

A.21. ModelProperty

A.21 ModelProperty

CREATE TABLE IF NOT EXISTS "ModelProperty"
("modelId" INTEGER NOT NULL REFERENCES "PredictionModel"
, "propId" INTEGER NOT NULL REFERENCES "PropertyName"
, "propertyIdx" INTEGER NOT NULL
, "importance" REAL NOT NULL
, PRIMARY KEY ("modelId","propId")
);

The ModelProperty tables stores the properties that were used for the
training of a model. The modelId and propId foreign references links mod-
els and properties. The BDT models expect an array or property values to
perform a prediction. The numerical propertyIdx specifies which index
the model expects the property’s values to be in. Finally, the importance
column store the Gini importance of the property. That is, a measure
indicating how much “predictive power” that property contributes to the
model. Allowing us to exam the properties that have the largest impact
on a given model.

A.22 UnknownPrediction

CREATE TABLE IF NOT EXISTS "UnknownPrediction"
("id" INTEGER PRIMARY KEY
, "modelId" INTEGER NOT NULL REFERENCES "PredictionModel"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, "unknownSetId" INTEGER NOT NULL
, "count" INTEGER NOT NULL
, CONSTRAINT "UniqUnknownPrediction" UNIQUE ("modelId","unknownSetId")
, CONSTRAINT "ForeignPredictionModel"

FOREIGN KEY("modelId","algorithmId")
REFERENCES "PredictionModel"("id","algorithmId")

);

As described in Section 7.1 on page 100, it is possible for BDT models
to have “undecided” leaves. That is, leaf nodes in the tree where there is
no single winning prediction. The UnknownPrediction table documents
all unique sets of conflicting predictions in a model’s leaf nodes. We as-
sign these sets a unique numerical id, relate them to their corresponding
model via the modelId foreign reference. The numerical unknownSetId
defines the numerical id used within the BDT model to identify leaves
corresponding to this set. The count column documents how frequently
this specific set occurs within the BDT model. Finally, the algorithmId
foreign reference is redundant, but include for data validation purposes.

149

A. Current Database Schema

A.23 UnknownPredictionSet

CREATE TABLE IF NOT EXISTS "UnknownPredictionSet"
("unknownPredId" INTEGER NOT NULL REFERENCES "UnknownPrediction"
, "implId" INTEGER NOT NULL REFERENCES "Implementation"
, "algorithmId" INTEGER NOT NULL REFERENCES "Algorithm"
, PRIMARY KEY ("unknownPredId","implId")
, CONSTRAINT "ForeignUnknownPrediction"
FOREIGN KEY("unknownPredId","algorithmId")
REFERENCES "UnknownPrediction"("id","algorithmId")

);

The UnknownPredictionSet stores which of the implementations are
included within an UnknownPrediction in the BDT. Rows correspond to a
specific UnknownPrediction via the unknownPredId foreign reference and
to an implementation via the implId foreign reference. The algorithmId
is used for data validation and sanity checking.

150

APPENDIX B
PageRank PTX Code

Parallel Thread Execution (PTX) assembly output for PageRank Compute
Unified Device Architecture (CUDA) kernels with symbol names deman-
gled.

B.1 Edge List

;
; Generated by NVIDIA NVVM Compiler
;
; Compiler Build ID: CL-24817639
; Cuda compilation tools, release 10.0, V10.0.130
; Based on LLVM 3.4svn

.version 6.3

.target sm_53

.address_size 64

.visible .entry edgeListPageRank(
.param .u64 edgeListPageRank_graph,
.param .u64 edgeListPageRank_degrees,
.param .u64 edgeListPageRank_pagerank,
.param .u64 edgeListPageRank_new_pagerank

)
{

.reg .pred %p<4>;

.reg .f32 %f<8>;

151

B. PageRank PTX Code

.reg .b32 %r<10>;

.reg .b64 %rd<30>;

ld.param.u64 %rd13, [edgeListPageRank_graph];
ld.param.u64 %rd10, [edgeListPageRank_degrees];
ld.param.u64 %rd11, [edgeListPageRank_pagerank];
ld.param.u64 %rd12, [edgeListPageRank_new_pagerank];

;pagerank/edgelist.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
mov.u32 %r1, %ntid.x;
mov.u32 %r4, %ctaid.x;
mov.u32 %r5, %tid.x;
mad.lo.s32 %r6, %r1, %r4, %r5;
cvt.u64.u32 %rd29, %r6;
cvta.to.global.u64 %rd14, %rd13;

;pagerank/edgelist.cu:12:
;uint64_t size = graph->edge_count;

.loc 1 12 19
add.s64 %rd2, %rd14, 8;
ld.global.u64 %rd3, [%rd14+8];

;pagerank/edgelist.cu:14:
;for (uint64_t idx = startIdx

; idx < size
; idx += blockDim.x * gridDim.x) {
.loc 1 14 5
setp.ge.u64 %p1, %rd29, %rd3;
@%p1 bra BB0_5;

;pagerank/edgelist.cu:14:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 14 47
mov.u32 %r7, %nctaid.x;
mul.lo.s32 %r8, %r7, %r1;
cvt.u64.u32 %rd4, %r8;

;pagerank/edgelist.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23

152

B.1. Edge List

cvta.to.global.u64 %rd5, %rd11;
cvta.to.global.u64 %rd6, %rd12;
cvta.to.global.u64 %rd22, %rd10;

BB0_2:
;pagerank/edgelist.cu:15:
;uint64_t origin = graph->inEdges[idx];

.loc 1 15 25
ld.global.u64 %rd15, [%rd2+8];
cvta.to.global.u64 %rd16, %rd15;
shl.b64 %rd17, %rd29, 2;
add.s64 %rd18, %rd16, %rd17;
ld.global.u32 %r9, [%rd18];
cvt.u64.u32 %rd8, %r9;

;pagerank/edgelist.cu:16:
;uint64_t destination = graph->outEdges[idx];

.loc 1 16 30
ld.global.u64 %rd19, [%rd2+16];
cvta.to.global.u64 %rd20, %rd19;
add.s64 %rd21, %rd20, %rd17;
ld.global.u32 %r2, [%rd21];

;pagerank/edgelist.cu:18:
;unsigned degree = degrees[origin];

.loc 1 18 25
mul.wide.u32 %rd23, %r9, 4;
add.s64 %rd24, %rd22, %rd23;
ld.global.u32 %r3, [%rd24];

;pagerank/edgelist.cu:20:
;if (degree != 0) new_rank = pagerank[origin] / degree;

.loc 1 20 9
setp.eq.s32 %p2, %r3, 0;
mov.f32 %f7, 0f00000000;

;pagerank/edgelist.cu:20:
;if (degree != 0) new_rank = pagerank[origin] / degree;

.loc 1 20 9
@%p2 bra BB0_4;

;pagerank/edgelist.cu:20:
;if (degree != 0) new_rank = pagerank[origin] / degree;

.loc 1 20 26

153

B. PageRank PTX Code

shl.b64 %rd25, %rd8, 2;
add.s64 %rd26, %rd5, %rd25;
cvt.rn.f32.u32 %f4, %r3;
ld.global.f32 %f5, [%rd26];
div.rn.f32 %f7, %f5, %f4;

BB0_4:
;pagerank/edgelist.cu:21:
;atomicAdd(&new_pagerank[destination], new_rank);

.loc 1 21 9
mul.wide.u32 %rd27, %r2, 4;
add.s64 %rd28, %rd6, %rd27;

.loc 3 77 10
atom.global.add.f32 %f6, [%rd28], %f7;

;pagerank/edgelist.cu:14:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 14 47
add.s64 %rd29, %rd4, %rd29;

;pagerank/edgelist.cu:14:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 14 5
setp.lt.u64 %p3, %rd29, %rd3;
@%p3 bra BB0_2;

BB0_5:
;pagerank/edgelist.cu:23:
;}

.loc 1 23 1
ret;

}

B.2 Vertex Push

;
; Generated by NVIDIA NVVM Compiler
;

154

B.2. Vertex Push

; Compiler Build ID: CL-24817639
; Cuda compilation tools, release 10.0, V10.0.130
; Based on LLVM 3.4svn

.version 6.3

.target sm_53

.address_size 64

.visible .entry vertexPushPageRank(
.param .u64 vertexPushPageRank_graph,
.param .u64 vertexPushPageRank_unused,
.param .u64 vertexPushPageRank_pagerank,
.param .u64 vertexPushPageRank_new_pagerank

)
{

.reg .pred %p<10>;

.reg .f32 %f<16>;

.reg .b32 %r<36>;

.reg .b64 %rd<53>;

ld.param.u64 %rd7, [vertexPushPageRank_graph];
ld.param.u64 %rd8, [vertexPushPageRank_pagerank];
ld.param.u64 %rd9, [vertexPushPageRank_new_pagerank];

;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd10, %rd7;
mov.u32 %r12, %ntid.x;
mov.u32 %r13, %ctaid.x;
mov.u32 %r14, %tid.x;
mad.lo.s32 %r15, %r12, %r13, %r14;
cvt.u64.u32 %rd52, %r15;

;pagerank/vertex_push.cu:12:
;uint64_t size = graph->vertex_count;

.loc 1 12 19
ld.global.u64 %rd2, [%rd10];

;pagerank/vertex_push.cu:17:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 17 5

155

B. PageRank PTX Code

setp.ge.u64 %p1, %rd52, %rd2;
@%p1 bra BB0_14;

mov.f32 %f15, 0f00000000;

;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd17, %rd8;

BB0_2:
;pagerank/vertex_push.cu:18:
;unsigned *vertices = graph->vertices;

.loc 1 18 28
ld.global.u64 %rd12, [%rd10+16];

;pagerank/vertex_push.cu:19:
;unsigned *edges = graph->edges;

.loc 1 19 25
cvta.to.global.u64 %rd13, %rd12;
ld.global.u64 %rd14, [%rd10+24];

;pagerank/vertex_push.cu:20:
;unsigned start = vertices[idx];

.loc 1 20 24
cvta.to.global.u64 %rd4, %rd14;
shl.b64 %rd15, %rd52, 2;
add.s64 %rd16, %rd13, %rd15;

;pagerank/vertex_push.cu:21:
;unsigned end = vertices[idx + 1];

.loc 1 21 22
ld.global.u32 %r1, [%rd16+4];

;pagerank/vertex_push.cu:20:
;unsigned start = vertices[idx];

.loc 1 20 24
ld.global.u32 %r2, [%rd16];

;pagerank/vertex_push.cu:23:
;degree = end - start;

.loc 1 23 9
sub.s32 %r3, %r1, %r2;

156

B.2. Vertex Push

;pagerank/vertex_push.cu:25:
;if (degree != 0) outgoingRank = pagerank[idx] / degree;

.loc 1 25 9
setp.eq.s32 %p2, %r1, %r2;
@%p2 bra BB0_4;

;pagerank/vertex_push.cu:25:
;if (degree != 0) outgoingRank = pagerank[idx] / degree;

.loc 1 25 26
add.s64 %rd19, %rd17, %rd15;
cvt.rn.f32.u32 %f5, %r3;
ld.global.f32 %f6, [%rd19];
div.rn.f32 %f15, %f6, %f5;

BB0_4:
;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 9
setp.le.u32 %p3, %r1, %r2;
@%p3 bra BB0_13;

and.b32 %r16, %r3, 3;
setp.eq.s32 %p4, %r16, 0;
@%p4 bra BB0_11;

setp.eq.s32 %p5, %r16, 1;
@%p5 bra BB0_10;

setp.eq.s32 %p6, %r16, 2;
@%p6 bra BB0_9;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd20, %r2, 4;
add.s64 %rd21, %rd4, %rd20;
ld.global.u32 %r19, [%rd21];

;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd22, %rd9;

;pagerank/vertex_push.cu:28:

157

B. PageRank PTX Code

;atomicAdd(&new_pagerank[edges[i]], outgoingRank);
.loc 1 28 13
mul.wide.u32 %rd23, %r19, 4;
add.s64 %rd24, %rd22, %rd23;

.loc 3 77 10
atom.global.add.f32 %f7, [%rd24], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r2, %r2, 1;

BB0_9:
;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd25, %r2, 4;
add.s64 %rd26, %rd4, %rd25;
ld.global.u32 %r20, [%rd26];

;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd27, %rd9;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd28, %r20, 4;
add.s64 %rd29, %rd27, %rd28;

.loc 3 77 10
atom.global.add.f32 %f8, [%rd29], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r2, %r2, 1;

BB0_10:
;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13

158

B.2. Vertex Push

mul.wide.u32 %rd30, %r2, 4;
add.s64 %rd31, %rd4, %rd30;
ld.global.u32 %r21, [%rd31];

;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd32, %rd9;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd33, %r21, 4;
add.s64 %rd34, %rd32, %rd33;

.loc 3 77 10
atom.global.add.f32 %f9, [%rd34], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r2, %r2, 1;

BB0_11:
;pagerank/vertex_push.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd5, %rd9;
setp.lt.u32 %p7, %r3, 4;
@%p7 bra BB0_13;

BB0_12:
;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd35, %r2, 4;
add.s64 %rd36, %rd4, %rd35;
ld.global.u32 %r22, [%rd36];
mul.wide.u32 %rd37, %r22, 4;
add.s64 %rd38, %rd5, %rd37;

.loc 3 77 10
atom.global.add.f32 %f10, [%rd38], %f15;

159

B. PageRank PTX Code

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r23, %r2, 1;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd39, %r23, 4;
add.s64 %rd40, %rd4, %rd39;
ld.global.u32 %r24, [%rd40];
mul.wide.u32 %rd41, %r24, 4;
add.s64 %rd42, %rd5, %rd41;

.loc 3 77 10
atom.global.add.f32 %f11, [%rd42], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r25, %r2, 2;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd43, %r25, 4;
add.s64 %rd44, %rd4, %rd43;
ld.global.u32 %r26, [%rd44];
mul.wide.u32 %rd45, %r26, 4;
add.s64 %rd46, %rd5, %rd45;

.loc 3 77 10
atom.global.add.f32 %f12, [%rd46], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r27, %r2, 3;

;pagerank/vertex_push.cu:28:
;atomicAdd(&new_pagerank[edges[i]], outgoingRank);

.loc 1 28 13
mul.wide.u32 %rd47, %r27, 4;
add.s64 %rd48, %rd4, %rd47;

160

B.2. Vertex Push

ld.global.u32 %r28, [%rd48];
mul.wide.u32 %rd49, %r28, 4;
add.s64 %rd50, %rd5, %rd49;

.loc 3 77 10
atom.global.add.f32 %f13, [%rd50], %f15;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 43
add.s32 %r2, %r2, 4;

;pagerank/vertex_push.cu:27:
;for (unsigned i = start; i < end; i++) {

.loc 1 27 9
setp.lt.u32 %p8, %r2, %r1;
@%p8 bra BB0_12;

BB0_13:
;pagerank/vertex_push.cu:17:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 17 47
mov.u32 %r29, %nctaid.x;
mul.lo.s32 %r31, %r29, %r12;
cvt.u64.u32 %rd51, %r31;
add.s64 %rd52, %rd51, %rd52;

;pagerank/vertex_push.cu:17:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 17 5
setp.lt.u64 %p9, %rd52, %rd2;
@%p9 bra BB0_2;

BB0_14:
;pagerank/vertex_push.cu:31:
;}

.loc 1 31 1
ret;

}

161

B. PageRank PTX Code

B.3 Vertex Pull

;
; Generated by NVIDIA NVVM Compiler
;
; Compiler Build ID: CL-24817639
; Cuda compilation tools, release 10.0, V10.0.130
; Based on LLVM 3.4svn

.version 6.3

.target sm_53

.address_size 64

.visible .entry vertexPullPageRank(
.param .u64 vertexPullPageRank_graph,
.param .u64 vertexPullPageRank_degrees,
.param .u64 vertexPullPageRank_pagerank,
.param .u64 vertexPullPageRank_new_pagerank

)
{

.reg .pred %p<9>;

.reg .f32 %f<45>;

.reg .b32 %r<41>;

.reg .b64 %rd<65>;

ld.param.u64 %rd8, [vertexPullPageRank_graph];
ld.param.u64 %rd9, [vertexPullPageRank_degrees];
ld.param.u64 %rd10, [vertexPullPageRank_pagerank];
ld.param.u64 %rd11, [vertexPullPageRank_new_pagerank];

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd12, %rd8;
mov.u32 %r13, %ntid.x;
mov.u32 %r14, %ctaid.x;
mov.u32 %r15, %tid.x;
mad.lo.s32 %r16, %r13, %r14, %r15;
cvt.u64.u32 %rd64, %r16;

;pagerank/vertex_pull.cu:12:
;uint64_t size = graph->vertex_count;

.loc 1 12 19
ld.global.u64 %rd2, [%rd12];

162

B.3. Vertex Pull

;pagerank/vertex_pull.cu:16:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 5
setp.ge.u64 %p1, %rd64, %rd2;
@%p1 bra BB0_13;

mov.f32 %f44, 0f00000000;

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd60, %rd11;

BB0_2:
;pagerank/vertex_pull.cu:17:
;unsigned *rev_vertices = graph->vertices;

.loc 1 17 32
ld.global.u64 %rd14, [%rd12+16];

;pagerank/vertex_pull.cu:18:
;unsigned *reverse_edges = graph->edges;

.loc 1 18 33
cvta.to.global.u64 %rd15, %rd14;
ld.global.u64 %rd16, [%rd12+24];

;pagerank/vertex_pull.cu:20:
;unsigned start = rev_vertices[idx];

.loc 1 20 24
cvta.to.global.u64 %rd4, %rd16;
shl.b64 %rd17, %rd64, 2;
add.s64 %rd18, %rd15, %rd17;

;pagerank/vertex_pull.cu:21:
;unsigned end = rev_vertices[idx + 1];

.loc 1 21 22
ld.global.u32 %r1, [%rd18+4];

;pagerank/vertex_pull.cu:20:
;unsigned start = rev_vertices[idx];

.loc 1 20 24
ld.global.u32 %r2, [%rd18];

163

B. PageRank PTX Code

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 9
setp.le.u32 %p2, %r1, %r2;
@%p2 bra BB0_12;

sub.s32 %r3, %r1, %r2;
and.b32 %r4, %r3, 3;
setp.eq.s32 %p3, %r4, 0;
mov.f32 %f13, 0f00000000;
@%p3 bra BB0_4;
bra.uni BB0_5;

BB0_4:
mov.f32 %f43, %f44;
mov.f32 %f44, %f13;
bra.uni BB0_10;

BB0_5:
setp.eq.s32 %p4, %r4, 1;
@%p4 bra BB0_9;

setp.eq.s32 %p5, %r4, 2;
@%p5 bra BB0_8;

;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd19, %r2, 4;
add.s64 %rd20, %rd4, %rd19;
ld.global.u32 %r17, [%rd20];

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd21, %rd10;

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd22, %r17, 4;
add.s64 %rd23, %rd21, %rd22;

164

B.3. Vertex Pull

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd24, %rd9;

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
add.s64 %rd25, %rd24, %rd22;
ld.global.u32 %r18, [%rd25];
cvt.rn.f32.u32 %f14, %r18;
ld.global.f32 %f15, [%rd23];
div.rn.f32 %f16, %f15, %f14;
add.f32 %f44, %f44, %f16;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;

BB0_8:
;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd26, %r2, 4;
add.s64 %rd27, %rd4, %rd26;
ld.global.u32 %r19, [%rd27];

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd28, %rd10;

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd29, %r19, 4;
add.s64 %rd30, %rd28, %rd29;

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd31, %rd9;

165

B. PageRank PTX Code

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
add.s64 %rd32, %rd31, %rd29;
ld.global.u32 %r20, [%rd32];
cvt.rn.f32.u32 %f17, %r20;
ld.global.f32 %f18, [%rd30];
div.rn.f32 %f19, %f18, %f17;
add.f32 %f44, %f44, %f19;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;

BB0_9:
;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd33, %r2, 4;
add.s64 %rd34, %rd4, %rd33;
ld.global.u32 %r21, [%rd34];

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd35, %rd10;

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd36, %r21, 4;
add.s64 %rd37, %rd35, %rd36;

;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd38, %rd9;

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
add.s64 %rd39, %rd38, %rd36;
ld.global.u32 %r22, [%rd39];

166

B.3. Vertex Pull

cvt.rn.f32.u32 %f20, %r22;
ld.global.f32 %f21, [%rd37];
div.rn.f32 %f22, %f21, %f20;
add.f32 %f43, %f44, %f22;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;
mov.f32 %f44, %f43;

BB0_10:
;pagerank/vertex_pull.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd5, %rd10;
cvta.to.global.u64 %rd6, %rd9;
setp.lt.u32 %p6, %r3, 4;
@%p6 bra BB0_12;

BB0_11:
;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd40, %r2, 4;
add.s64 %rd41, %rd4, %rd40;
ld.global.u32 %r23, [%rd41];

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd42, %r23, 4;
add.s64 %rd43, %rd5, %rd42;
add.s64 %rd44, %rd6, %rd42;
ld.global.u32 %r24, [%rd44];
cvt.rn.f32.u32 %f23, %r24;
ld.global.f32 %f24, [%rd43];
div.rn.f32 %f25, %f24, %f23;
add.f32 %f26, %f43, %f25;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r25, %r2, 1;

167

B. PageRank PTX Code

;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd45, %r25, 4;
add.s64 %rd46, %rd4, %rd45;
ld.global.u32 %r26, [%rd46];

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd47, %r26, 4;
add.s64 %rd48, %rd5, %rd47;
add.s64 %rd49, %rd6, %rd47;
ld.global.u32 %r27, [%rd49];
cvt.rn.f32.u32 %f27, %r27;
ld.global.f32 %f28, [%rd48];
div.rn.f32 %f29, %f28, %f27;
add.f32 %f30, %f26, %f29;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r28, %r2, 2;

;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd50, %r28, 4;
add.s64 %rd51, %rd4, %rd50;
ld.global.u32 %r29, [%rd51];

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd52, %r29, 4;
add.s64 %rd53, %rd5, %rd52;
add.s64 %rd54, %rd6, %rd52;
ld.global.u32 %r30, [%rd54];
cvt.rn.f32.u32 %f31, %r30;
ld.global.f32 %f32, [%rd53];
div.rn.f32 %f33, %f32, %f31;
add.f32 %f34, %f30, %f33;

168

B.3. Vertex Pull

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r31, %r2, 3;

;pagerank/vertex_pull.cu:24:
;uint64_t rev_edge = reverse_edges[i];

.loc 1 24 31
mul.wide.u32 %rd55, %r31, 4;
add.s64 %rd56, %rd4, %rd55;
ld.global.u32 %r32, [%rd56];

;pagerank/vertex_pull.cu:26:
;newRank += pagerank[rev_edge] / degrees[rev_edge];

.loc 1 26 13
mul.wide.u32 %rd57, %r32, 4;
add.s64 %rd58, %rd5, %rd57;
add.s64 %rd59, %rd6, %rd57;
ld.global.u32 %r33, [%rd59];
cvt.rn.f32.u32 %f35, %r33;
ld.global.f32 %f36, [%rd58];
div.rn.f32 %f37, %f36, %f35;
add.f32 %f43, %f34, %f37;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 4;

;pagerank/vertex_pull.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 9
setp.lt.u32 %p7, %r2, %r1;
mov.f32 %f44, %f43;
@%p7 bra BB0_11;

BB0_12:
;pagerank/vertex_pull.cu:29:
;new_pagerank[idx] = newRank;

.loc 1 29 9
add.s64 %rd62, %rd60, %rd17;
st.global.f32 [%rd62], %f44;

;pagerank/vertex_pull.cu:16:

169

B. PageRank PTX Code

;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 47
mov.u32 %r35, %nctaid.x;
mul.lo.s32 %r36, %r35, %r13;
cvt.u64.u32 %rd63, %r36;
add.s64 %rd64, %rd63, %rd64;

;pagerank/vertex_pull.cu:16:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 5
setp.lt.u64 %p8, %rd64, %rd2;
@%p8 bra BB0_2;

BB0_13:
;pagerank/vertex_pull.cu:31:
;}

.loc 1 31 1
ret;

}

B.4 Vertex Pull NoDiv

;
; Generated by NVIDIA NVVM Compiler
;
; Compiler Build ID: CL-24817639
; Cuda compilation tools, release 10.0, V10.0.130
; Based on LLVM 3.4svn

.version 6.3

.target sm_53

.address_size 64

.visible .entry vertexPullNoDivPageRank(
.param .u64 vertexPullNoDivPageRank_graph,
.param .u64 vertexPullNoDivPageRank_unused,
.param .u64 vertexPullNoDivPageRank_pagerank,
.param .u64 vertexPullNoDivPageRank_new_pagerank

)

170

B.4. Vertex Pull NoDiv

{
.reg .pred %p<9>;
.reg .f32 %f<31>;
.reg .b32 %r<34>;
.reg .b64 %rd<53>;

ld.param.u64 %rd7, [vertexPullNoDivPageRank_graph];
ld.param.u64 %rd8, [vertexPullNoDivPageRank_pagerank];
ld.param.u64 %rd9, [vertexPullNoDivPageRank_new_pagerank];

;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd10, %rd7;
mov.u32 %r13, %ntid.x;
mov.u32 %r14, %ctaid.x;
mov.u32 %r15, %tid.x;
mad.lo.s32 %r16, %r13, %r14, %r15;
cvt.u64.u32 %rd52, %r16;

;pagerank/vertex_pull_nodiv.cu:12:
;uint64_t size = graph->vertex_count;

.loc 1 12 19
ld.global.u64 %rd2, [%rd10];

;pagerank/vertex_pull_nodiv.cu:16:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 5
setp.ge.u64 %p1, %rd52, %rd2;
@%p1 bra BB0_13;

mov.f32 %f30, 0f00000000;

;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd48, %rd9;

BB0_2:
;pagerank/vertex_pull_nodiv.cu:17:
;unsigned *rev_vertices = &graph->vertices[idx];

.loc 1 17 32

171

B. PageRank PTX Code

ld.global.u64 %rd12, [%rd10+16];
cvta.to.global.u64 %rd13, %rd12;
shl.b64 %rd14, %rd52, 2;
add.s64 %rd15, %rd13, %rd14;

;pagerank/vertex_pull_nodiv.cu:21:
;unsigned *rev_edges = graph->edges;

.loc 1 21 29
ld.global.u64 %rd16, [%rd10+24];

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 9
cvta.to.global.u64 %rd4, %rd16;

;pagerank/vertex_pull_nodiv.cu:19:
;unsigned end = rev_vertices[1];

.loc 1 19 22
ld.global.u32 %r1, [%rd15+4];

;pagerank/vertex_pull_nodiv.cu:18:
;unsigned start = rev_vertices[0];

.loc 1 18 24
ld.global.u32 %r2, [%rd15];

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 9
setp.le.u32 %p2, %r1, %r2;
@%p2 bra BB0_12;

sub.s32 %r3, %r1, %r2;
and.b32 %r4, %r3, 3;
setp.eq.s32 %p3, %r4, 0;
mov.f32 %f13, 0f00000000;
@%p3 bra BB0_4;
bra.uni BB0_5;

BB0_4:
mov.f32 %f29, %f30;
mov.f32 %f30, %f13;
bra.uni BB0_10;

BB0_5:

172

B.4. Vertex Pull NoDiv

setp.eq.s32 %p4, %r4, 1;
@%p4 bra BB0_9;

setp.eq.s32 %p5, %r4, 2;
@%p5 bra BB0_8;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd17, %r2, 4;
add.s64 %rd18, %rd4, %rd17;
ld.global.u32 %r17, [%rd18];

;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd19, %rd8;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd20, %r17, 4;
add.s64 %rd21, %rd19, %rd20;
ld.global.f32 %f14, [%rd21];
add.f32 %f30, %f30, %f14;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;

BB0_8:
;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd22, %r2, 4;
add.s64 %rd23, %rd4, %rd22;
ld.global.u32 %r18, [%rd23];

;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd24, %rd8;

173

B. PageRank PTX Code

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd25, %r18, 4;
add.s64 %rd26, %rd24, %rd25;
ld.global.f32 %f15, [%rd26];
add.f32 %f30, %f30, %f15;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;

BB0_9:
;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd27, %r2, 4;
add.s64 %rd28, %rd4, %rd27;
ld.global.u32 %r19, [%rd28];

;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23
cvta.to.global.u64 %rd29, %rd8;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd30, %r19, 4;
add.s64 %rd31, %rd29, %rd30;
ld.global.f32 %f16, [%rd31];
add.f32 %f29, %f30, %f16;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 1;
mov.f32 %f30, %f29;

BB0_10:
;pagerank/vertex_pull_nodiv.cu:11:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 11 23

174

B.4. Vertex Pull NoDiv

cvta.to.global.u64 %rd5, %rd8;
setp.lt.u32 %p6, %r3, 4;
@%p6 bra BB0_12;

BB0_11:
;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd32, %r2, 4;
add.s64 %rd33, %rd4, %rd32;
ld.global.u32 %r20, [%rd33];
mul.wide.u32 %rd34, %r20, 4;
add.s64 %rd35, %rd5, %rd34;
ld.global.f32 %f17, [%rd35];
add.f32 %f18, %f29, %f17;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r21, %r2, 1;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd36, %r21, 4;
add.s64 %rd37, %rd4, %rd36;
ld.global.u32 %r22, [%rd37];
mul.wide.u32 %rd38, %r22, 4;
add.s64 %rd39, %rd5, %rd38;
ld.global.f32 %f19, [%rd39];
add.f32 %f20, %f18, %f19;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r23, %r2, 2;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd40, %r23, 4;
add.s64 %rd41, %rd4, %rd40;
ld.global.u32 %r24, [%rd41];
mul.wide.u32 %rd42, %r24, 4;

175

B. PageRank PTX Code

add.s64 %rd43, %rd5, %rd42;
ld.global.f32 %f21, [%rd43];
add.f32 %f22, %f20, %f21;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r25, %r2, 3;

;pagerank/vertex_pull_nodiv.cu:24:
;newRank += pagerank[rev_edges[i]];

.loc 1 24 13
mul.wide.u32 %rd44, %r25, 4;
add.s64 %rd45, %rd4, %rd44;
ld.global.u32 %r26, [%rd45];
mul.wide.u32 %rd46, %r26, 4;
add.s64 %rd47, %rd5, %rd46;
ld.global.f32 %f23, [%rd47];
add.f32 %f29, %f22, %f23;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 43
add.s32 %r2, %r2, 4;

;pagerank/vertex_pull_nodiv.cu:23:
;for (unsigned i = start; i < end; i++) {

.loc 1 23 9
setp.lt.u32 %p7, %r2, %r1;
mov.f32 %f30, %f29;
@%p7 bra BB0_11;

BB0_12:
;pagerank/vertex_pull_nodiv.cu:27:
;new_pagerank[idx] = newRank;

.loc 1 27 9
add.s64 %rd50, %rd48, %rd14;
st.global.f32 [%rd50], %f30;

;pagerank/vertex_pull_nodiv.cu:16:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 47

176

B.5. Consolidate & Consolidate NoDiv

mov.u32 %r28, %nctaid.x;
mul.lo.s32 %r29, %r28, %r13;
cvt.u64.u32 %rd51, %r29;
add.s64 %rd52, %rd51, %rd52;

;pagerank/vertex_pull_nodiv.cu:16:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 16 5
setp.lt.u64 %p8, %rd52, %rd2;
@%p8 bra BB0_2;

BB0_13:
;pagerank/vertex_pull_nodiv.cu:29:
;}

.loc 1 29 1
ret;

}

B.5 Consolidate & Consolidate NoDiv

;
; Generated by NVIDIA NVVM Compiler
;
; Compiler Build ID: CL-24817639
; Cuda compilation tools, release 10.0, V10.0.130
; Based on LLVM 3.4svn

.version 6.3

.target sm_53

.address_size 64

.visible .entry consolidateRank(
.param .u64 consolidateRank_size,
.param .u64 consolidateRank_unused1,
.param .u64 consolidateRank_pagerank,
.param .u64 consolidateRank_new_pagerank,
.param .u8 consolidateRank_unused2

)
{

.reg .pred %p<7>;

.reg .f32 %f<13>;

177

B. PageRank PTX Code

.reg .b32 %r<19>;

.reg .f64 %fd<6>;

.reg .b64 %rd<15>;

ld.param.u64 %rd7, [consolidateRank_size];
ld.param.u64 %rd8, [consolidateRank_pagerank];
ld.param.u64 %rd9, [consolidateRank_new_pagerank];

;pagerank/pagerank.cu:129:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 129 23
mov.u32 %r1, %ntid.x;
mov.u32 %r7, %ctaid.x;
mov.u32 %r2, %tid.x;
mad.lo.s32 %r8, %r1, %r7, %r2;
cvt.u64.u32 %rd14, %r8;

;pagerank/pagerank.cu:131:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 131 5
setp.ge.u64 %p1, %rd14, %rd7;
@%p1 bra BB7_7;

;pagerank/pagerank.cu:132:
;float new_rank = ((1.0 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 132 24
cvt.rn.f64.u64 %fd2, %rd7;
mov.f64 %fd3, 0d3FC3333300000000;

;pagerank/pagerank.cu:132:
;float new_rank = ((1.0 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 132 24
div.rn.f64 %fd1, %fd3, %fd2;

;pagerank/pagerank.cu:31:
;int lane = threadIdx.x % warpSize;

.loc 1 31 14
mov.u32 %r3, WARP_SZ;
rem.u32 %r4, %r2, %r3;

178

B.5. Consolidate & Consolidate NoDiv

;pagerank/pagerank.cu:131:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 131 47
mov.u32 %r9, %nctaid.x;
mul.lo.s32 %r10, %r9, %r1;
cvt.u64.u32 %rd2, %r10;

;pagerank/pagerank.cu:129:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 129 23
cvta.to.global.u64 %rd3, %rd9;
cvta.to.global.u64 %rd4, %rd8;

BB7_2:
;pagerank/pagerank.cu:132:
;float new_rank = ((1.0 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 132 24
shl.b64 %rd10, %rd14, 2;
add.s64 %rd11, %rd3, %rd10;
ld.global.f32 %f5, [%rd11];
mul.f32 %f6, %f5, 0f3F59999A;
cvt.f64.f32 %fd4, %f6;
add.f64 %fd5, %fd1, %fd4;
cvt.rn.f32.f64 %f7, %fd5;

;pagerank/pagerank.cu:133:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 133 23
add.s64 %rd12, %rd4, %rd10;
ld.global.f32 %f8, [%rd12];
sub.f32 %f9, %f7, %f8;

;pagerank/pagerank.cu:133:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 133 25
abs.f32 %f12, %f9;

;pagerank/pagerank.cu:135:
;pagerank[idx] = new_rank;

.loc 1 135 9

179

B. PageRank PTX Code

st.global.f32 [%rd12], %f7;
mov.u32 %r11, 0;

;pagerank/pagerank.cu:136:
;new_pagerank[idx] = 0.0f;

.loc 1 136 9
st.global.u32 [%rd11], %r11;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
setp.lt.s32 %p2, %r3, 2;
mov.u32 %r18, %r3;
@%p2 bra BB7_4;

BB7_3:
mov.b32 %r12, %f12;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
shr.u32 %r13, %r18, 31;
add.s32 %r14, %r18, %r13;
shr.s32 %r6, %r14, 1;
mov.u32 %r15, 31;
mov.u32 %r16, -1;
shfl.sync.down.b32 %r17|%p3, %r12, %r6, %r15, %r16;
mov.b32 %f10, %r17;
add.f32 %f12, %f12, %f10;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
setp.gt.s32 %p4, %r18, 3;
mov.u32 %r18, %r6;
@%p4 bra BB7_3;

BB7_4:

180

B.5. Consolidate & Consolidate NoDiv

;pagerank/pagerank.cu:37:
;if (lane == 0) atomicAdd(&diff, val);

.loc 1 37 5
setp.ne.s32 %p5, %r4, 0;
@%p5 bra BB7_6;

.loc 4 77 10
mov.u64 %rd13, diff;
atom.global.add.f32 %f11, [%rd13], %f12;

BB7_6:
;pagerank/pagerank.cu:131:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 131 47
add.s64 %rd14, %rd2, %rd14;

;pagerank/pagerank.cu:131:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 131 5
setp.lt.u64 %p6, %rd14, %rd7;
@%p6 bra BB7_2;

BB7_7:
;pagerank/pagerank.cu:140:
}

.loc 1 140 1
ret;

}

.visible .entry consolidateRankNoDiv(
.param .u64 consolidateRankNoDiv_size
.param .u64 consolidateRankNoDiv_degrees,
.param .u64 consolidateRankNoDiv_pagerank,
.param .u64 consolidateRankNoDiv_new_pagerank,
.param .u8 consolidateRankNoDiv_notLast

)
{

.reg .pred %p<14>;

.reg .b16 %rs<3>;

.reg .f32 %f<30>;

181

B. PageRank PTX Code

.reg .b32 %r<34>;

.reg .b64 %rd<28>;

ld.param.u64 %rd11, [consolidateRankNoDiv_size];
ld.param.u64 %rd12, [consolidateRankNoDiv_degrees];
ld.param.u64 %rd13, [consolidateRankNoDiv_pagerank];
ld.param.u64 %rd14, [consolidateRankNoDiv_new_pagerank];
ld.param.s8 %rs1, [consolidateRankNoDiv_notLast];

;pagerank/pagerank.cu:151:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 151 23
mov.u32 %r1, %ntid.x;
mov.u32 %r11, %ctaid.x;
mov.u32 %r2, %tid.x;
mad.lo.s32 %r12, %r1, %r11, %r2;
cvt.u64.u32 %rd26, %r12;

;pagerank/pagerank.cu:153:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 5
setp.ge.u64 %p1, %rd26, %rd11;
@%p1 bra BB8_15;

;pagerank/pagerank.cu:154:
;float new_rank = ((1 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 154 24
cvt.rn.f32.u64 %f13, %rd11;
mov.f32 %f14, 0f3E199998;

;pagerank/pagerank.cu:154:
;float new_rank = ((1 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 154 24
div.rn.f32 %f1, %f14, %f13;

;pagerank/pagerank.cu:31:
;int lane = threadIdx.x % warpSize;

.loc 1 31 14
mov.u32 %r3, WARP_SZ;
rem.u32 %r4, %r2, %r3;

182

B.5. Consolidate & Consolidate NoDiv

;pagerank/pagerank.cu:153:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 47
mov.u32 %r13, %nctaid.x;
mul.lo.s32 %r14, %r13, %r1;
cvt.u64.u32 %rd2, %r14;

;pagerank/pagerank.cu:159:
;if (degree != 0 && notLast) new_rank = new_rank / degree;

.loc 1 159 9
and.b16 %rs2, %rs1, 255;
setp.eq.s16 %p2, %rs2, 0;

;pagerank/pagerank.cu:151:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 151 23
cvta.to.global.u64 %rd3, %rd14;
cvta.to.global.u64 %rd4, %rd13;
@%p2 bra BB8_10;

;pagerank/pagerank.cu:151:
;uint64_t startIdx = (blockIdx.x * blockDim.x) + threadIdx.x;

.loc 1 151 23
cvta.to.global.u64 %rd18, %rd12;

BB8_3:
;pagerank/pagerank.cu:154:
;float new_rank = ((1 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 154 24
shl.b64 %rd16, %rd26, 2;
add.s64 %rd6, %rd3, %rd16;
ld.global.f32 %f15, [%rd6];
fma.rn.f32 %f27, %f15, 0f3F59999A, %f1;

;pagerank/pagerank.cu:155:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 155 23
add.s64 %rd7, %rd4, %rd16;
ld.global.f32 %f16, [%rd7];
sub.f32 %f17, %f27, %f16;

183

B. PageRank PTX Code

;pagerank/pagerank.cu:155:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 155 25
abs.f32 %f28, %f17;

;pagerank/pagerank.cu:157:
;unsigned degree = degrees[idx];

.loc 1 157 25
add.s64 %rd19, %rd18, %rd16;
ld.global.u32 %r5, [%rd19];

;pagerank/pagerank.cu:159:
;if (degree != 0 && notLast) new_rank = new_rank / degree;

.loc 1 159 9
setp.eq.s32 %p3, %r5, 0;
@%p3 bra BB8_5;

;pagerank/pagerank.cu:159:
;if (degree != 0 && notLast) new_rank = new_rank / degree;

.loc 1 159 37
cvt.rn.f32.u32 %f18, %r5;
div.rn.f32 %f27, %f27, %f18;

BB8_5:
;pagerank/pagerank.cu:31:
;int lane = threadIdx.x % warpSize;

.loc 1 31 14
mov.u32 %r32, WARP_SZ;

;pagerank/pagerank.cu:160:
;pagerank[idx] = new_rank;

.loc 1 160 9
st.global.f32 [%rd7], %f27;
mov.u32 %r15, 0;

;pagerank/pagerank.cu:161:
;new_pagerank[idx] = 0.0f;

.loc 1 161 9
st.global.u32 [%rd6], %r15;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0

184

B.5. Consolidate & Consolidate NoDiv

; ; offset /= 2) {
.loc 1 33 5
setp.lt.s32 %p4, %r32, 2;
@%p4 bra BB8_7;

BB8_6:
mov.b32 %r16, %f28;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
shr.u32 %r17, %r32, 31;
add.s32 %r18, %r32, %r17;
shr.s32 %r8, %r18, 1;
mov.u32 %r19, 31;
mov.u32 %r20, -1;
shfl.sync.down.b32 %r21|%p5, %r16, %r8, %r19, %r20;
mov.b32 %f19, %r21;
add.f32 %f28, %f28, %f19;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
setp.gt.s32 %p6, %r32, 3;
mov.u32 %r32, %r8;
@%p6 bra BB8_6;

BB8_7:
;pagerank/pagerank.cu:37:
;if (lane == 0) atomicAdd(&diff, val);

.loc 1 37 5
setp.ne.s32 %p7, %r4, 0;
@%p7 bra BB8_9;

.loc 4 77 10
mov.u64 %rd20, diff;
atom.global.add.f32 %f20, [%rd20], %f28;

BB8_9:
;pagerank/pagerank.cu:153:

185

B. PageRank PTX Code

;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 47
add.s64 %rd26, %rd2, %rd26;

;pagerank/pagerank.cu:153:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 5
setp.lt.u64 %p8, %rd26, %rd11;
@%p8 bra BB8_3;
bra.uni BB8_15;

BB8_10:
;pagerank/pagerank.cu:154:
;float new_rank = ((1 - dampening) / size)
; + (dampening * new_pagerank[idx]);

.loc 1 154 24
shl.b64 %rd22, %rd26, 2;
add.s64 %rd23, %rd3, %rd22;
ld.global.f32 %f21, [%rd23];
fma.rn.f32 %f22, %f21, 0f3F59999A, %f1;

;pagerank/pagerank.cu:155:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 155 23
add.s64 %rd24, %rd4, %rd22;
ld.global.f32 %f23, [%rd24];
sub.f32 %f24, %f22, %f23;

;pagerank/pagerank.cu:155:
;float my_diff = fabsf(new_rank - pagerank[idx]);

.loc 1 155 25
abs.f32 %f29, %f24;

;pagerank/pagerank.cu:160:
;pagerank[idx] = new_rank;

.loc 1 160 9
st.global.f32 [%rd24], %f22;
mov.u32 %r25, 0;

;pagerank/pagerank.cu:161:

186

B.5. Consolidate & Consolidate NoDiv

;new_pagerank[idx] = 0.0f;
.loc 1 161 9
st.global.u32 [%rd23], %r25;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
setp.lt.s32 %p9, %r3, 2;
mov.u32 %r33, %r3;
@%p9 bra BB8_12;

BB8_11:
mov.b32 %r26, %f29;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
shr.u32 %r27, %r33, 31;
add.s32 %r28, %r33, %r27;
shr.s32 %r10, %r28, 1;
mov.u32 %r29, 31;
mov.u32 %r30, -1;
shfl.sync.down.b32 %r31|%p10, %r26, %r10, %r29, %r30;
mov.b32 %f25, %r31;
add.f32 %f29, %f29, %f25;

;pagerank/pagerank.cu:33:
;for (int offset = warpSize/2
; ; offset > 0
; ; offset /= 2) {

.loc 1 33 5
setp.gt.s32 %p11, %r33, 3;
mov.u32 %r33, %r10;
@%p11 bra BB8_11;

BB8_12:
;pagerank/pagerank.cu:37:
;if (lane == 0) atomicAdd(&diff, val);

.loc 1 37 5
setp.ne.s32 %p12, %r4, 0;

187

B. PageRank PTX Code

@%p12 bra BB8_14;

.loc 4 77 10
mov.u64 %rd25, diff;
atom.global.add.f32 %f26, [%rd25], %f29;

BB8_14:
;pagerank/pagerank.cu:153:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 47
add.s64 %rd26, %rd2, %rd26;

;pagerank/pagerank.cu:153:
;for (uint64_t idx = startIdx
; ; idx < size
; ; idx += blockDim.x * gridDim.x) {

.loc 1 153 5
setp.lt.u64 %p13, %rd26, %rd11;
@%p13 bra BB8_10;

BB8_15:
;pagerank/pagerank.cu:165:
;}

.loc 1 165 1
ret;

}

188

Summary
Analysis and Prediction of GPU Graph

Algorithm Performance

Accelerator devices in general, and Graphical Processing Units (GPUs) in
particular, have become a staple of High-Performance Computing (HPC)
systems. This means we need to be able to analyse, understand, and
predict the performance of General Processing on GPU (GPGPU) code to
effectively utilise these systems.

For regular algorithms, i.e. algorithms with static memory access pat-
terns, a lot of research was successful in demonstrating how they can be
mapped to GPGPUs, how their performance can be analysed, and how we
can predict their performance.

This is not the case for irregular algorithms — i.e., algorithms whose
access patterns are not known at compile time and/or depend on the input
data. Combining modern GPU architectures — which rely on a rigid, regu-
lar architecture and deep memory hierarchies for their massive parallelism

— with irregular algorithms, which are dynamic in nature, is challenging.
Consequently, performance optimization and prediction for GPU irregular
algorithms remains difficult.

In this thesis, we focus on a subset of irregular algorithms: graph pro-
cessing algorithms. These are common in many scientific fields, due to the
flexibility of graphs as a model for highly interrelated data. However, they
are also the poster child of irregular algorithms, because their execution is
entirely dependent on the structure of the input graph.

A number of state-of-the-art GPU graph processing frameworks [17,
37, 45, 49, 66, 69, 97, 102] have been created to tackle the challenge of
high-performance graph processing. Each of these frameworks features its
own primitives, techniques, and optimisations to handle the irregularity
present in input graphs. The authors go to great length to explain how
their primitives can be implemented efficiently on the GPU and show how
fast their framework performs.

189

Summary

However, there is not a lot of information on how we can understand
why these techniques get the performance that they do. Nor are there clear
results on how this performance relates to the input data or the hardware
being used.

To begin to understand the performance of GPU graph processing, we
need a holistic approach that analyses the complex interaction between
hardware, input data, algorithm, and data structures. This, in turn, re-
quires a systematic overview of the data along these different dimensions.
The state-of-the-art lacks the tools, techniques, theories, and workflows
needed to get such an overview.

The problem space of graph processing on GPUs is too large, too inter-
twined, and too diverse to tackle in one thesis. As such, the main goal of
the research discussed in this thesis is threefold:

1. To quantify the performance impact of structural properties of graphs
in relation to data structure choices and hardware platforms.

2. To provide tools and a workflow that provide a systematic overview
of how input data, algorithm, data structure, and hardware affect
each other.

3. To investigate whether it is feasible to use these results to improve
the current performance of graph processing on GPUs.

In Chapter 3 on page 17 we present the high-level architecture of the
software pipeline we built to setup, collect, aggregate, and analyse the per-
formance data for comprehensive GPU graph processing evaluation. Using
a single toolchain and a database to pack and manage all the data and
metadata improves usability, and simplifies the tasks needed to reproduce
our work, and helps track the provenance of our results.

Furthermore, the single file format and wide support for SQLite make
it trivial to share entire result sets with other researchers, letting them
build their own work on top of the existing results without having to redo
all the time consuming benchmarks themselves.

In Chapter 4 on page 41 we investigate how the performance of differ-
ent parallelisation strategies for neighbour iteration changes across input
graphs. Neighbour iteration appears as a primitive graph operation in
many algorithms, making these results applicable beyond the PageRank
and Breadth-First Search (BFS) algorithms we use for this investigation.

We show that there is a significant variation — for both BFS and
PageRank — in the performance of each parallelisation strategy across
different input graphs, up to several orders of magnitude. Furthermore,
we also demonstrate that the performance of BFS does not just vary with
the input graph, but also with the stage of the BFS traversal. We show

190

that correctly predicting the best implementation for each BFS step can
produce significant performance gains.

To better illustrate the correlation between graph properties and paral-
lel performance, we investigated controlled graph generation — i.e., gener-
ating graphs with specific properties. In Chapter 5 on page 67 we present
our graph generator, focusing on the design of the evolutionary computing
approach it uses. While our graph generator was successful at creating
small-scale graphs with controlled properties, it failed to scale up to the
larger graph sizes we need to draw any conclusions about the link between
graph structure and parallelisation.

In Chapter 6 on page 85 we present workload models for each of our
PageRank parallelisation strategies. These analytical workload models are
based on memory accesses, as PageRank is largely memory-bound. We
validated our models against the behaviour observed by NVIDIA’s profil-
ing tools, and observed strong agreement between modelled and measured
data.

We show that, despite this match between models and profiling data,
our workload models are not sufficient to predict the fastest implemen-
tation for a given graph. Further experiments — with different graph
orderings — also show that is not even possible to statically approximate
the parallel execution of our workload models. We conclude that accu-
rately predicting the performance of the different parallelisation strategies
requires modelling the runtime behaviour of the GPU, and is thus not
feasible.

In Chapter 7 on page 99 we used the 247 graphs from the KONECT [51]
dataset to collect performance data on different systems. We used this
data to train and test a Binary Decision Tree (BDT) model to predict the
best parallelisation strategy for a given graph. We show that our BDT
model’s predictions result outperform all of the static implementations in
our dataset.

In Chapter 8 on page 111 we show that our BDT models are not simply
memorising the training data. We prove this by varying the size of the
training set used to train our models and show that models trained on a
fraction of our result set are still effective.

We also show that our BDT models are not limited to the dataset they
were trained on. In turn, this brings empirical evidence that our models
capture — part of — the link between graph structure and parallelisation
strategy, rather than memorising results from a specific result set.

In Chapter 9 on page 125 we conclude that this thesis is really a num-
ber of starting points. We showed the performance impact of structural
properties of graphs is significant (see Chapter 4), that this impact is ex-
ploitable (see Chapter 7), and, finally, that this impact is consistent across
datasets and GPU architectures (see Chapter 8). However, none of these
things are directly applicable in “the real world” on their own. The main

191

Summary

takeaway of this thesis is the software toolchain and, to a lesser extent, the
dataset we built to investigate and produce these results.

Both the toolchain and dataset have enormous potential for reuse and
further research. One natural extension of the work in this thesis is to
generalise it to additional algorithms, such as Single-Source Shortest Path
(SSSP) and Betweenness Centrality (BC). Another direction would be to
explore even more datasets of graphs, comparing the behaviour of our
algorithm implementations across datasets.

It would be interesting to perform a more comprehensive investigation
into the effect of different in memory orderings of graphs, expanding on
our initial exploration in Chapter 6. This investigation can focus on how
the quality of our BDT models is affected by these reorderings. Another
potential research application of our BDT models could be to repurpose
them as rudimentary (structural) graph classification schemes.

192

Samenvatting
Ontleding en Voorspelling van de Prestaties

van Graafalgoritmes op
Beeldverwerkingseenheden

Versnellingsapparatuur in het algemeen, en dan bij uitstek Beeldverwer-
kingseenheden (BVE’s), zijn een standaard onderdeel van hoogprestatiebe-
rekeningssystemen geworden. Dit betekent dat het ontleden, begrijpen, en
voorspellen van de prestaties van algemeengebruiksberekeningen op BVE’s
van het hoogste belang is om dergelijke hoogprestatieberekeningssystemen
naar behoren te kunnen gebruiken.

Voor regelmatige algoritmes — dat wil zeggen, algoritmes met onver-
anderlijke, van tevoren bekende geheugenhandelingspatronen — is er een
weelde aan onderzoek dat toont hoe deze algoritmes op een BVE uitgevoerd
kunnen worden en hoe hun prestaties geanalyseerd en voorspeld kunnen
worden.

Dit is niet het geval voor onregelmatige algoritmes — dat wil zeggen,
algoritmes wiens geheugenhandelingspatronen niet van tevoren bekend zijn
omdat zij, bijvoorbeeld, afhangen van de invoergegevens van een bereke-
ning. Moderne BVE’s maken gebruik van een diepe geheugenhiërarchie en
regelmatige verwerkingseenheidsstructuur om grootschalig parallellisme te
bewerkstelligen. De veranderlijkheid van onregelmatige algoritmes maakt
het uitdagend om deze doeltreffend uit te voeren op BVE’s. Het verbe-
teren en voorspellen van de prestaties van onregelmatige algoritmes blijft
dan ook ingewikkeld.

In dit proefschrift leggen we ons toe op een deelverzameling van de on-
regelmatige algoritmes: graafverwerkingsalgoritmes. Door de toepasbaar-
heid van grafen als model voor sterk onderlingverbonden gegevens, zijn
zij veelvoorkomend in verscheidene wetenschappen. Tegelijkertijd, vormen
grafen ook het klassieke voorbeeld voor onregelmatige algoritmes, doordat

193

Samenvatting

de verwerking van grafen volkomen afhankelijk is van de opbouw van de
invoergraaf.

Er zijn verschillende moderne voorbeelden van BVE-graafverwerkings-
programmatuur [17, 37, 45, 49, 66, 69, 97, 102] die ontwikkeld zijn om de
uitdagingen van hogesnelheidsgraafverwerking de baas te worden. Elk van
deze voorbeelden gebruikt andere grondbeginselen, technieken, en verbe-
teringen om om te gaan met de onregelmatige structuur van invoergrafen.
De schrijvers doen hun uiterste best om aan te tonen dat hun grondbe-
ginselen doeltreffend op een BVE verwezenlijkt kunnen worden en dat dit
leidt goede prestaties.

Er is echter weinig informatie die ons helpt begrijpen waar de prestaties
geleverd door deze technieken en grondbeginselen vandaan komen. Noch
is het duidelijk hoe deze prestaties in verband staan met de gebruikte
invoergegevens en de onderliggende apparaten.

Om de prestaties van graafverwerking op BVE’s te beginnen te begrij-
pen hebben we een holistische aanpak nodig die ons de ingewikkelde wissel-
werking tussen invoergegevens, datastructuren, en onderliggende appara-
ten laat ontleden. Dit vereist een stelselmatig overzicht van alle informatie
langs deze assen. De hulpmiddelen, technieken, theorieën, en werkwijzen
die nodig zijn om zo’n overzicht te verkrijgen, ontbreken op dit moment.

Het onderzoeksgebied van graafverwerking op BVE’s is te breed, te
zeer met zichzelf verweven, en te verscheiden om in een proefschrift af te
handelen. Hierom is het hoofddoel van dit proefschrift drievoudig:

1. Onderzoeken hoe de opbouw van invoergrafen de prestaties van graaf-
verwerkingsalgoritmes beïnvloedt ten opzichte van datastructuurkeu-
zes en de onderliggende apparaten.

2. Ontwikkelen van hulpmiddelen en werkwijzen die een stelselmatig
overzicht kunnen geven van de wisselwerking tussen invoergegevens,
algoritmes, datastructuren, en onderliggende apparaten.

3. Onderzoeken of het haalbaar is om deze resultaten te gebruiken om
de prestaties van graafverwerking op BVE’s te verbeteren.

In Hoofdstuk 3 op pagina 17 tonen we een overzicht van het ontwerp van
de door ons ontwikkelde programmatuur voor het opzetten, verzamelen,
samenvoegen, en ontleden van prestatiegegevens voor een alomvattende
evaluatie van BVE-graafverwerking. Het gebruik van een enkele gegevens-
bank voor beheer en opslag van alle gegevens en metadata verbetert de
gebruikersvriendelijkheid, helpt de herkomst van gegevens te volgen, en
versimpelt de reproductie van onze resultaten. Tevens betekent het ge-
bruik van een enkel bestand, in het breedondersteunde SQLite formaat,
maakt het delen van resultaten met andere onderzoekers makkelijker. Dit
stelt andere onderzoekers in staat om eenvoudig door te bouwen op onze

194

resultaten, zonder deze tijdrovende prestatiebepalingen te hoeven herha-
len.

In Hoofdstuk 4 op pagina 41 onderzoeken we hoe de prestaties van
verschillende parallellisatiewijzen voor burenbezoek beïnvloed worden door
de opbouw van invoergrafen. Burenbezoek is een basishandeling die in
vele graafverwerkingsalgoritmes gebruikt wordt. Onze resultaten zijn dus
ook bruikbaar buiten de PageRank en Breedte-eerst Zoekopdracht (BEZ)
algoritmes die we voor dit onderzoek gebruiken.

We laten zie dat er betekenisvolle verschillen zijn — voor zowel BEZ
en PageRank — in de prestaties van elke parallellisatiewijze. Afhankelijk
van de invoergraaf kunnen deze verschillen oplopen tot meerdere ordes van
grootte. Tevens tonen we aan dat de prestaties van BEZ niet alleen ver-
schillen tussen invoergrafen, maar ook tussen stappen van het BEZ-verloop.
We laten zien dat het juist voorspellen van de beste parallellisatiewijze voor
een BEZ-stap betekenisvolle verbeteringen en prestaties oplevert.

Om de samenhang tussen graafeigenschappen en parallellisatiepresta-
ties te verduidelijken, hebben we de gestuurde vervaardiging van grafen
onderzocht — dat wil zeggen, de vervaardiging van graven met specifieke
eigenschappen. In Hoofdstuk 5 op pagina 67 tonen we onze graafvervaar-
diger, met focus op het ontwerp van onze aanpak met een evolutionair
algoritme. Hoewel onze graafvervaardiger succesvol kleinschalige grafen
kan maken, is deze niet in staat dit te bewerkstelligen op de grotere schaal
die we nodig hebben om conclusies te trekken over het verband tussen
graafopbouw en parallellisatiewijzen.

In Hoofdstuk 6 op pagina 85 geven we werklastmodellen voor elk van
onze PageRank parallellisatiewijzen. Deze analytische werklast modellen
zijn gebaseerd op geheugenhandelingen, omdat PageRank grotendeels ge-
heugengebonden is. We toetsen onze werklast modellen door ze te verge-
lijken met het gedrag waargenomen door NVIDIA’s prestatiemetingspro-
grammatuur. We zien een sterke overeenkomst tussen onze modellen en
het waargenomen gedrag.

We laten zien dat, ondanks de overeenkomst tussen modellen en waar-
nemingen, onze werklast modellen niet voldoende zijn om voor een gegeven
invoergraaf te voorspellen wat de parallellisatiewijze is die de beste pres-
taties oplevert. Verdere experimenten — met herordende versies van de
grafen — tonen aan dat het niet mogelijk is om de parallelle uitvoer van
onze werklast modellen te benaderen. We leiden hieruit af dat het nauw-
keurig voorspellen van de prestaties van verschillende parallellisatiewijzen
niet mogelijk is zonder een gedetailleerd model van het uitvoergedrag van
de BVE en daarom niet redelijkerwijs haalbaar is.

In Hoofdstuk 7 op pagina 99 gebruiken we 247 grafen van de KONECT-
dataset [51] en verzamelen prestatiemetingen van meerdere BVE-systemen.
We gebruiken deze metingen om een Binaire Beslissingsboom (BBB) te trai-
nen om de beste parallellisatiewijze voor een gegeven graaf te voorspellen.

195

Samenvatting

We laten zien dat de voorspellingen van ons BBB-model beter presteren
dan de onze statische parallellisatiewijzen.

In Hoofdstuk 8 op pagina 111 laten we zien dat onze BBB-modellen niet
simpelweg de resultaten van onze metingen onthouden. We tonen dit aan
de door trainingsinvoer van verschillende groottes te gebruiken voor het
trainen van onze modellen. We laten zien dat modellen die slechts op een
klein onderdeel van onze metingen getraind zijn, nog steeds doeltreffend
zijn.

We laten ook zien dat onze BBB-modellen niet beperkt zijn tot de da-
taset waarop zij getraind zijn. Dit ondersteunt het idee dat onze modellen
een deel van het verband tussen graafopbouw en parallellisatiegedrag vast-
leggen, en niet slechts de resultaten van een specifieke dataset onthouden.

In Hoofdstuk 9 op pagina 125 komen we tot de slotsom dat dit proef-
schrift een aantal verschillende beginpunten voor verder onderzoek biedt.
We hebben laten zien dat de opbouw van een graaf een merkbare invloed
heeft op prestaties (zie Hoofdstuk 4), dat deze invloed bruikbaar is (zie
Hoofdstuk 7), en, tenslotte, dat deze invloed consistent is tussen datasets
en BVE-ontwerpen (zie Hoofdstuk 8). Tegelijkertijd zijn geen van deze re-
sultaten direct bruikbaar in “de echte wereld”. De belangrijkste bijdragen
van dit proefschrift zijn de programmatuur die door ons ontwikkeld is en,
in mindere mate, de dataset van resultaten die wij verzameld hebben.

De programmatuur en dataset bieden beide eindeloze mogelijkheden
voor hergebruik en verder onderzoek. Een natuurlijke uitbreiding van
het werk in dit proefschrift is om meer algoritmes, zoals het kortstepad-
algoritme of het tussencentraliteit-algoritme op eenzelfde manier te ont-
leden. Een andere richting zou zijn om nog meer datasets van grafen te
verkennen en gedragsverschillen van onze algoritmeïmplementaties te ver-
gelijken tussen de verschillende datasets.

Het zou ook interessant zijn om een meer alomvattend onderzoek te
doen naar het gevolg van verschillende mogelijke geheugenordeningen van
grafen; voortbouwend op het verkennend onderzoek in Hoofdstuk 6. Dit
onderzoek kan zich richten op hoe de verschillende herordeningen de kwa-
liteit van de voorspellingen van onze BBB-modellen aantast. Een andere
mogelijke toepassing van onze BBB-modellen is om deze te hergebruiken
als eenvoudige graafindelingsmethodes.

196

Publications

Merijn Verstraaten. Belewitte. Version 1.0.0. Aug. 2022. doi: 10.5281/
zenodo.6959684. url: https://doi.org/10.5281/zenodo.6959684.

Merijn Verstraaten. Belewitte GPU Experiment Results. Version v1.0.0.
Aug. 2022. doi: 10.5281/zenodo.6925023. url: https://doi.org/
10.5281/zenodo.6925023.

Merijn Verstraaten. Mix-and-Match Dataset. Zenodo, Oct. 2018. doi:
10.5281/zenodo.4317449. url: https://doi.org/10.5281/zenodo.
4317449.

Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. “Mix-
and-Match: A Model-driven Runtime Optimisation Strategy for BFS on
GPUs”. In: 2018 IEEE/ACM 8th Workshop on Irregular Applications:
Architectures and Algorithms (IA3). IEEE. 2018, pp. 53–60.

Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. “Quan-
tifying the Performance Impact of Graph Structure on Neighbour Iter-
ation Strategies for PageRank”. In: ”Euro-Par 2015: Parallel Process-
ing Workshops”. Springer, Cham. ”Springer International Publishing”,
2015, pp. 528–540. isbn: ”978-3-319-27308-2”.

Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. “Syn-
thetic Graph Generation for Systematic Exploration of Graph Struc-
tural Properties”. In: ”Euro-Par 2016: Parallel Processing Workshops”.
Springer, Cham. ”Springer International Publishing”, 2016, pp. 557–
570. isbn: ”978-3-319-58943-5”.

Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. Using
Graph Properties to Speed-up GPU-based Graph Traversal: A Model-
driven Approach. 2017. eprint: arXiv:1708.01159.

197

https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.4317449
https://doi.org/10.5281/zenodo.4317449
https://doi.org/10.5281/zenodo.4317449
arXiv:1708.01159

Bibliography

[1] Maksudul Alam, Maleq Khan, Anil Vullikanti, and Madhav
Marathe. “An efficient and scalable algorithmic method for generat-
ing large: scale random graphs”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Press. 2016, p. 32.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Inter-
net: Diameter of the world-wide web”. In: nature 401.6749 (1999),
p. 130.

[3] Ariful Azad, Mohsen Mahmoudi Aznaveh, Scott Beamer, Mark
Blanco, Jinhao Chen, Luke D’Alessandro, Roshan Dathathri, Tim
Davis, Kevin Deweese, Jesun Firoz, Henry A Gabb, Gurbinder
Gill, Balint Hegyi, Scott Kolodziej, Tze Meng Low, Andrew
Lumsdaine, Tugsbayasgalan Manlaibaatar, Timothy G Matt-
son, Scott McMillan, Ramesh Peri, Keshav Pingali, Upasana
Sridhar, Gabor Szarnyas, Yunming Zhang, and Yongzhe Zhang.
“Evaluation of Graph Analytics Frameworks Using the GAP
Benchmark Suite”. In: 2020 IEEE International Symposium on
Workload Characterization (IISWC). 2020, pp. 216–227. doi:
10.1109/IISWC50251.2020.00029.

[4] Benjamin Bach, Andre Spritzer, Evelyne Lutton, and Jean-Daniel
Fekete. “Interactive random graph generation with evolutionary al-
gorithms”. In: Graph Drawing. Springer. 2013, pp. 541–552.

[5] Alexander Bailey, Mario Ventresca, and Beatrice Ombuki-Berman.
“Automatic generation of graph models for complex networks by
genetic programming”. In: Proceedings of the 14th annual conference
on Genetic and evolutionary computation. ACM. 2012, pp. 711–718.

[6] Monya Baker. “1,500 scientists lift the lid on reproducibility”. In:
Nature News 533.7604 (2016), p. 452.

199

https://doi.org/10.1109/IISWC50251.2020.00029

BIBLIOGRAPHY

[7] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John
Romein, Frank Seinstra, Cees Snoek, and Harry Wijshoff. “A
medium-scale distributed system for computer science research:
Infrastructure for the long term”. In: Computer 5 (2016), pp. 54–63.

[8] Albert-László Barabási and Réka Albert. “Emergence of Scaling in
Random Networks”. In: Science 286.5439 (1999), pp. 509–512. issn:
0036-8075. doi: 10.1126/science.286.5439.509. eprint: http:
//science.sciencemag.org/content/286/5439/509.full.pdf.
url: http://science.sciencemag.org/content/286/5439/509.

[9] Scott Beamer, Krste Asanović, and David Patterson. “Direction-
optimizing breadth-first search”. In: Scientific Programming 21.3-4
(2013), pp. 137–148.

[10] Ronald F Boisvert, Ronald F Boisvert, and Karin A Remington.
The Matrix Market Exchange Formats: Initial Design. Vol. 5935.
US Department of Commerce, National Institute of Standards and
Technology, 1996.

[11] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A
Olshen. Classification and Regression Trees. CRC press, 1984.

[12] Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, and Hadrien
Mélot. “House of Graphs: a database of interesting graphs”. In: Dis-
crete Applied Mathematics 161.1-2 (2013), pp. 311–314.

[13] Aydın Buluç. “Linear Algebraic Primitives for Parallel Computing
on Large Graphs”. PhD thesis. University of California, Santa Bar-
bara, 2010.

[14] Aydın Buluç, Scott Beamer, Kamesh Madduri, Krste Asanović, and
David Patterson. “Distributed-Memory Breadth-First Search on
Massive Graphs”. In: Parallel Graph Algorithms. Ed. by D. Bader.
CRC Press, Taylor-Francis, 2016. url: http://gauss.cs.ucsb.
edu/~aydin/ChapterBFS2015.pdf.

[15] Aydın Buluç, John R. Gilbert, and Ceren Budak. “Solving path
problems on the GPU”. In: Parallel Computing 36.5-6 (2010),
pp. 241–253. doi: 10 . 1016 / j . parco . 2009 . 12 . 002. url:
http://gauss.cs.ucsb.edu/publication/parco_apsp.pdf.

[16] Aydın Buluç, John R. Gilbert, and Viral B. Shah. “Implementing
Sparse Matrices for Graph Algorithms”. In: Graph Algorithms in
the Language of Linear Algebra. Ed. by Jeremy Kepner and John R.
Gilbert. SIAM Press, 2011. doi: 10.1137/1.9780898719918.ch13.

[17] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. “A quantita-
tive study of irregular programs on GPUs”. In: Workload Charac-
terization (IISWC), 2012 IEEE International Symposium on. IEEE.
2012, pp. 141–151.

200

https://doi.org/10.1126/science.286.5439.509
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509
http://gauss.cs.ucsb.edu/~aydin/ChapterBFS2015.pdf
http://gauss.cs.ucsb.edu/~aydin/ChapterBFS2015.pdf
https://doi.org/10.1016/j.parco.2009.12.002
http://gauss.cs.ucsb.edu/publication/parco_apsp.pdf
https://doi.org/10.1137/1.9780898719918.ch13

BIBLIOGRAPHY

[18] CERN. Zenodo. url: https://zenodo.org/ (visited on 16-10-
2020).

[19] Deepayan Chakrabarti and Christos Faloutsos. “Graph mining:
Laws, generators, and algorithms”. In: ACM Computing Surveys
(CSUR) 38.1 (2006), p. 2.

[20] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. “R-
MAT: A Recursive Model for Graph Mining.” In: SDM. Vol. 4.
SIAM. 2004, pp. 442–446.

[21] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L Mc-
Donell, and Vinod Grover. “Accelerating Haskell array codes with
multicore GPUs”. In: Proceedings of the sixth workshop on Declar-
ative aspects of multicore programming. ACM. 2011, pp. 3–14.

[22] Chris J Cheney. “A nonrecursive list compacting algorithm”. In:
Communications of the ACM 13.11 (1970), pp. 677–678.

[23] Christian Collberg, Todd Proebsting, and Alex M Warren. “Re-
peatability and benefaction in computer systems research”. In: Uni-
versity of Arizona TR 14.4 (2015).

[24] The Graph 500 Steering Committee. The Graph 500 List. 2010. url:
http://www.graph500.org.

[25] Library of Congres. Recommended Formats Statement. url: https:
//www.loc.gov/preservation/resources/rfs/data.html (vis-
ited on 10-12-2018). Archive link: https://web.archive.org/
web/20181206134744/https://www.loc.gov/preservation/
resources/rfs/data.html.

[26] Creative Commons. Creative Commons Attribution 4.0 Interna-
tional Public License. Nov. 1, 2013. url: https://creativecommons.
org/licenses/by/4.0/legalcode (visited on 13-12-2020). Archive
link: https://web.archive.org/web/20201213114731/https:
//creativecommons.org/licenses/by/4.0/legalcode.

[27] Peter J Denning. “ACM President’s Letter: What is Experimental
Computer Science?” In: Communications of the ACM 23.10 (1980),
pp. 543–544.

[28] Peter J Denning. “The Profession of IT, Is Computer Science Sci-
ence?” In: Communications of the ACM 48.4 (2005), pp. 27–31.

[29] Stephan Druskat, Jurriaan H. Spaaks, Neil Chue Hong, Robert
Haines, and James Baker. Citation File Format (CFF) - Specifi-
cations. Version 1.0.3-4. Nov. 2019. doi: 10.5281/zenodo.3515946.
url: https://doi.org/10.5281/zenodo.3515946.

[30] Paul Erdös and Alfréd Rényi. “{On the evolution of random
graphs}”. In: Publ. Math. Inst. Hung. Acad. Sci 5 (1960), pp. 17–
61.

201

https://zenodo.org/
http://www.graph500.org
https://www.loc.gov/preservation/resources/rfs/data.html
https://www.loc.gov/preservation/resources/rfs/data.html
https://web.archive.org/web/20181206134744/https://www.loc.gov/preservation/resources/rfs/data.html
https://web.archive.org/web/20181206134744/https://www.loc.gov/preservation/resources/rfs/data.html
https://web.archive.org/web/20181206134744/https://www.loc.gov/preservation/resources/rfs/data.html
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://web.archive.org/web/20201213114731/https://creativecommons.org/licenses/by/4.0/legalcode
https://web.archive.org/web/20201213114731/https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.5281/zenodo.3515946
https://doi.org/10.5281/zenodo.3515946

BIBLIOGRAPHY

[31] Leonhard Euler. “Solutio problematis ad geometriam situs perti-
nensis”. In: Commentarii academiae scientiarum Petropolitanae 8
(1736), pp. 128–140.

[32] Lester Randolph Ford and Delbert R Fulkerson. “Maximal flow
through a network”. In: Canadian journal of Mathematics 8 (1956),
pp. 399–404.

[33] The Apache Software Foundation. Apache Giraph. May 25, 2018.
url: https : / / giraph . apache . org/ (visited on 18-12-2018).
Archive link: https://web.archive.org/web/20181207082238/
https://giraph.apache.org/.

[34] Free Software Foundation. GNU General Public License. June 29,
2007. url: https://www.gnu.org/licenses/gpl-3.0.en.html
(visited on 6-12-2018). Archive link: https://web.archive.org/
web/20181205113612/https://www.gnu.org/licenses/gpl-
3.0.en.html.

[35] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz,
Darren Strash, and Moritz von Looz. “Communication-free mas-
sively distributed graph generation”. In: 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE.
2018, pp. 336–347.

[36] Jason Gauci and Kenneth O Stanley. “Autonomous evolution of
topographic regularities in artificial neural networks”. In: Neural
computation 22.7 (2010), pp. 1860–1898.

[37] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and
Matei Ripeanu. “On Graphs, GPUs, and Blind Dating: A Workload
to Processor Matchmaking Quest”. In: IPDPS. 2013, pp. 851–862.

[38] Wolfgang K Giloi. “Konrad Zuse’s Plankalkuel: The First High-
Level, ”non von Neumann” Programming Language”. In: IEEE An-
nals of the History of Computing 19.2 (1997), pp. 17–24.

[39] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. “Break-
ing the GPU programming barrier with the auto-parallelising SAC
compiler”. In: Proceedings of the sixth workshop on Declarative as-
pects of multicore programming. ACM. 2011, pp. 15–24.

[40] Mark Harris. CUDA Pro Tip: Write Flexible Kernels with Grid-
Stride Loops. Apr. 22, 2013. url: https://developer.nvidia.
com / blog / cuda - pro - tip - write - flexible - kernels - grid -
stride- loops/ (visited on 26-10-2020). Archive link: https://
web.archive.org/web/20201026132227/https://developer.
nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-
grid-stride-loops/.

202

https://giraph.apache.org/
https://web.archive.org/web/20181207082238/https://giraph.apache.org/
https://web.archive.org/web/20181207082238/https://giraph.apache.org/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://web.archive.org/web/20181205113612/https://www.gnu.org/licenses/gpl-3.0.en.html
https://web.archive.org/web/20181205113612/https://www.gnu.org/licenses/gpl-3.0.en.html
https://web.archive.org/web/20181205113612/https://www.gnu.org/licenses/gpl-3.0.en.html
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://web.archive.org/web/20201026132227/https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://web.archive.org/web/20201026132227/https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://web.archive.org/web/20201026132227/https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://web.archive.org/web/20201026132227/https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

BIBLIOGRAPHY

[41] Mark Harris. “High Performance Computing With CUDA”. In:
2007.

[42] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E Oancea. “Futhark: purely functional GPU-
programming with nested parallelism and in-place array updates”.
In: ACM SIGPLAN Notices 52.6 (2017), pp. 556–571.

[43] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun.
“Green-Marl: a DSL for easy and efficient graph analysis”. In: ACM
SIGARCH Computer Architecture News. Vol. 40. 1. ACM. 2012,
pp. 349–362.

[44] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der
Lugt, Merijn Verstraaten, and Hassan Chafi. “PGX.D: A Fast Dis-
tributed Graph Processing Engine”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis. ACM. 2015, p. 58.

[45] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Oluko-
tun. “Accelerating CUDA Graph Algorithms at Maximum Warp”.
In: ACM SIGPLAN Notices. Vol. 46. 8. ACM. 2011, pp. 267–276.

[46] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens,
Arnau Prat-Pérez, Thomas Manhardto, Hassan Chafio, Mihai
Capotă, Narayanan Sundaram, Michael Anderson, Ilie Gabriel Tă-
nase, Yinglong Xia, Lifeng Nai, and Peter Boncz. “LDBC Grapha-
lytics: A Benchmark for Large-Scale Graph Analysis on Parallel and
Distributed Platforms”. In: Proc. VLDB Endow. 9.13 (Sept. 2016),
pp. 1317–1328. issn: 2150-8097. doi: 10.14778/3007263.3007270.
url: https://doi.org/10.14778/3007263.3007270.

[47] Morris A. Jette, Andy B. Yoo, and Mark Grondona. “SLURM: Sim-
ple Linux Utility for Resource Management”. In: In Lecture Notes
in Computer Science: Proceedings of Job Scheduling Strategies for
Parallel Processing (JSSPP) 2003. Springer-Verlag, 2002, pp. 44–
60.

[48] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil.
“Construction and use of linear regression models for processor
performance analysis”. In: International Symposium on High-
Performance Computer Architecture. 2006, pp. 99–108. doi:
10.1109/HPCA.2006.1598116.

[49] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan.
“CuSha: vertex-centric graph processing on GPUs”. In: HPCS. ACM.
2014, pp. 239–252.

203

https://doi.org/10.14778/3007263.3007270
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.1109/HPCA.2006.1598116

BIBLIOGRAPHY

[50] Jérôme Kunegis. “Handbook of Network Analysis [KONECT - the
Koblenz Network Collection]”. In: CoRR abs/1402.5500 (2014).
arXiv: 1402.5500. url: http://arxiv.org/abs/1402.5500.

[51] Jérôme Kunegis. “KONECT: The Koblenz Network Collection”. In:
Proceedings of the 22Nd International Conference on World Wide
Web. WWW ’13 Companion. Rio de Janeiro, Brazil, 2013, pp. 1343–
1350. isbn: 978-1-4503-2038-2.

[52] Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Carlos Mar-
tinez, Ricardo Arcila, Eva Martin Del Pico, Victoria Dominguez
Del Angel, Stephanie van de Sandt, Jon Ison, Paula Andrea Mar-
tinez, et al. “Towards FAIR principles for research software”. In:
Data Science Preprint (2019), pp. 1–23.

[53] E. Scott Larsen and David McAllister. “Fast Matrix Multiplies
Using Graphics Hardware”. In: Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing. SC ’01. Denver, Colorado: ACM,
2001, pp. 55–55. isbn: 1-58113-293-X. doi: 10 . 1145 / 582034 .
582089. url: http://doi.acm.org/10.1145/582034.582089.

[54] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin
Schulz, Karan Singh, and Sally A. McKee. “Methods of Inference
and Learning for Performance Modeling of Parallel Applications”.
In: PPoPP’07. San Jose, California, USA: ACM, 2007. isbn: 978-1-
59593-602-8. doi: 10.1145/1229428.1229479. url: http://doi.
acm.org/10.1145/1229428.1229479.

[55] Chin Yang Lee. “An algorithm for path connections and its ap-
plications”. In: IRE transactions on electronic computers 3 (1961),
pp. 346–365.

[56] J. Leskovec. “Stanford Network Analysis Platform (SNAP)”. In:
Stanford University (2006).

[57] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos
Faloutsos, and Zoubin Ghahramani. “Kronecker graphs: An ap-
proach to modeling networks”. In: The Journal of Machine Learning
Research 11 (2010), pp. 985–1042.

[58] D. Li and M. Becchi. “Deploying Graph Algorithms on GPUs: An
Adaptive Solution”. In: IPDPS 2013. May 2013, pp. 1013–1024. doi:
10.1109/IPDPS.2013.101.

[59] Joshua Lothian, Sarah Powers, Blair D Sullivan, Matthew Baker,
Jonathan Schrock, and Stephen W Poole. “Synthetic graph genera-
tion for data-intensive HPC benchmarking: Background and frame-
work”. In: Oak Ridge National Laboratory, Tech. Rep. ORNL/TM-
2013/339 (2013).

204

https://arxiv.org/abs/1402.5500
http://arxiv.org/abs/1402.5500
https://doi.org/10.1145/582034.582089
https://doi.org/10.1145/582034.582089
http://doi.acm.org/10.1145/582034.582089
https://doi.org/10.1145/1229428.1229479
http://doi.acm.org/10.1145/1229428.1229479
http://doi.acm.org/10.1145/1229428.1229479
https://doi.org/10.1109/IPDPS.2013.101

BIBLIOGRAPHY

[60] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bick-
son, Carlos E Guestrin, and Joseph Hellerstein. “Graphlab: A
new framework for parallel machine learning”. In: arXiv preprint
arXiv:1408.2041 (2014).

[61] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. “Challenges in parallel graph processing”. In:
Parallel Processing Letters 17.01 (2007), pp. 5–20.

[62] S. Madougou, A. L. Varbanescu, C. D. Laat, and R. V. Nieuwpoort.
“A Tool for Bottleneck Analysis and Performance Prediction for
GPU-Accelerated Applications”. In: 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW).
May 2016, pp. 641–652. doi: 10.1109/IPDPSW.2016.198.

[63] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel:
a system for large-scale graph processing”. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of
data. ACM. 2010, pp. 135–146.

[64] Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness
of fit”. In: Journal of the American statistical Association 46.253
(1951), pp. 68–78.

[65] Duane Merrill, Michael Garland, and Andrew Grimshaw. “Scalable
GPU Graph Traversal”. In: ACM SIGPLAN Notices. Vol. 47. 8.
ACM. 2012, pp. 117–128.

[66] Duane Merrill, Michael Garland, and Andrew S. Grimshaw. “Scal-
able GPU graph traversal”. In: PPOPP 2012, New Orleans, LA,
USA. Feb. 2012, pp. 117–128.

[67] Paulius Micikevicius. “General Parallel Computation on Commod-
ity Graphics Hardware: Case Study with the All-Pairs Shortest
Paths Problem.” In: PDPTA. Vol. 4. 2004, pp. 1359–1365.

[68] Edward F. Moore. “The shortest path through a maze”. In: Proc.
Int. Symp. Switching Theory, 1959. 1959, pp. 285–292.

[69] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. “Data-driven
versus Topology-driven Irregular Computations on GPUs”. In: Par-
allel & Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on. IEEE. 2013, pp. 463–474.

[70] NVIDIA. CUDA C++ Programming Guide v10.0.130. Sept. 2018.
url: https://docs.nvidia.com/cuda/archive/10.0/cuda-
c-programming-guide/index.html#hardware-multithreading
(visited on 18-1-2021). Archive link: https : / / web . archive .
org/web/20210119192144/https://docs.nvidia.com/cuda/

205

https://doi.org/10.1109/IPDPSW.2016.198
https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading

BIBLIOGRAPHY

archive / 10 . 0 / cuda - c - programming - guide / index . html #
hardware-multithreading.

[71] NVIDIA Corporation. NVIDIA Tesla V100 GPU Architecture. The
World’s Most Advanced Data Center GPU. Tech. rep. Version WP-
08608-001_v1.1. NVIDIA Corporation, Aug. 2017. url: https://
images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf (visited on 11-7-2018).

[72] Garson O’Toole. In Theory There Is No Difference Between The-
ory and Practice, While In Practice There Is. Apr. 14, 2018. url:
https://quoteinvestigator.com/2018/04/14/theory/ (vis-
ited on 7-5-2018). Archive link: https://web.archive.org/web/
20180416010144/https://quoteinvestigator.com/2018/04/
14/theory/.

[73] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report 1999-66. Previous number = SIDL-WP-1999-0120.
Stanford InfoLab, Nov. 1999. url: http://ilpubs.stanford.edu:
8090/422/.

[74] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank citation ranking: Bringing order to the web. Tech. rep.
Stanford InfoLab, 1999.

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[76] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. “Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines”. In: ACM SIGPLAN Notices 48.6
(2013), pp. 519–530.

[77] Sidney Redner. “How popular is your paper? An empirical study
of the citation distribution”. In: The European Physical Journal B-
Condensed Matter and Complex Systems 4.2 (1998), pp. 131–134.

[78] Ryan A Rossi and Nesreen K Ahmed. “Networkrepository: A graph
data repository with visual interactive analytics”. In: arXiv preprint
arXiv:1410.3560 (2014).

[79] Arfon M Smith, Daniel S Katz, and Kyle E Niemeyer. “Software
citation principles”. In: PeerJ Computer Science 2 (2016). doi: 10.
7717/peerj-cs.86.

206

https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://web.archive.org/web/20210119192144/https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide/index.html#hardware-multithreading
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://quoteinvestigator.com/2018/04/14/theory/
https://web.archive.org/web/20180416010144/https://quoteinvestigator.com/2018/04/14/theory/
https://web.archive.org/web/20180416010144/https://quoteinvestigator.com/2018/04/14/theory/
https://web.archive.org/web/20180416010144/https://quoteinvestigator.com/2018/04/14/theory/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86

BIBLIOGRAPHY

[80] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron.
“A Simplified and Accurate Model of Power-Performance Efficiency
on Emergent GPU Architectures”. In: IPDPS ’13. IEEE Computer
Society, 2013.

[81] SQLite Development Team. SQLite. Version 3.7.17. May 20, 2013.
url: https://www.sqlite.org.

[82] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. “A
hypercube-based encoding for evolving large-scale neural networks”.
In: Artificial life 15.2 (2009), pp. 185–212.

[83] Kenneth O Stanley and Risto Miikkulainen. “Efficient reinforce-
ment learning through evolving neural network topologies”. In: Net-
work (Phenotype) 1.2 (1996), p. 3.

[84] Kenneth O Stanley and Risto Miikkulainen. “Evolving neural net-
works through augmenting topologies”. In: Evolutionary computa-
tion 10.2 (2002), pp. 99–127.

[85] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift:
a functional data-parallel IR for high-performance GPU code
generation”. In: Code Generation and Optimization (CGO), 2017
IEEE/ACM International Symposium on. IEEE. 2017, pp. 74–85.

[86] Walter F Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A Heinz.
“Experimental evaluation in computer science: A quantitative
study”. In: Journal of Systems and Software 28.1 (1995), pp. 9–18.

[87] WF Tichy. “Should Computer Scientists Experiment More?” In:
Computer 31.5 (1998), pp. 32–40.

[88] Yale University. The Yale Literary Magazine. v. 47. Herrick & Noyes,
1882. url: https://books.google.nl/books?id=iJ9MAAAAMAAJ.

[89] Merijn Verstraaten. Belewitte. Version 1.0.0. Aug. 2022. doi: 10.
5281/zenodo.6959684. url: https://doi.org/10.5281/zenodo.
6959684.

[90] Merijn Verstraaten. Belewitte GPU Experiment Results. Ver-
sion v1.0.0. Aug. 2022. doi: 10 . 5281 / zenodo . 6925023. url:
https://doi.org/10.5281/zenodo.6925023.

[91] Merijn Verstraaten. Mix-and-Match Dataset. Zenodo, Oct. 2018.
doi: 10 . 5281 / zenodo . 4317449. url: https : / / doi . org / 10 .
5281/zenodo.4317449.

[92] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. Using
Graph Properties to Speed-up GPU-based Graph Traversal: A Model-
driven Approach. 2017. eprint: arXiv:1708.01159.

207

https://www.sqlite.org
https://books.google.nl/books?id=iJ9MAAAAMAAJ
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6959684
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.6925023
https://doi.org/10.5281/zenodo.4317449
https://doi.org/10.5281/zenodo.4317449
https://doi.org/10.5281/zenodo.4317449
arXiv:1708.01159

BIBLIOGRAPHY

[93] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. “Mix-
and-Match: A Model-driven Runtime Optimisation Strategy for
BFS on GPUs”. In: Proceedings of the 8th Workshop on Irregular
Applications: Architectures and Algorithms. IEEE. 2018, pp. 53–60.

[94] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat.
“Quantifying the Performance Impact of Graph Structure on
Neighbour Iteration Strategies for PageRank”. In: ”Euro-Par 2015:
Parallel Processing Workshops”. Springer, Cham. ”Springer Inter-
national Publishing”, 2015, pp. 528–540. isbn: ”978-3-319-27308-2”.

[95] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. “Syn-
thetic Graph Generation for Systematic Exploration of Graph Struc-
tural Properties”. In: ”Euro-Par 2016: Parallel Processing Work-
shops”. Springer, Cham. ”Springer International Publishing”, 2016,
pp. 557–570. isbn: ”978-3-319-58943-5”.

[96] Vasily Volkov. “Understanding Latency Hiding on GPUs”. In:
(2016).

[97] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu,
Andy Riffel, and John D Owens. “Gunrock: A high-performance
graph processing library on the GPU”. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM. 2016, p. 11.

[98] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al.
“The FAIR Guiding Principles for scientific data management and
stewardship”. In: Scientific data 3 (2016).

[99] G. Wu, J.L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou.
“GPGPU performance and power estimation using machine learn-
ing”. In: High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on. Feb. 2015, pp. 564–576.
doi: 10.1109/HPCA.2015.7056063.

[100] Marvin V Zelkowitz and Dolores R. Wallace. “Experimental models
for validating technology”. In: Computer 31.5 (1998), pp. 23–31.

[101] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. “Performance and Power
Analysis of ATI GPU: A Statistical Approach”. In: NAS’11. IEEE
Computer Society, 2011.

[102] J. Zhong and B. He. “Medusa: Simplified Graph Processing on
GPUs”. In: 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP’12 (2012), pp. 283–284.

[103] Konrad Zuse. Der Plankalkül. 63. Gesellschaft für Mathematik und
Datenverarbeitung, 1972.

208

https://doi.org/10.1109/HPCA.2015.7056063

Glossary

ACM Association for Computing Machinery 18

AoS Array of Structures 54

API Application Programming Interface 34

ASCI Advanced School for Computing and Imaging 210

BBB Binaire Beslissingsboom, in het Engels: Binary Decision Tree
(BDT) 195, 196

BC Betweenness Centrality 5, 133, 192

BDT Binary Decision Tree iv, 7, 100–109, 111–115, 119, 121, 127, 130–
133, 140, 149, 150, 191, 192, 209

BEZ Breedte-eerst Zoekopdracht, in het Engels: Breadth-First Search
(BFS) 195

BFS Breadth-First Search iv, v, 4, 5, 7, 24, 31, 34, 38, 39, 42, 43, 46,
58–65, 85, 100, 102–109, 111–120, 122–124, 126, 128, 140, 144, 190,
191, 209

BSP Bulk Synchronous Parallel 14, 33, 36–38, 132, 133

BVE Beeldverwerkingseenheid, in het Engels: Graphical Processing Unit
(GPU) 193–196

CART Classification And Regression Trees 101

CDF Cumulative Distribution Function 77

CNN Convolutional Neural Network 101

CPPN Compositional Pattern Producing Network 76

CPU Central Processing Unit 2, 11, 13, 14, 31, 54

209

Glossary

CSA Computer Systems Architecture viii

CSR Compressed Sparse Row 6, 51, 65, 105

CSV Comma-Separated Values 21–23

CUDA Compute Unified Device Architecture 11, 14, 17, 27, 43, 44, 56,
62, 88, 151

DAS5 Distributed ASCI Supercomputer 5 35, 56, 62

DFS Depth-First Search 5

DOI Digital Object Identifier 27

DSL Domain Specific Language 14, 42

EDF Empirical Distribution Function 77

FAIR Findability, Accessibility, Interoperability, and Reusability 20, 21,
27

FLOPS floating point operations per second 2, 125

GAS Gather-Apply-Scatter 15, 58

GPGPU General Processing on GPU ix, 2, 6, 7, 9, 11–14, 17–19, 22, 23,
33, 41, 42, 111, 125, 127, 128, 130, 131, 189

GPLv3 General Public License version 3 21

GPMC General Purpose Multi-Core 2

GPU Graphical Processing Unit viii, ix, 1–4, 6, 7, 9–15, 23, 26, 27, 31, 34,
37–39, 42–44, 51, 54, 56, 59, 62, 82, 84, 86, 93–96, 98–100, 105–109,
111, 112, 119, 121, 126, 129–133, 138, 189–191, 209, 210

HPC High-Performance Computing 2, 3, 5, 10, 41, 43, 125, 127, 189

irregular algorithm algorithms whose access patterns and branching be-
haviour depends on their input 2, 3, 41, 127, 189

ISA Instruction Set Architecture 14

KS Kolmogorov-Smirnov v, 77, 78, 80

NEAT NeuroEvolution of Augmenting Topologies 70–72

210

Glossary

NUMA Non-Uniform Memory Access 13

NWO Nederlandse Organisatie voor Wetenschappelijk Onderzoek 20

OpenCL Open Computing Language 11, 14

PRNG Pseudo Random Number Generator 36, 102, 148

PTX Parallel Thread Execution 14, 88, 89, 91, 97, 151

RDM Research Data Management 19, 21

RSE Relative Standard Error 47, 48, 106, 107

SCC Single-chip Cloud Computer vii

SDK Software Development Kit 27

SIMD Single Instruction, Multiple Data 54

SIMT Single Instruction, Multiple Threads 12, 111, 130, 131

SM Streaming Multiprocessor 12–15, 59

SMT Simultaneous Multi-Threading 11, 12, 15

SNE System and Network Engineering viii

SoA Structure of Arrays 54

SoC System-on-Chip 10

SP Stream Processor 11–13, 111

SQL Structured Query Language 23, 141, 143

SSSP Single-Source Shortest Path 5, 133, 192

SVM Support Vector Machine 101

UTC Coordinated Universal Time 143

UvA Universiteit van Amsterdam vii, viii

VU Vrije Universiteit vii

211

	Contents
	List of Figures
	List of Tables
	Preface & Acknowledgements
	1 Introduction
	1.1 Irregularity & GPU Acceleration
	1.2 Research Hypotheses
	1.3 Scope of Thesis
	1.3.1 Algorithms
	1.3.2 Data Representation
	1.3.3 Hardware Platform
	1.3.4 Input Graphs

	1.4 Thesis Structure & Contributions

	2 Background
	2.1 Graphs
	2.2 Graphical Processing Unit
	2.2.1 The GPU Design
	2.2.2 The GPU Memory Hierarchy
	2.2.3 Programming GPUs

	2.3 Graph Processing on GPU

	3 The Art & Engineering of Empirical (Computer) Science
	3.1 Motivation
	3.1.1 The State of Empirical Computer Science
	3.1.2 The Wider Empirical World
	3.1.3 Practice What You Preach

	3.2 Data Format Design & Refinement
	3.2.1 The Messy Initial State
	3.2.2 An Initial Schema
	3.2.3 Data Format Refinement
	3.2.4 Data Format Design Takeaways

	3.3 High-level Implementation & Tooling
	3.3.1 Experiment Configuration
	3.3.2 Experiment Execution
	3.3.3 Analysis
	3.3.4 Plot

	3.4 Lessons Learned

	4 Quantifying Performance Impact
	4.1 Neighbour Iteration Primitive
	4.2 Parallelisation Strategies for Neighbour Iteration
	4.2.1 Edge List & Reverse Edge List
	4.2.2 Vertex Push & Vertex Pull
	4.2.3 Virtual Warp Push & Pull

	4.3 Intermezzo: Comparing Implementations
	4.3.1 Aggregate Tables
	4.3.2 Measurement Accuracy
	4.3.3 Bar Plot Graph Selection

	4.4 Implementing PageRank
	4.4.1 Implementations
	4.4.2 Results

	4.5 Implementing Breadth-First Search
	4.5.1 Implementations
	4.5.2 Results

	4.6 Summary

	5 Graph Generation
	5.1 Related Work
	5.1.1 Analytical Models
	5.1.2 Evolutionary Approaches
	5.1.3 Comparative Analysis

	5.2 A New Graph Generator Design
	5.2.1 Requirements
	5.2.2 Evolutionary Computing for Graph Generation
	5.2.3 Candidate Graph Representations

	5.3 Implementation
	5.4 Results
	5.5 Conclusion

	6 Analytical Performance Modelling
	6.1 Workload Models
	6.1.1 Abstract Workload Models
	6.1.2 Concrete Workload Models
	6.1.3 Relation Between Workload Models and Performance

	6.2 Parallelising Workload Models
	6.2.1 Static Approximation of Performance
	6.2.2 Approximation via Performance Counters

	6.3 Conclusion

	7 Data-driven Performance Modelling
	7.1 Binary Decision Trees
	7.2 Modelling BFS Performance
	7.3 Model Evaluation
	7.3.1 Dynamic BFS Challenges
	7.3.2 Mix-and-Match Performance

	7.4 Related Work
	7.5 Conclusion

	8 Model Portability
	8.1 Model Accuracy by Amount of Training Data
	8.1.1 Breadth-First Search
	8.1.2 PageRank

	8.2 Portability Across Datasets
	8.2.1 KONECT to SNAP
	8.2.2 SNAP to KONECT
	8.2.3 Conclusions on Dataset Portability

	8.3 Portability Across GPUs
	8.4 Conclusion

	9 Conclusion
	9.1 Conclusions
	9.1.1 Findings per Research Goal
	9.1.2 Methodology
	9.1.3 Contributions

	9.2 Future Work

	Appendices
	A Current Database Schema
	A.1 GlobalVars
	A.2 Platform
	A.3 Dataset
	A.4 Graph
	A.5 Algorithm
	A.6 Implementation
	A.7 VariantConfig
	A.8 Variant
	A.9 RunConfig
	A.10 Run
	A.11 PropertyName
	A.12 GraphPropValue
	A.13 StepProp
	A.14 StepPropValue
	A.15 TotalTimer
	A.16 StepTimer
	A.17 ExternalImpl
	A.18 ExternalTimer
	A.19 PredictionModel
	A.20 ModelTrainDataset
	A.21 ModelProperty
	A.22 UnknownPrediction
	A.23 UnknownPredictionSet

	B PageRank PTX Code
	B.1 Edge List
	B.2 Vertex Push
	B.3 Vertex Pull
	B.4 Vertex Pull NoDiv
	B.5 Consolidate & Consolidate NoDiv

	Summary
	Samenvatting
	Publications
	Bibliography
	Glossary

