

M E M O RY S Y S T E M D E S I G N F O R
A P P L I C AT I O N - S P E C I F I C

H A R D WA R E

giulio stramondo

This work has received funding from the EU Horizon 2020 re-
search and innovation programme under grant No 671653.

The work in Chapters 5 and 6 was partially done during an
internship at Nokia Bell Labs.

Copyright c© 2020 by Giulio Stramondo.

Thesis template: classicthesis by André Miede and Ivo Pletikosić.
Printed and bound by Ipskamp Printing.

M E M O RY S Y S T E M D E S I G N F O R
A P P L I C AT I O N - S P E C I F I C

H A R D WA R E

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op donderdag 8 april 2021, te 16.00 uur

door

Giulio Stramondo

geboren te Catania, Italy

iii

Promotiecommisie

Promotor: prof. dr. ir. Cees T.A.M. de Laat Universiteit van Amsterdam

Supervisor: dr. ir. Ana Lucia Varbanescu Universiteit van Amsterdam

Overige leden: prof. dr. Dirk Stroobandt Universiteit Gent

prof. dr. Henk Sips Technische Universiteit Delft

prof. dr. Alfons Hoekstra Universiteit van Amsterdam

prof. dr. Pieter W. Adriaans Universiteit van Amsterdam

prof. dr. Andy Pimentel Universiteit van Amsterdam

dr. Marco D. Santambrogio Politecnico di Milano

dr. Francesco Regazzoni Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

iv

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [39]

A C K N O W L E D G M E N T S

This PhD thesis would not exist if it was not for the help of some
people in my life. It might have been thanks your friendship,
your mentoring, or simply your support that I went through
these past 4 years. In this section I will try to thank name all of
the people who helped me, although one of the issues of any
finite list is that it is prone to error. If I forget to mention you,
please let me know and I will gladly offer you beers until you
forget about it!

The first person that I would like to thank is Ana, my super-
visor. I would probably need a separate book to properly thank
her for everything, but let me try to compress it in a paragraph;
thank you for always being able to find time for me and for
helping me to grow as a scientist, and most importantly as a
person. Thank you for transmitting me your enthusiasm about
the research process. Your optimism helped me see the bright
side of things (seeing the glass half full). I admire your passion
about teaching, and I cherish the laughs, the chocolate, the nerdy
jokes and the occasional glass of wine we shared (which instead
was rather half empty).

Thank you Cees, for accepting me as your PhD student and
for your time and inputs during the process. I am still amazed
by the amount of time you are able to dedicate to each and every
one of your students.
Thank you Catalin, for your supervision during my first two
years of PhD, for your support and advice.
Thanks to Marco Santambrogio, who was my master thesis su-
pervisor at the Politecnico di Milano as well as the one who

v

pushed me to start a PhD. I also had the pleasure to work with
him during my PhD as part of the EXTRA project, and towards
the end as part of my PhD committee. I did learn a lot from you,
and I would not be writing this thesis if it was not for you, thank
you!

I would like to thank all the members of the EXTRA Project,
for all the exciting conversations and fruitful collaborations we
had. Special thanks for our close interaction during the project to
Marco Rabozzi, Lorenzo Di Tucci, Luca Stornaiuolo and Giuseppe
Natale, from the Politecnico di Milano, Amit Kulkarni, from the
Gent University, Stefano Cardamone, from the University of
Cambridge, and Andreas Brokalakis, from Synelixis.
I would also like to thank the Nokia Bell Labs of Antwerp for
the great opportunity of an internship, with special thanks to
Bartek Kozicki and Manil Dev Gomony. Manil, thank you for
your help, guidance, the exciting scientific conversations and your
presence during and after my internship. Thank you to my PhD
committee for your time and your useful feedback, Prof. Dirk
Stroobandt, Prof. Henk Sips, Prof. Alfons Hoekstra, Prof. Pieter
W. Adriaans, Prof. Andy Pimentel, Dr. Marco D. Santambrogio
and Dr. Francesco Regazzoni.

Moving to a new country and all the complexity related to
successfully going through the ups and downs of a PhD is with-
out doubts a thrilling and tough experience. Thanks to the guys
at the SNE Lab I quickly felt welcome into this new universe. I
would like to thank you all, however I feel that I am destined
to forget someone. If I did, please let me know and allow me
to apologize. Thank you, Adam, Ameneh, Ana (Oprescu - the
other Ana), Andy, Benny, Clemens, Dolly, Francesco, Giovanni,
Jamila, Marijke, Mark, Merijn, Milen, Mostafa, Paola, Pieter, Peter,
Simon, Tim, Yuri and Zimming.

During the last 4 years, I got to meet many amazing fellow
researchers/colleagues, of whom many were going/went/are
going through the same share of extreme emotions to complete a
PHD. To my chinese friends and colleagues: Jun, thanks for allow-
ing me to be at your side in your important days, introducing me
to your wonderful wife and your baby girl, and all the wonderful
hot pots we shared; Huan and Yang, thank you for sharing with

vi

me coffees, laughs and pijiu. To all of you, my most sincere and
warm Ganbei! To Uraz, thank you for being always the last drop!
Thank you Ben (and Cecile) for your help and friendship. Ben...
please never offer to my son a huge inflatable unicorn. To all
the "unusual suspects" thank you for making the winters in the
Netherlands bearable and the summer endless barbecues! Thank
you Regi and Daniela for the picnics at the park, the fun times
on the slopes, at the beach, the dinners, or the game nights, for
the almost Maltese holidays, for being so supportive and being
so close to me and Eugenie. Thank you Ralph and Rian, for the
Sinterklaas nights, the good advices and help with the thesis, for
introducing me to the Dutch culture and the bouldering days.
To Spiros and Angeliki, for the snow trips, windsurf talks and
housewarming parties. To Joe, for always being my best man,
teaching me how to wing it, for the time we shared on the snow,
sailing and playing. To Mary, special thanks for the burritos, the
cat allergies, amazingly full glasses of wine we shared (I am
sorry your glasses will be half-full from now on), and for always
sharing couches when in times of need. To Julius and Helena,
for training with me during the fire drills (3 minutes...) and even
sharing your bed with me (yes, sorry Helena). To Misha and
Tammy, for the great conversations and dinners, the chess games,
the boxing and the broken necks (boxing and broken necks are
weirdly unrelated). To Lukasz, thank you for all the "Mehhh",
the run in the forest at -10 degrees, the improvised sailings, and
the wasted days at the gym. To Xin, thank you for our talks,
runs and drawings tricks you taught me. Each of you made these
four years in the Netherlands golden and I will cherish these
memories. Your pictures will always be on my fridge (and I will
probably need to buy a bigger fridge first).

I would also like to thank my friends back home for their
constant support during these years. Even if I was physically far,
they never made me feel distant. Thank you, Giulio (Milone),
Rosita, Carlo, Stefania, Roberto, Martina, Paolo, Giorgia, Stefano,
Marta, Jacopo, Eliana and Daniele.

Special thanks to my family, that supported me, encouraged
me, cheered me up or waited for me to stop working late. Thank
you Eric, Line, Margaux, Gabi, Roberto, Francesca, Sergio, Maria

vii

Luisa, Lorenzo, Giovanni, Nicolo’, Silvia. Finally, thank you Mom
for your (maybe sometimes a bit excessive) love, your care and
fair share of optimism. Thank you Dad for teaching me to always
try to push myself further into uncharted territories and for your
support. And thank you Eugenie, for being by my side, in the
ups and downs, always being able to let me pick myself up with
your loving smile.

viii

C O N T E N T S

1 introduction 1

1.1 Research questions and approach 3

1.2 Structure of this thesis 5

2 background and terminology 7

2.1 Memory and processing systems 7

2.1.1 Parallel Memories 8

2.1.2 Types of Parallel Memories 9

2.1.3 The target application 10

2.2 Memory Technologies 12

2.3 Hardware Platforms 15

2.3.1 Field Programmable Gate Arrays (FPGAs) 15

2.3.2 Spatial Processor 17

3 a parallel software cache 19

3.1 Introduction 19

3.1.1 The Polymorphic Register File 22

3.2 Design and Implementation 24

3.2.1 End-to-end design 24

3.2.2 From PolyMem to MAX-PolyMem 25

3.2.3 Productivity Analysis 27

3.3 Design Space Exploration and Results 28

3.3.1 Design Space Exploration setup 28

3.3.2 Memory Performance 29

3.3.3 Resource utilization 31

3.4 STREAM-Copy: Bandwidth Benchmarking 34

3.5 Related Work 37

3.6 Summary 38

4 application-centric parallel memories 41

4.1 Introduction 42

4.2 Preliminaries and Terminology 43

4.2.1 Parallel Memories 44

4.2.2 The Application 44

4.3 Scheduling an Application Access Trace to a PM 47

4.3.1 The set covering problem 47

4.3.2 From Concurrent Accesses to Set Cover-
ing 47

ix

x contents

4.3.3 An Heuristic Approach 49

4.3.4 The Complete Approach 50

4.4 Evaluation 51

4.4.1 Experiment Setup 51

4.4.2 Results 52

4.5 Experiments and Results 55

4.5.1 MAX-PolyMem 55

4.5.2 Sparse STREAM 56

4.5.3 Results 57

4.6 Related Work 58

4.7 Summary 59

5 compute and memory system codesign 61

5.1 Introduction 62

5.2 The µ-Genieframework 64

5.2.1 Model of Execution 64

5.2.2 The L2 Memory Model 65

5.3 µ-Genie: Inputs 66

5.3.1 Application 66

5.3.2 Configuration Parameters 66

5.4 µ-Genie: Analysis 67

5.4.1 L2 Memory Read and Write Modeling 67

5.4.2 Data Dependency Analysis 69

5.4.3 PE allocation with Modified Interval Parti-
tioning 71

5.4.4 Most Parallel and Most Sequential Archi-
tectures 72

5.5 µ-Genie: Design Space Exploration (DSE) 73

5.5.1 Architecture Tradeoffs 74

5.6 Architectural Template 74

5.7 Summary 76

6 dse for codesigned compute and memory sys-
tems 77

6.1 Multi-Configuration Design Space Exploration 77

6.2 Case Studies 78

6.2.1 Single configuration DSE 78

6.2.2 MRAM vs SRAM Level 2 Memory 79

6.2.3 Different Matrix Dimensions 80

6.3 Related Work 80

6.4 Summary 82

contents xi

7 conclusion 87

7.1 Main Findings 87

7.2 Main contributions 90

7.3 Future Research Directions 90

bibliography 93

publications 103

software and data 105

summary 107

samenvatting 111

L I S T O F F I G U R E S

Figure 1.1 McCalpin’s CPU Speed vs. Bandwidth [49] 2

Figure 1.2 Structure of the thesis 5

Figure 2.1 Memory system and Processing systems 8

Figure 2.2 DRAM memory cell 12

Figure 2.3 SRAM memory cell 13

Figure 2.4 Magnetoresistive RAM memory cell 14

Figure 2.5 Spatial Architectures classification [59]. 18

Figure 3.1 Envisioned system organization using Poly-
Memas a parallel cache. 20

Figure 3.2 PolyMem supported access patterns. 23

Figure 3.3 The Block-diagram of our MAX-PolyMem Im-
plementation. 25

Figure 3.4 Write bandwidth. 31

Figure 3.5 Read bandwidth (aggregated). 31

Figure 3.6 Logic utilization. 32

Figure 3.7 LUT Utilization. 32

Figure 3.8 BRAM Utilization. 33

Figure 3.9 The implementation of the STREAM bench-
mark for MAX-PolyMem. All transfers be-
tween host (the CPU) and PolyMem (on the
FPGA) are done via the PCIe link. 35

Figure 3.10 Copy bandwidth (aggregated). 37

Figure 4.1 Customizing parallel memories. Our research
focuses on the mapping of the access trace
from the application to the parallel access pat-
terns of the parallel memory. 43

Figure 4.2 An overview of our complete approach. 51

Figure 4.3 Evaluation of the ILP and Heuristic (HEU)
results. 54

Figure 4.4 The implementation of the STREAM bench-
mark for MAX-PolyMem (figure updated from [14]).
All transfers between host (the CPU) and Poly-
Mem (on the FPGA) are done via the PCIe
link. 56

xii

list of figures xiii

Figure 4.5 The performance results (measured, predicted,
and ideal) for the 10 different variants of the
STREAM benchmark. The horizontal lines in-
dicate the theoretical bandwidth of MAX-PolyMem,
configured with 8-byte data, 8 lanes, and 2 (for
Copy and Scale) or 3 (for Sum or Triad) par-
allel operations. Running at 100MHz, MAX-
PolyMem can reach up to 12.8GB/s for 1-
operand benchmarks and up to 19.6GB/s for
2-operand benchmarks. 59

Figure 5.1 Difference between state-of-the-art design flow
typically used for traditional application-specific
processors and the proposed µ-Genie design
flow for spatial processors. 63

Figure 5.2 µ-Genie Framework. 64

Figure 5.3 The system under analysis. 64

Figure 5.4 A Data Dependency Graph: inverse triangles
represent input data, obtained from the load
instructions; ovals describe operations on data;
the triangle at the bottom represents the result,
derived from a store instruction. Highlighted,
a chain of associative operations before being
optimized by the DDA module (5.4.2). 70

Figure 5.5 Example of architectures generated from a
matrix vector multiply application of size 5x5.
The MostPar (a), an intermediate architecture
(b) and the MostSeq (c). 74

Figure 5.6 Functional Unit template. PE1-PE4 represent
"parent" PEs that generate input data. IM is
an internal Instruction Memory,where the PE
stores the operations to be performed. RFs
are internal Register Files, which store reuse
data and inputs to be used in the future. OP
is the hardware unit actually performing the
PE operation. 75

Figure 6.1 Each point represents one µ-Genie spatial pro-
cessor. Different shapes (in 6.1b and 6.1c) iden-
tify different input configurations. 6.1a shows
the architecture’s Energy over Latency in clock
cycles generated from a single configuration
of a matrix vector multiplication of size 5× 5.
Note that (a) presents all designs, while (b)
and (c) only include the Pareto-optimal de-
signs. 84

Figure 6.2 Energy Pareto optimal architectures gener-
ated by µ-Genie for different sizes of Matrix
Vector multiplication 5x5 - with latency rang-
ing from 0 to 1000,10x10 - having latency be-
tween 1000ns and 2500ns , and 15x15- with
latency above 2500ns. Each point corresponds
to an architecture generated by the frame-
work. 85

L I S T O F TA B L E S

Table 2.1 Comparison between 28nm SRAM and MRAM
memories 14

Table 3.1 The PRF memory access schemes 22

Table 3.2 Productivity analysis. 26

Table 3.3 PolyMem Design Space Exploration Parame-
ters. 29

Table 3.4 MAX-PolyMem Maximum Clock Frequencies
[MHz]. 30

Table 4.1 The 10 variants of the STREAM benchmark
and the predicted performance of the calcu-
lated schedules for two schemes (ReRo and
RoCo). The other schemes are omitted because
they are not competitive for these patterns. In
the patterns, only the R elements need to be
read. 57

xiv

Table 5.1 Definition of symbols used in the equations 68

Table 6.1 Comparison with related work. 82

L I S T I N G S

Listing 5.1 Modified Interval Partitioning (MIP) Algorithm 72

Listing 5.2 Design Space Exploration 73

A C R O N Y M S

AI Artificial Intelligence

AGU Address Generation Unit

ALAP AS Late As Possible

ALU Arithmetic Logic Unit

ASAP As Soon As Possible

BRAM Block Random Access Memory

CPU Central Processing Unit

DDG Data Dependency Graph

DRAM Dynamic Random Access Memory

eDRAM Embedded Dynamic Random Access Memory

DMA Direct Memory Access

DFE Data Flow Engine

DSE Design Space Exploration

FeRAM Ferroelectric Random Access Memory

xv

xvi acronyms

FLOPs Floating Point Operation Per second

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

HPC High Performance Computing

IDE Integrated Development Environment

ILP Integer Linear Programming

IM Instruction Memory

L1M Level 1 Memory

L2M Level 2 Memory

LOC Lines Of Code

LUT Look Up Table

MAF Module Assignment Function

MIP Modified Interval Partitioning

MM Matrix Matrix Multiplication

MMF Memory Mapping Function

MRAM Magnetoresistive Random Access Memory

MTJ Magnetic Tunnel Junction

MV Matrix Vector Multiplication

NP Nondeterministic Polynomial time

PE Processing Element

PCM Phase Change Memory

PCI Peripheral Component Interconnect

acronyms xvii

PM Parallel Memory

PRF Polymorphic Register File

RAM Random Access Memory

RRAM Resistive Random Access Memory

RF Register File

RTL Register Transfer Level

RQ Research Question

SIMD Single Instruction Multiple Data

SRAM Static Random Access Memory

VHDL Very High Speed Integrated Circuit Hardware
Description Language

1
I N T R O D U C T I O N

Computers are a driving factor of modern scientific research.
The computing capability we have nowadays on a single laptop
are higher than the one of the most powerful supercomputer
we had two decades ago. The rapid development in the silicon
industry allowed all the fields of research to increase their output,
and perform studies which would be unfeasible or too costly
otherwise. To mention a few examples, we witnessed a dramatic
improvement in the fields of genetics - decoding almost com-
pletely the human DNA [20], and in neuroscience - where the
task of modeling the organization and behaviour of the human
brain seems now within reach [46]. The Artificial Intelligence (AI)
explosion which we are witnessing today can also be, at least in
part, attributed to the current advances in computing power.

However, the current pace at which computing technologies
improves is likely to slow down [25]. For many years, techniques
such as frequency scaling, and miniaturization of the transistors
have been leveraged successfully to gain performance. But these
techniques are now close to their physics limits, forcing computer
scientists and engineers alike to find alternative ways to improve
the performance of computing systems. Parallel computing, dis-
tributed computing, and the use of heterogeneous platforms are
becoming predominant ways to increase computing power [67].

Broadly speaking, the architectures of these modern comput-
ing systems can still be seen, at the highest level of abstraction,
as combining a memory and a processing system. Historically,
research on processing systems has been predominant. However,
modern architectures are often limited by their memory system.
In fact, on-chip memory systems occupy over 30% of the chip-
area [66] and consume a significant fraction (30% to 60%) of the
overall energy dissipated [82]. Moreover, for many applications,
the memory system represents a fundamental performance bot-
tleneck [54]. This bottleneck appears because the performance
of the processing system increases much faster than the per-

1

2 introduction

formance of the memory system, creating over time a growing
performance gap. This gap has been captured as the "memory
wall" by W.A. Wulf [85]. Figure 1.1 shows performance trends of
CPUs and memory over time: we observe that the MFLOPs of a
CPU increase, on average, with 50% every year, while the mem-
ory bandwidth only increases, on average, with 35% [49]. This
means, in practice, that applications spend increasingly more
time waiting for data then actually using it for computing.

Figure 1.1: McCalpin’s CPU Speed vs. Bandwidth [49]

The discovery of the memory wall boosted memory systems
research. For example, researchers proposed in-memory compu-
tation [2, 89], novel memory technologies (e.g. magnetoresistive
RAM [55], ferroelectric RAM [11], resistive RAM [68]), and multi-
banked (or parallel) memories [12, 45].

Our work also proposes solutions to alleviate the memory wall
problem. Specifically, we study the design and implementation of
parallel memory systems optimized for target applications. The core
idea behind the use of parallel memories is that, by increasing
the number of banks in the memory system, and accessing them
concurrently, it is possible to significantly increase the bandwidth
of the memory system. However, the data layout in the memory
banks, combined with the access pattern used by the target ap-

1.1 research questions and approach 3

plication(s) play a crucial role in the effective attainable memory
system performance.

1.1 research questions and approach

The main Research Question (RQ) addressed in this work is:
RQ: How can we design and implement efficient application-

specific parallel memories?
To answer our main RQ, we pursue the following four detailed

research questions:

• RQ1: What is a feasible design for a configurable hardware
parallel memory?

Field Programmable Gate Arrays (FPGAs) seem to be ideal
platforms to prototype parallel memories, because they
have on-chip RAM blocks that can be combined into a
single memory space, while still being accessible concur-
rently, like independent memory banks. To answer RQ1, we
analyse the feasibility of designing a configurable parallel
memory on such architectures. We further provide a config-
urable template of a parallel memory that can be adjusted
to provide high-bandwidth memory accesses for a given
application. Finally, we present a prototype of this config-
urable hardware memory, deployed on a Maxeler-based
FPGA platform, and demonstrate its peak performance
capabilities.

• RQ2: Can we define and implement a systematic, application-
centric method to configure a hardware parallel memory?

To configure a parallel memory such that it improves the
performance of a target application, we must analyse the
in-memory data layout and the memory access pattern
of the application. Within RQ2, we identify and address
the challenges of configuring a parallel memory given an
application. Building on top of the proposed FPGA-based
template (RQ1), we provide a systematic approach to deter-
mine the most efficient configuration for a given application
access pattern. We supplement this methodology with an
analytical performance model, which predicts the speed-up

4 introduction

and efficiency gain of using a parallel memory for a given
application. Finally, we demonstrate how this approach
leads to application-specific parallel memories, customized
to maximum possible efficiency, for applications with both
dense and sparse memory accesses.

• RQ3: Is there a systematic way to codesign efficient pro-
cessing and memory systems from a given application?

The semantics of an application depends on the correct
execution of dependent instructions. It is thus possible to
modify the access pattern of a given application by re-
ordering its execution, while still maintaining the data de-
pendencies. Changes in the application execution are then
reflected in the application access pattern. In the scope of
RQ3, we focus on codesigning the parallel memory and the
application, in an effort to match the parallel-memory data-
organization with the access pattern of an application. We
propose a method for this codesign process, and implement
a complete framework to support this method. We finally
demonstrate how the codesigned architectures can be im-
plemented in practice, and we assess their performance.

• RQ4: Is design exploration a feasible method to codesign
parallel-memory computing systems?

The codesign of the memory and processing systems can
be seen as a multi-objective optimization problem over a
space of possible designs. Within RQ4, we focus on the
definition of the dimensions of the design space and on
its systematic exploration. We are the first to include, next
to traditional dimensions like area, energy and latency,
also memory technology. We further prototype and demon-
strate a systematic design-space exploration methodology
to expose novel tradeoffs, including these new dimensions.
Using this DSE, we are able to provide in-depth quantitative
analysis of tradeoffs such area-energy or energy-memory
technology.

1.2 structure of this thesis 5

Introduction
Ch. 1

Background
Ch.2

Memory Systems
Design for

Fixed Application
Ch. 3, RQ1

Memory Systems
Optimization for
Fixed Application

Ch. 4, RQ2

Codesigned
Application and
Memory System

Ch. 5, RQ3

Design Space
Exploration of

Codesigned Systems
Ch. 6, RQ4

Conclusion
Ch. 7

Figure 1.2: Structure of the thesis

1.2 structure of this thesis

This thesis evaluates two methodologies for designing application-
specific parallel memory systems (Figure 1.2). In the first method-
ology, we propose a configurable design of a parallel memory
system - PolyMem (Chapter 3), which is then optimized for a
fixed target application access pattern (Chapter 4).

The second methodology evaluates the feasibility of codesign-
ing the memory and the computing systems together. In this
approach, we optimize, in the same time, the data placement
in the parallel memory and the application access pattern (as
opposed to, for in the previous approach) - Chapter 5. Chapter 6

demonstrates the feasibility and flexibility of codesigned memory
and computing systems through extensive design space explo-
ration and analysis of the features such codesigned systems can
offer.

2
B A C K G R O U N D A N D T E R M I N O L O G Y

In this chapter we present the essential background concepts,
terminology, and basic definitions necessary to understand the
remainder of this work.

2.1 memory and processing systems

A computing system can be modeled as composed by a memory
system and a processing system, as shown in Figure 2.1. The
performance of the memory (processing) system can be expressed
according to the amount of data produced (consumed) per unit
of time. In an ideal scenario both systems produce and consume
data at the peak of their capability, and the production and
consumption rates match.

However, in most cases, in practice, the production and con-
sumption rates between the two systems do not match. In such
cases, the overall performance of the computing system is deter-
mined by the system having the lowest rate - i.e., the bottleneck.
When the bottleneck is the processing (consumption) rate, the
system is said to be compute bound. On the other hand, the sys-
tem is memory bound if the memory system produces data at a
lower rate than the computing system is able to consume. Con-
ceptually, a system’s performance can be improved by removing
the bottleneck: optimize the cores (throughput, latency) if the
processing capacity system is limiting the performance, or opti-
mize the memory (bandwidth) if the memory system is lagging
behind. Therefore, a crucial step when aiming to improve the
performance of a computing system is to understand where the
bottleneck is.

While we can reason about the theoretical production and con-
sumption rates of the two sub-systems (processing and memory),
when these are used to execute a real application, the behaviour
of the application will affect where the bottleneck appears. Specif-
ically, a data-intensive application would stress more the capability

7

8 background and terminology

of the memory system, leading to a "memory-bound" execution;
similarly, running a compute intensive application on the same
system will likely use the processing system much more, and
it will likely lead to a "compute-bound" behaviour. Therefore,
the way an application behaves plays a crucial role in the overall
performance of the computing system.

The concepts expressed above are combined in the roofline
model[84], which provides a quantitative way to analyse the
(computing system, application) ensemble: it can identify the
bottleneck of the ensemble by using the properties of both the ap-
plication and the computing system, and can provide numerical
upper bounds for the peak performance that can be achieved by
this ensemble.

However, the roofline model provides no optimization solution.
Instead, it is the user’s responsibility to address the bottleneck:
either improve the application implementation or the underlying
compute system. In this thesis, we focus on the latter, and discuss
ways in which the memory system can be fundamentally im-
proved by concurrently using multiple memory banks (as shown
in Figure 2.1). Consequently, it is likely that our solutions are
beneficial for memory-bound applications and systems.

Computation

Memory

Ram

Ram

Figure 2.1: Memory system and Processing systems

2.1.1 Parallel Memories

Definition 1 (Parallel Memory) A Parallel Memory (PM) is a mem-
ory that enables access to multiple data elements in parallel.

A parallel memory can be realized by combining a set of
independent memories - referred to as sequential memories, but
also as lanes or banks. The width of the parallel memory, identified by

2.1 memory and processing systems 9

the number of sequential memories used in the implementation,
represents the maximum number of elements that can be read in
parallel. The capacity of the parallel memory refers to the amount
of data it can store.

2.1.2 Types of Parallel Memories

Intuitively, a parallel memory (PM) is a memory that enables read
and write operations for multiple data elements in parallel. The
implementation of a parallel memory always relies on using M
sequential memory blocks. However, depending on how the infor-
mation is stored and/or retrieved from memory, we distinguish
three types of parallel memories: redundant, non-redundant, and
hybrid.

• Redundant PMs The simplest implementation of a PM is
a fully redundant one, where all M sequential memory
blocks contain fully replicated information. The benefit of
such a memory is that it allows an application to access
any combination of M data elements in parallel. However,
such a solution has two major drawbacks: first, the total
capacity of a redundant PM is M times lower than the
combined capacities of all its sequential memories and,
second, parallel writes are very expensive: whenever a data
item needs to be updated, it needs to be updated in all
memories to guarantee information consistency.
To use such a memory, the application requires minimal
changes, and the architecture is relatively simple to manage.

• Non-Redundant PMs Non-redundant parallel memories
completely avoid data duplication: each data item is stored
in only one of the M sequential memories. The one-to-
one mapping between the coordinate of an element in
the application space and a memory location is part of
the memory configuration. These memories can use the
full capacity of all the memory resources available, and
data consistency is guaranteed by avoiding data replication,
making parallel writes feasible as well. The main drawbacks
of non-redundant parallel memories are that they require
specific hardware to perform the mapping, and they restrict

10 background and terminology

the possible parallel accesses: if two elements are stored in
the same sequential memory, they cannot be accessed in
parallel (see Section 4.2.2).

There are two major approaches used to implement non-
redundant PM: (1) use a set of predefined mapping func-
tions that enable parallel accesses in a set of predefined
shapes [16, 29, 30, 42], or, (2) derive an application-specific
mapping function [83, 88]. For the first approach, the appli-
cation requires additional analysis and potential changes,
while the architecture is relatively fixed. For the second
approach, however, a new memory architecture needs to
be implemented for every application, potentially a more
challenging task when the parallel memory is to be imple-
mented in hardware.

• Hybrid PMs Besides the two extremes discussed above,
there are also hybrid implementations of parallel memories,
which combine the advantages of the two previous ap-
proaches by using partial data redundancy [31]. Of course,
in this case, the challenge is to determine which data should
be replicated and where. In turn, this solution requires both
application and architecture customization.

Our work focuses on non-redundant parallel memories. Non-
redundant parallel memories can use the full capacity of all the
memory resources available, while data consistency is guaranteed
by avoiding data replication. However, these parallel memories
restrict the possible parallel accesses: only elements stored in
different memories can be accessed in parallel (see Section 4.2.2).

2.1.3 The target application

Across this thesis, we use the term application to refer to the
entity using the PM to read/write data. The application can be
implemented in a hardware element directly connected to the
PM, or as a software application, interfaced with the PM.

Without loss of generality, we will consider the data of an
application to be stored in an array A of N dimensions. Each
data element can then be identified by a tuple containing N coor-

2.1 memory and processing systems 11

dinates I = (i0, i1, ..., iN−1), which are said to be the coordinates
of element A[I] = A[i0][i1]...[iN−1] in the application space.

An application memory access is a read/write operation which
accesses A[I]. A concurrent access is a set of memory accesses,
A[Ij], j = 1..P, which the application can perform concurrently.
An application memory access trace is a temporal series of concurrent
accesses. Finally, a parallel memory access is an access to multiple
data elements which actually happens in parallel.

Information such as the memory access trace of an application
needs to be extracted through applications analysis. There are
two different ways to analyze an application: static and dynamic
analysis. Static analysis extracts information from the application
source code. For example, the amount of iterations within a loop
can be derived from the initialization of the loop iterator, termina-
tion condition, and the loop iterator increment. Instead, dynamic
analysis involves the execution of the application to record the
data of interest. It is useful to use dynamic analysis in the context
of data-dependent applications, where the control-flow mutates
according to input data, and therefore it is impractical to per-
form static analysis. To analyse an application dynamically, the
code is instrumented, i.e., specific functions are run during the
execution to log the application behaviour. In this work, we focus
specifically on "static applications" - i.e., applications that can be
characterized by static analysis.

Definition 2 (Parallel Access Conflict) A parallel access has a con-
flict if at least two of the accessed data elements are stored in the same
memory bank. A conflict prevents a set of memory accesses to be carried
out in a completely concurrent manner.

Definition 3 (Conflict-Free Parallel Access) A set of Q memory
accesses, A[I0]..A[IQ−1], constitutes a conflict-free parallel access if:

∀(A[Ii], A[Ij])

where i 6= j, 0 ≤ i, j ≤ Q− 1, Q = M

loc(A[Ii]) = (mi, addri), loc(A[Ij]) = (mj, addrj)

mi 6= mj.

12 background and terminology

Intuitively, given an application with a certain access pattern,
depending on how data are stored in the banks of a parallel
memory, a concurrent access of an application could request
elements stored in the same bank. If this happens, the concurrent
access is a conflicting access, and therefore needs to be split in
multiple accesses, which leads to performance degradation.

Chapter 4 expands on the concept of conflicts, and proposes a
methodology to generate data layouts in a parallel memory that
minimize conflicts for a given application.

2.2 memory technologies

This section will give a brief introduction of the most common
technologies currently used to build memories.

Memory technologies can be divided in two main classes:
volatile and non-volatile. A volatile memory needs power to retain
information, i.e., when the memory is not powered the data
stored is lost.

Volatile memories

Two examples of volatile memories are the Dynamic Random
Access Memory (DRAM) and the Static Random Access Memory
(SRAM). Both these memories are based on cells.

Storage Capacitor

Address Line

Bit Line

Figure 2.2: DRAM memory cell

A DRAM cell, able to store one bit of information, is realized
using 1 transistor and 1 capacitor (shown in Figure 2.2); the capac-
itor is used to store the actual information, while the transistor
can be used to charge and discharge the capacitor. The address
line is used to select the DRAM cell: once the cell is selected, the
charge stored in the capacitor is sent to the Bit line. The capacitor

2.2 memory technologies 13

produces a leakage current, that over time causes the loss of the
charge stored. Thus, the charges contained in the capacitor need
to be periodically refreshed.

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 2.3: SRAM memory cell

An SRAM cell is realized (normally) using 6 transistors (Fig-
ure 2.3). Of these, 4 transistors form cross-coupled inverters
having two stable states, which are used to represent informa-
tion, and the additional 2 transistors provide access to the cell.
The information in the SRAM cell is maintained as long as the
cell is powered, removing the need to periodically refresh the
stored data. The removal of the data refresh is one reason for
which SRAM memories tend to be faster than DRAM memories.
However, the use of more transistors implies that SRAM cells can
store less data than DRAM cells, given the same amount of area.

Non-volatile memories

Non-volatile memories are capable to store data even when they
are powered off. This implies that when there are no accesses to
the memory, it does not need to consume power, hence, they are
usually more power efficient than volatile memories. There are
different technologies used to implement non-volatile memories
(e.g. Magnetoresistive RAM (MRAM) [55], Ferroelectric RAM
(FeRAM) [11], resistive RAM [68]). Figure 2.4 shows the structure
of a MRAM cell [27], consisting of one transistor and a Magnetic
Tunnel Junction (MTJ). The MTJ is used to store the information,

14 background and terminology

Bit Line

Write Word

Read Word

N P N

Vdd

Antiferromagnetic

Tunnel barrier
Magnetic Free Layer

Magnetic Pinned Layer

Line

Line

Figure 2.4: Magnetoresistive RAM memory cell

1Mb 28nm MRAM1
1Mb 28nm SRAM2

Read Energy (pJ/bit) 0.68 2.57

Write Energy (pJ/bit) 4.5 2.67

Read Latency (ns) 2.8 1.022

Write Latency (ns) 20 1.022

Cell area (mm2) 0.214 0.220

Leakage Energy (pJ/clock) ~0 1.98

2 Q. Dong et al. ISSCC 2018, 3 TSMC

Table 2.1: Comparison between 28nm SRAM and MRAM memories

and consists of a Magnetic Free Layer, a Tunnel Barrier and a
Magnetic Pinned Layer. The magnetic pinned layer has a fixed
magnetic polarization, while the polarization of the magnetic
free layer can be changed applying an external magnetic field.
If the magnetization of the free and pinned layer are parallel to
each other, the electrons will easily be able to tunnel through the
Tunnel Barrier, otherwise they will encounter a strong resistance.
Thus, the information stored in the MTJ can be read by measuring
its resistance, and written by correctly magnetizing the magnetic
free layer.

2.3 hardware platforms 15

A characteristic of non-volatile memory technology is the
latency and power imbalance between read and write opera-
tions. Table 2.1 shows a comparison between 28nm MRAMs and
SRAMs, and illustrates that while read operations on MRAMs
are comparable to SRAMs, write operations have higher latencies
and energy consumption.

Chapters 5 and 6 define a methodology to take into account
the read and write imbalance when designing memory systems,
combining the use of SRAM and MRAM as use case.

2.3 hardware platforms

This section briefly describes two hardware platforms used to
implement and analyse memory systems in this thesis: Field Pro-
grammable Gate Arrays (FPGAs) and Spatial Processors. Chap-
ter 3 and 4 use FPGAs as target platforms, while Chapters 5

and 6 use Spatial Processors. Although the platforms are differ-
ent, concepts regarding the design of the memory system are
of a more generic nature, making it is possible to combine the
knowledge obtained by the analysis of memory systems on these
platforms.

2.3.1 Field Programmable Gate Arrays (FPGAs)

FPGAs are hardware platforms that can be repurposed after
manufacturing. This is possible because the building block of
FPGAs are Look Up Tables (LUTs) and an interconnect network.
LUTs are used to implement functionality by providing the ex-
pected output for any given inputs. More complex behaviour is
achieved by linking together LUTs using the interconnections
network. The information about the routing of the interconnec-
tion network is itself stored in LUTs. This structure allows this
hardware platform to be reconfigured after manufacturing, for
the desired purpose, only by updating the the values in LUTs.
FPGAs are used for two main purposes: hardware emulation, the
original purpose for which they have been designed, and, more
recently, as accelerators.

Hardware design has historically been specified using two
Hardware Description Languages: VHDL and Verilog. These

16 background and terminology

are low level languages and give the hardware designer the
ability to specify the hardware in a fine-grained manner. The
synthesis process implements a hardware design, from an HDL
specification to a target platform. If FPGAs are used as target
platform, the output of the synthesis describes the configuration
of the chip, defining what values need to be stored in each LUT.
The freedom of specification provided by HDL comes, however,
at the cost of lower productivity. Therefore, a lot of research is
invested in defining and using languages with higher level of
abstraction for hardware design. The result of this effort is a new
synthesis process, called High Level Synthesis, that translates a
specification given in an high level language to HDL.

Aside from LUTs, that guarantee the reconfigurability of these
platforms, FPGAs usually contain other components, among
which Block RAMs (BRAMs). These are blocks of memories sim-
ilar to SRAMs, as they do not require the refresh of the stored
data. There are usually several small independent BRAMs dis-
tributed across an FPGA chip. BRAMs can be linked to each
other through the interconnection network to implement memo-
ries with higher capacity, and to the rest of the logic on the FPGA.
This makes FPGAs ideal platforms for studying the design of a
memory system, as they enable the design of memory controllers
- using LUTs, different memory structures - changing the inter-
connections between BRAMs, and application logic - again, using
LUTs.

In Chapters 3 and 4 FPGAs are used for implementing, vali-
dating and benchmarking memory system designs. Specifically,
we use a Maxeler platform.

Maxeler builds FPGA boards for High Performance Comput-
ing using chips from Xilinx and Intel/Altera, the two major
FPGA vendors. It uses an High Level Synthesis (HLS) language,
called MaxJ, to describe the hardware. MaxJ adopts the dataflow
programming paradigm, where an application is described as a
directed graph: each node represents an operation on the data,
while the edges represent the flow of data. During the computa-
tion, the data is streamed through the FPGA, and the operations
are directly applied on the stream. The FPGA board features
its own high capacity DRAM, which can be used to store appli-
cation data. However, the latency of this memory is relatively

2.3 hardware platforms 17

high (typical for off-chip DRAM) and even, with multi-channel
implementations, the off-chip DRAM bandwidth is limited.

As a programming language, MaxJ is based on Java. It contains
datatypes and operations useful to describe the dataflow graph of
an application. From a MaxJ description, the Maxeler framework
generates a dataflow graph that is then translated to a hardware
description language (HDL). Finally, using third party tools, the
HDL is synthesized and the bitstream required to program the
FPGA is generated.

Chapters 3 and 4 show how to implement an on-chip cache on
Maxeler platforms, aiming to maximize data reuse and minimize
access to off-chip DRAM.

2.3.2 Spatial Processor

A spatial processor architecture consists of a set of physically
distributed PEs with dedicated control units linked using an
on-chip interconnect. The operations that need to be performed
by an algorithm are mapped on the PEs, which compute in a
fine-grained pipeline fashion. There are different kinds of spatial
architectures, with one possible classification shown in Figure
2.5[59]. FPGAs are an example of spatially programmed archi-
tectures in which the PEs implement basic logic operations, and
hence are classified as Logic-Grained. To change the functional-
ity of a Logic-Grained architecture, the hardware design needs
to be modified and re-synthesized. Instruction-Grained spatial
architectures are, instead, programmable at instruction-level, and
their PEs implement simplified ALUs. The functionality of an
Instruction-Grained spatial accelerator can change by modifying
the sequence of instructions it executes. The advantage of using
Instruction-Grained over Logic-Grained programmable architec-
tures lies in their higher computational density, which results
in a higher operational frequency and lower power consump-
tion[59]. The Instruction-Grained class is itself composed of archi-
tectures having Centralized Control[77] , where a single control
unit manages all the PEs, and Distributed Control, where each
PE has a built-in control mechanism [7, 59, 62]. Intuitively, an
architecture with distributed control is more scalable and has a
simpler interconnection network. Chapters 5 and 6 are target the

18 background and terminology

Spatially
Programmed
Accelerators

Logic Grained
e.g. FPGAs

Instruction
Grained

Centralized
Control

Distributed
Control

Figure 2.5: Spatial Architectures classification [59].

design of memory sytems for distributed control Spatial Processor
architectures.

3
A PA R A L L E L S O F T WA R E C A C H E

One approach to address applications’ demand for increased
bandwidth is to re-think existing memory systems. Newly emerg-
ing technologies [34, 36] hold promise, but their large-scale inte-
gration depends on the processor vendors and is, therefore, rather
slow. A more viable solution is to develop parallel memories,
which could provide an immediate memory bandwidth increase
as large as the number of parallel lanes. While this proposal
sounds straightforward in theory, many challenges emerge when
designing and/or implementing such memories in practice [88].
Efficient data writes, reading the data with a minimum number
of accesses and maximum parallelism, and actually using such
memories in real applications are only three of these challenges.
In this chapter, we show how these challenges can be addressed
in a systematic manner. Thus, this chapter addresses RQ1: What
is a feasible design for a configurable hardware parallel memory?

This chapter is based on:
C. B. Ciobanu, G. Stramondo, C. de Laat, and A. L. Varbanescu
“MAX-PolyMem: High-Bandwidth Polymorphic Parallel Memories for
DFEs” [13], in 2018 IEEE International Parallel and Distributed Process-
ing Symposium Workshops.

3.1 introduction

To address the challenges relative to RQ1, we propose PolyMem,
a Polymorphic Parallel Memory. We envision PolyMem as a
high-bandwidth, two-dimensional (2D) memory which is used
to cache performance-critical data right on the FPGA chip, making
use of the existing distributed memory banks (the BRAMs). We
chose a 2D address space for PolyMem to allow the programmers
to easily place data structures such as vectors and matrices in
this smart buffer, thus decreasing the need for complex index
computation typically needed for a traditional, linear access

19

20 a parallel software cache

memory. Furthermore, using polymorphism, PolyMem not only
delivers high performance for the most common two-dimensional
access patterns (such as rows, columns, rectangles, or diagonals),
but it also enables combining several such patterns in the same
application. Finally, by supporting customization of capacity,
bandwidth, number of read/write ports, and different parallel
access patterns, PolyMem allows the user to configure the parallel
memory to fit his/her application.

PCI-E

FPGA Board

Host

PolyMem

Kernel

DRAM

FPGA Chip

Figure 3.1: Envisioned system organization using PolyMemas a parallel
cache.

Figure 3.1 depicts the envisioned system architecture. The
FPGA board, featuring its own high-capacity DRAM memory,
is connected to the host CPU through a PCI Express link. Poly-
Mem acts like a high-bandwidth, 2D parallel software cache, able
to feed an on-chip application kernel with multiple data elements
every clock cycle.

PolyMem is inspired by existing research on the Polymorphic
Register File (PRF) [17, 65]. While the PRF was designed as a
runtime customizable register file for Single Instruction, Multiple
Data (SIMD) co-processors, PolyMem is tailored for FPGA accel-
erators for High Performance Computing (HPC), which require
high bandwidth but do not necessarily implement full-blown
SIMD co-processors and their corresponding instruction sets on
the reconfigurable fabric. We have selected FPGAs as our target
for three reasons: (1) FPGAs are increasingly used for HPC accel-
eration due to their high energy efficiency and large amount of
on-chip computational resources, (2) FPGAs enable PolyMem to
be reconfigured depending on the current workload, and (3)
current FPGAs feature relatively large amounts of on-chip, dis-

3.1 introduction 21

tributed, independent memories – i.e., the BRAM blocks – that
can be used as parallel memory banks.

To enable a quick design and benefit from a high-level program-
ming abstraction, our first prototype of PolyMem, called MAX-
PolyMem1, is implemented using Maxeler’s platform and their
MaxJ programming model [47]. This choice further enables us
to easily integrate this parallel memory into Maxeler applica-
tions2. To thoroughly test the properties and limitations of MAX-
PolyMem, we further propose a multi-dimensional Design Space
Exploration (DSE) approach, where the capacity, number of lanes,
and number of read ports for each PolyMem scheme are empir-
ically evaluated. Our results show that (1) MAX-PolyMem can
utilize the entire capacity of on-chip BRAMs, allowing the in-
stantiation of a 4MB parallel memory on the Maxeler Vectis Data
Flow Engine (DFE); (2) the maximum bandwidth delivered by
the MaxJ design exceeds 32GB/s at a clock frequency of up
to 202MHz, and (3) we are able to utilize all the available BRAMs
with reasonable logic utilization.

Finally, to determine whether any unexpected bandwidth lim-
itations occur when using MAX-PolyMem in practice, we have
designed and implemented the STREAM benchmark [48, 79],
which measures the bandwidth of different in-memory array op-
erations. Using the COPY component of STREAM, we measured
the bandwidth of a polymorphic memory with 1 read and 1 write
port, and found that we achieve over 99% of the calculated peak
performance.

In summary, the contributions of this work are the following:

• We introduce PolyMem, a Polymorphic Parallel Memory
built using BRAMs as a high-throughput software-cache
for FPGAs;

• We present MAX-PolyMem, the first prototype implemen-
tation of PolyMem for Maxeler’s Data Flow Engines. We
further analyze the productivity of MaxJ for our implemen-
tation: we quantify it through a combined metric (lines of

1 We use PolyMem to denote the Polymorphic Memory design, and MAX-
PolyMem as the Maxeler-based implementation.

2 This integration work is beyond the scope of this paper.

22 a parallel software cache

Table 3.1: The PRF memory access schemes

PRF Access Scheme Available Access Patterns

ReO (Rectangle Only) Rectangle

ReRo (Rectangle, Row) Rectangle, Row, Main and sec-
ondary Diagonals

ReCo (Rectangle, Col-
umn)

Rectangle, Column, Main and
secondary Diagonals

RoCo (Row, Column) Row, Column, Rectangle

ReTr (Rectangle, Trans-
posed Rectangle)

Rectangle, Transposed Rectangle

code and development time), and qualify it through a set
of lessons learned;

• We perform a DSE analysis to show how MAX-PolyMem
scales with the number of lanes (up to 32), capacity (up
to 4MB), clock frequency (up to 202MHz), and peak band-
width (above 32GB/s).

• We design a MaxJ framework for the STREAM benchmark;
we further implement and synthesize the STREAM-Copy
application, and use it to benchmark the actual, achiev-
able MAX-PolyMem bandwidth in practice.

3.1.1 The Polymorphic Register File

A PRF is a parameterizable register file, which can be logically
reorganized by the programmer or a runtime system to support
multiple register dimensions and sizes simultaneously [17]. The
simultaneous support for multiple conflict-free access patterns,
called multiview, is crucial, providing flexibility and improved
performance for target applications. The polymorphism aspect
refers to the support for adjusting the sizes and shapes of the
registers at runtime. In Table 3.1, each multiview scheme (ReRo,
ReCo, RoCo and ReTr) supports a combination of at least two
conflict-free access patterns.

3.1 introduction 23

R2

R0
0

4

R1R5

R3
R6

7

2

3

5

7

80

R7

5

R9

R4

R8

Figure 3.2: PolyMem supported access patterns.

In this work, we reuse the PRF conflict-free parallel storage
techniques and patterns, as well as the polymorphism idea to
design PolyMem. Figure 3.2 illustrates the set of access patterns
supported by the PRF and, ultimately, by PolyMem. In this ex-
ample, a 2D logical address space of 8× 9 elements contains 10

memory Regions (R), each with different size and location: matrix,
transposed matrix, row, column, main and secondary diagonals.
Assuming a hardware implementation with eight memory banks,
each of these regions can be read using one (R1-R9) or several
(R0) parallel accesses.

By design, the PRF optimizes the memory throughput for a
set of predefined memory access patterns. For PolyMem, we
consider p × q memory modules and the five parallel access
schemes presented in Table 3.1. Each scheme supports dense,
conflict-free access to p · q elements3. When implemented in
reconfigurable technology, PolyMem allows application-driven
customization: its capacity, number of read/write ports, and the
number of lanes can be set pre-runtime (or even at runtime using
partial reconfiguration), to best support the application needs.

In summary, PolyMem uses the technology developed for the
PRF to build a parallel memory (Figure 3.2) for three reasons:
(1) it provides a generic, out-of-the-box solution to implement

3 In this work, we will use “×” to refer to a 2D matrix, and “·” to denote
multiplication.

24 a parallel software cache

a parallel memory, thus avoiding error-prone, time-consuming
custom memory design; (2) it can be customized for the appli-
cation at hand; (3) its multi-view property allows 2D arrays to
be distributed across several BRAMs, enabling runtime parallel
data access using multiple, different "shapes" without the need for
hardware reconfiguration (see Table 3.1). Effectively, with the
PRF-based PolyMem, programmers can assume a parallel mem-
ory and focus on algorithm optimizations rather than complex
data transformations or low-level details.

3.2 design and implementation

In this section, we briefly present our approach for design-
ing PolyMem to fit a given application, and further dive into the
implementation of MAX-PolyMem. This implementation is open
source, and is available online at [61].

3.2.1 End-to-end design

A great advantage of PolyMem is its ability to be configured to
fit the needs of given applications. A configuration consists of
a storage capacity C (e.g., 512KB), distributed in p× q memory
lanes, a PRF access scheme, and the number of read ports. The
access scheme enables support for up to four parallel-access
patterns (out of the six supported - see 3.1.1), each of which is a
dense access to p · q elements. To customize PolyMem for a given
application, we start from the application memory access pattern,
for which we find the optimal parallel access schedule - i.e., the best
sequence of parallel accesses to the application data - for each
potential configuration (scheme, capacity, lanes). To determine
the optimal schedule we formulate the problem as a set covering
problem [37], using Integer Linear Programming (ILP) for the
search itself. We finally select the best configuration based on
two metrics: speedup and efficiency. More details on this process
are presented in [71].

3.2 design and implementation 25

3.2.2 From PolyMem to MAX-PolyMem

Figure 3.3 shows a diagram describing MAX-PolyMem, our
MaxJ PolyMem implementation; we further refer to blocks in this
Figure in bold and to signals with a spaced-out font.

AGU

M

DataIn
AccType_w i_wj_w

WriteEnable

DataOut_1

accessed_elem

in-memory
addresses

reordering
signal

reordered
data

accessed
data

reordered
data

Write
Data

Shuffle
Address
Shuffle

Signal
Data Vector
Address Vector

MA

reordered
addresses

AccType_r i_rj_r

Read Data Shuffle

DataOut_0 DataOut_n

M0 M1 M2 M3

M4 M5 M6 M7

…

Figure 3.3: The Block-diagram of our MAX-PolyMem Implementation.

Because PolyMem behaves as a 2D memory, parallel applica-
tion accesses are made using two coordinates, (i,j), and the
shape of a parallel access, AccType. DataIn and DataOut represent
the data which is written to and read from MAX-PolyMem.

The core of MAX-PolyMem’s design consists of a 2D array
of memories (p× q BRAMs). These are used to store the data
in a distributed manner. In Figure 3.3, eight such memories are

26 a parallel software cache

Table 3.2: Productivity analysis.

Module/Feature Effort (days) LOC

AGU 2 194

A 3 292

Shuffle 10 335

M 4 399

Memory banks 3 242

Inv Shuffle 4 346

Multiple Read Ports 1 127

illustrated (M0-M7); these are the Memory Banks, also called
memory modules. The number of banks defines the number of
data elements which are read/written in parallel per data port,
referred to as lanes.

Based on the (i,j) coordinates and the requested access type
AccType, the AGU expands the parallel access in its individual
components by computing the coordinates of all the accessed
elements (p× q addresses in total). This operation is performed
for the write port and for each read port, so that one write access
and one read access for each read port can happen independently
at the same time.

The Module Assignment Function (MAF) is a mathematical
function that maps each element in the 2D address space to one of
the Memory Banks. The MAF guarantees conflict-free access to
the supported access patterns. In this work, we use the five MAFs
listed in Table 3.1 and described in detail in [17]. M implements
all the MAFs supported by our design and outputs the select sig-
nal in the three types of Shuffles: Read Data Shuffle, Address
Shuffle, and Write Data Shuffle. The Shuffles are implemented
using full crossbars and are used to reorder input and output
data according to the MAF used. The Addressing Function A
computes, for each accessed element, the intra-memory bank
address. The Read/Write Data Shuffle and Address Shuffle re-
order the data elements and their corresponding intra-memory
bank addresses (generated by the A) so that each memory bank
receives the correct address and input data.

3.2 design and implementation 27

For each access to PolyMem, the input signals and data flow
through all the blocks of the design in Figure 3.3, top to bottom.
Both the DataIn and DataOut are arranged in our predefined
order (left to right, top to bottom) to ensure consistency between
reads and writes. When writing to PolyMem, the Memory Banks
store each input element into the assigned memory module at the
corresponding intra-memory module address. More specifically,
the input data - DataIn - is written in the memory locations iden-
tified by A and M, after they have been reordered by the Write
Data Shuffle. During a read access, the output of the Memory
Banks, containing the accessed data, is reordered by the Read
Data Shuffle. If the WriteEnable signal is low the DataIn ele-
ments are ignored. Simultaneous reads and writes are supported
because of the independent read and write ports, and our design
supports multiple read ports.

We note that our design is implemented using two types of
Shuffles. Given a reordering signal, the regular Shuffle reorders
the elements, while the Inverse Shuffle, with the same reordering
signal, restores the initial order. In this design, therefore, the
Write Data Shuffle is implemented using an inverse Shuffle,
while the Read Data Shuffle is implemented using a regular
Shuffle.

3.2.3 Productivity Analysis

One of the reasons for using Maxeler’s platform for this work
was the alleged ease-of-use of the MaxJ toolchain. We reflect
here on our development process and analyze, qualitatively and
quantitatively, the productivity of MaxJ.

The development process started by implementing each mod-
ule in Figure 3.3 in isolation. Table 3.2 illustrates the implementa-
tion effort (in days) taken by each module, as well as the required
LOC (lines of code). In our experience, Maxeler’s toolchain does
enable fast prototyping: it takes little effort to have a simple
kernel running on a Maxeler board, due to the Java-like language
and the integrated behavioural simulator.

Once all kernels were available, we created a modular multi-
kernel design, using a custom manager to connect the different
modules. This approach helped testing and debugging. We found

28 a parallel software cache

that the lack of a graphical representation of the blocks in a de-
sign forces the developer to programmatically link the modules,
a time-consuming and error-prone process; futhermore, some
of the toolchain errors are not documented: we had problems
with the PCI-express interface, the file management in the IDE,
and several simulator crashing/hanging instances. With all these
issues, the integration took 5 days.

We further explored the trade-off between modularity and per-
formance: we implemented a fused, single-kernel implementation
(which took 7 days) and compared the two versions. We found
that the modular version consumes twice as many resources,
mainly due to the additional inter-kernel communication infras-
tructure.

Aiming to further optimize the code, we ran into the real
challenge of most HLS approaches: low-level details of the im-
plementation are hidden within layers of abstractions and tools,
and low-level optimizations are difficult to integrate.

Overall, we find that Maxeler’s toolchain is an asset during
the first development stages of an application because (1) MaxJ’s
HLS approach hides most of the complexity of hardware design,
(2) the behavioral simulator from the MaxIDE saves time during
implementation and debugging, and (3) the design can be written
with very few lines of code and it is easily readable. On the
downside, more documentation and tool support are needed to
fine-tune and optimize non-trivial applications. Moreover, the
integration of multiple kernels into a single design is complex
due to the lack of visualization tools, and MaxJ makes it difficult
to fine-tune low-level behavior.

3.3 design space exploration and results

We analyze the performance of MAX-PolyMem through DSE,
reporting memory bandwidth (see 3.3.2) and resource utilization
(see 3.3.3).

3.3.1 Design Space Exploration setup

For this study, we have selected three relevant parameters for the
design space exploration, listed and explained in Table 3.3. For all

3.3 design space exploration and results 29

experiments in this paper we use a Maxeler Vectis board that uses
a Xilinx Virtex-6 SX475T FPGA4 featuring 475k logic cells and
4MB of on-chip BRAMs. All our experiments configure PolyMem
for a data width of 64 bits. Our design is easily configurable: a
simple configuration file sets, at compile time, the required DSE
parameters. We collected information regarding the FPGA re-
source usage and the clock frequency for each configuration. We
have further computed the maximum read and write bandwidth
that can be achieved. We validate each design with a simple read-
/write cycle: the host fills MAX-PolyMem with unique numerical
values, and then reads them back using parallel accesses. The
remainder of this section focuses on the detailed analysis of these
results.

Table 3.3: PolyMem Design Space Exploration Parameters.

DSE Parame-
ter

Values Explanation / Affected blocks

Total Size
[KB]

512, 1024,
2048, 4096

The number and capacity of each Mem-
ory Bank

Number of
lanes (p ×q)

8 (2 × 4), 16

(2 × 8)
Number of data elements delivered
for each port per clock cycle. Affects
each block of the design.

Number of
Read Ports

1, 2, 3, 4 Number of independent data
blocks, p · q elements each, which
can be read in each clock cycle.
Affects the aggregate PolyMem band-
width and the number and capacity of
each Memory Bank

3.3.2 Memory Performance

In its role as a parallel memory, the most important performance
metric for MAX-PolyMem is memory bandwidth. We compute
the maximum bandwidth assuming all accesses use the full width
of the memory. The main parameters influencing the bandwidth

4 Xilinx Virtex-6 Family Overview:
http://xilinx.com/support/documentation/data_sheets/ds150.pdf

http://xilinx.com/support/documentation/data_sheets/ds150.pdf

30 a parallel software cache

Table 3.4: MAX-PolyMem Maximum Clock Frequencies [MHz].
Size 512KB 1024KB 2048KB 4096KB

Scheme / Lanes 8 16 8 16 8 16 8 16

Read Ports 1 2 3 4 1 2 1 2 3 4 1 2 1 2 1 2 1 1

ReO 202 160 139 123 185 100 160 123 102 79 144 109 127 86 127 87 95 95

ReRo 195 166 131 123 168 100 163 125 102 77 140 109 120 87 120 80 98 91

ReCo 196 155 131 122 157 100 163 121 107 81 156 122 124 78 124 79 93 93

RoCo 194 150 146 122 161 100 173 135 114 86 145 109 122 90 122 84 88 91

ReTr 193 158 134 137 159 112 155 121 102 77 146 122 116 81 114 77 102 102

are: design clock frequency, which varies depending on the MAX-
PolyMem parameters (see Table 3.4), the number of lanes, and
the number of read ports.

Table 3.4 lists the maximum clock frequencies achieved by
our designs. The highest frequency, 202MHz, is achieved by the
512KB, 8-lane, single read port ReO design. For the multi-view
schemes, the highest clock frequency is 196MHz for the 512KB,
8-lane, single read port ReCo configuration. The minimum clock
frequency is 77MHz.

Figure 3.4 presents the maximum achievable bandwidth per
single port, which is also the write bandwidth of our designs.
The peak write bandwidth for the 16-lane configurations ex-
ceeds 22GB/s for the 512KB, 16-lane, ReO configuration. For the
multiview schemes, the maximum achieved bandwidth is 20GB/s
for the ReRo configuration. Moreover, we note that single-port
bandwidth scales linearly when doubling number of memory
banks from 8 to 16.

Figure 3.5 illustrates the maximum read bandwidth when in-
creasing the number of read ports. The peak bandwidth is 32GB/s
achieved by the 512KB, 8-lane, 4-port ReTr scheme. For the 8-
lane configurations, we observe good bandwidth scaling when
doubling the number of ports from 1 to 2 ports, and diminishing
returns for the 3- and 4-port configurations. If the number of
lanes is increased to 16, having 2 read ports does not significantly
increase the bandwidth. We also note that bandwidth is reduced
if the number of lanes and ports is kept constant, but the ca-
pacity of PolyMem is increased. This is most likely due to the
additional pressure put on the synthesis tools to place and route
all the additional BRAMs.

Please note that for the applications that utilize the read and
write ports simultaneously, the total total delivered PolyMem

3.3 design space exploration and results 31

0

5

10

15

20

25

30

35

Ba
nd

w
id
th
	p
er
	p
or
t	(
GB

/s
)

Capacity	(KB),	Number	of	Lanes,	Number	of	Read	Ports

ReO
ReRo
ReCo
RoCo
ReTr

Figure 3.4: Write bandwidth.

0

5

10

15

20

25

30

35

Ba
nd

w
id
th
	(G

B/
s)

Capacity	(KB),	Number	of	Lanes,	Number	of	Read	Ports

ReO
ReRo
ReCo
RoCo
ReTr

Figure 3.5: Read bandwidth (aggregated).

data rate is the sum of the bandwidth delivered by all individual
read and write ports.

3.3.3 Resource utilization

We continue by analyzing the Maxeler Vectis DFE synthesis re-
sults in terms of resource utilization. Specifically, we investigated
logic, LUT, and BRAM utilization (Figures 3.6, 3.7, and 3.8,
respectively).

The results indicate that when increasing the PolyMem capac-
ity but keeping the number of lanes and ports constant, there

32 a parallel software cache

0

10

20

30

40

50

Lo
gi
c	
U
til
iza

tio
n	
(%

)

Capacity	(KB),	Number	of	Lanes,	Number	of	Read	Ports

ReO
ReRo
ReCo
RoCo
ReTr

Figure 3.6: Logic utilization.

0

10

20

30

40

50

LU
Ts
	U
til
iza

tio
n	
(%

)

Capacity	(KB),	Number	of	Lanes,	Number	of	Read	Ports

ReO
ReRo
ReCo
RoCo
ReTr

Figure 3.7: LUT Utilization.

is little to no increase in logic utilization for any of the target
memory schemes. For example, MAX-PolyMem with 8 lanes and
a single read port, the logic utilization varies between 10.58% for
a 512KB, ReO configuration to 13.05% for the 4096KB featuring
the RoCo scheme. However, the increasing the number of read
ports does increase the logic utilization: for the ReRo, 512KB, 8

lane configuration, the logic utilization doubles from 10.78% for
the single port case to 22.34% for the 4-port PolyMem, mostly
due to the read crossbars replication.

When doubling the lanes count from 8 to 16, we observe a
supra-linear logic utilization increase. For example, for the 512KB,

3.3 design space exploration and results 33

single read port, ReRo PolyMem, the logic utilization increases
from 10.78% to 23.73%. This can be attributed to the quadratic
increase in resource used by the full crossbar in relation to the
number of lanes [17].

Figure 3.7 illustrates the LUTs utilization. We observe here
similar trends to the logic utilization described above, with the
LUTs utilization varying between 7% and 28%.

Finally, Figure 3.8 illustrates the BRAM utilization, which
varies from around 16% for a 512KB, 8-lane, 1-read port Poly-
Mem up to 97% for a 2MB, 16-lane, 2-read ports PolyMem. As
expected, the memory scheme has no influence on the amount
of BRAMs used. Increasing the PolyMem capacity and increas-
ing the number of PolyMem lanes and read ports leads to an
increased BRAM utilization. For example, for the single read port
ReRo, 512KB design, the 8-lane configuration utilizes 16.07% of
the BRAMs, the 16-lane PolyMem uses 19.31% and the 8-lane,
dual read port configuration uses 29.04% of the BRAMs. This
behavior is the expected one since increasing the number of read
ports involved duplicating data in BRAMs.

0

10

20

30

40

50

60

70

80

90

100

BR
AM

	U
til
iza

tio
n	
(%

)

Capacity	(KB),	Number	of	Lanes,	Number	of	Read	Ports

ReO
ReRo
ReCo
RoCo
ReTr

Figure 3.8: BRAM Utilization.

In summary, we make the following observations:

• MAX-PolyMem is able to utilize the entire capacity of on-
chip BRAMs, allowing the instantiation of a 4MB parallel
memory on the Maxeler Vectis DFE while keeping the logic
utilization under 38% and LUTs usage under 28%;

34 a parallel software cache

• Supra-linear logic and LUTs increase when doubling the
number of lanes;

• MAX-PolyMem delivers up to 22GB/s write bandwidth
and up to 32GB/s aggregated read bandwidth using up to
4 read ports, at a clock frequency of up to 202MHz.

3.4 stream-copy : bandwidth benchmarking

This section focuses on the empirical evaluation of PolyMem’s
performance in practice. We aim to demonstrate that our imple-
mentation has a measured throughput in line with the estimated
values presented in Section 3.3. For this analysis, we have used
the STREAM benchmark [48, 79], a well-known tool for memory
bandwidth estimation in modern computing systems.

The STREAM benchmark contains four applications: Copy,
Scale, Sum, and Triad. The benchmark uses three vectors - A, B
and C - in all its applications. The Copy application performs
a vector copy operation c(i) = a(i), which involves one read
and one write for each element copied. The Scale application
performs the scaling of a vector and stores its result in another
vector a(i) = q · b(i); thus performing two memory accesses
(a read and a write) and one floating point multiplication per
element processed. The Sum application performs the sum of two
vectors, a(i) = b(i) + c(i), featuring two read, one write, and a
floating point addition per element. Finally, the Triad application
is a combination of the Scale and Sum, a(i) = b(i) + q · c(i),
thus featuring two reads, one write, and the two floating point
operations, a multiplication and an addition.

To use STREAM for the assessment of MAX-PolyMem, we
must design the STREAM framework using Maxeler’s toolchain
and MAX-PolyMem. A high-level view of our design, which is
open-source and available online [75], is presented in Figure 4.4.
The host is connected through the PCI-e to our STREAM de-
sign, and starts the computation by sending the Vector Sizes

and Mode parameters to define the behavior of the Controller.
The Controller generates the write and read signals for MAX-
PolyMemand selects the correct input for MAX-PolyMem’s write
port by driving the the two MUXs. The signals Wi, Wj and Wshape

3.4 stream-copy : bandwidth benchmarking 35

Controller

Host
PolyMem

MUX

MUX

A_IN
B_IN

C_IN

D
EM

U
X

A_OUT
B_OUT

C_OUT

Wi Wj WShape Ri Rj RShape

Out

ModeVector
Sizes

Figure 3.9: The implementation of the STREAM benchmark for MAX-
PolyMem. All transfers between host (the CPU) and Poly-
Mem (on the FPGA) are done via the PCIe link.

and Ri, Rj, Rshape signals identify the write/read locations for
the elements to be stored in/retrieved from PolyMem. Lastly,
using the DEMUX, the controller selects the right output stream
(from A_OUT, B_OUT, C_OUT) to correctly retrieve the data from the
PolyMem.

All the results we present further in this section are obtained
using the STREM-Copy application, which enables us to measure
the achieved aggregated bandwidth for a design with 1 read and 1
write port, and report them using the standard reporting of the
STREAM benchmark itself.

For measurements, we split the design in three separate stages:
Load, Offload, and Copy. The current stage is specified by the
host through the Mode signal. During the Load stage, the three
vectors (A, B and C) are loaded into PolyMem, which is split in
three (equally-sized) regions, to store each of these arrays. The
Controller makes sure each array is written in its own space.
In the second stage, Copy, the elements contained in vector A
are copied in vector C. The parallel read and write operations
can happen in simultaneously: the controller selects the feedback
loop from the output port of PolyMem. The delay introduced
by the read operation (i.e., its latency), is taken into account by
our design, ensuring that the controller’s inputs to PolyMem
are correctly aligned with the output of the parallel memory.

36 a parallel software cache

The required delay applied on the output data is 14 clock cycles
(estimated by Maxeler’s tools). Finally, in the last stage, Offload,
the host retrieves the data from the PolyMem(A, B and C) using
three separate streams.

Each of these stages is ran in isolation, orchestrated by the host.
The use of blocking calls ensures the separation between stages,
also enabling a clear separation between the stages’ execution
times. Our focus is on the accurate measurement of the Copy
stage, which represents the actual STREAM-Copy application,
and is used to benchmark MAX-PolyMem’s bandwidth.

For our experiments, we synthesized this design using a Poly-
Mem with 8 lanes (p × q = 2 × 4). Because we access data
in rows only, we have used the RoCo scheme. All arrays use
64-bit elements. The maximum allocated size for each array is
170× 512× 8 bytes, which amounts to around 700KB. This limi-
tation is due to the STREAM design, using 2 read ports, which
translates to 2MB of storage effectively available. However, be-
cause STREAM-Copy only uses one read port, the design was
optimized at synthesis - i.e., its complexity was reduced to that
of a single read port design. Thus, we were able to synthesize
this STREAM-Copy design with one read and one write ports at
120MHz, just 2 MHz lower than the maximum clock frequency
for a 2048KB configuration with a single read port listed in Ta-
ble 3.4.

Figure 3.10 shows the combined read/write throughput we
measured with the Copy application, without the data transfers
- which happen in separate stages and whose execution time
does not contribute to our measurements. The reported data
are obtained by measuring 1000 runs of the copy operation, to
ensure sufficient measurement resolution and to limit the impact
of the minimum overhead of the host-FPGA signal communi-
cation. This minimum overhead is, according to our dedicated
measurements, around 300ns, and interferes with any measure-
ments of applications with comparable runtimes. This effect is
visible on the left side of the graph of Figure 3.10, before the
memory reaches its sustained bandwidth.

As for the theoretical peak of this memory, we have 2 ports,
each with 8 memory lanes, each lane being 64-bit wide. Thus,
the aggregated (read + write) theoretical bandwidth of this copy-

3.5 related work 37

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700

M
B/
s

Copied	Data	(KB)

Figure 3.10: Copy bandwidth (aggregated).

ing operation is 2× 8× 8× 120 = 15360 MB/s. The maximum
measured throughput we obtained from our STREAM Copy
benchmark is 15301 MB/s, which represents more than 99% of
the theoretical bandwidth. We conclude that our STREAM im-
plementation validates the peak performance of MAX-PolyMem,
demonstrating very little overhead when using the memory in
practice.

3.5 related work

Building a memory hierarchy for FPGA kernels is recognized as
a difficult, error-prone task [1, 64]. For example, [1, 10, 28, 51, 87]
focus on the design of generic, traditional caches. By comparison,
our work proposes a parallel, polymorphic memory which acts
as a caching mechanism between the DRAM and the processing
logic; instead of supporting placement and replacement policies,
our memory is configured for the application at hand, and it is
directly accessible for reading and writing.

Application-specific caches have also been investigated [10, 63,
86], though none of these are polymorphic or parallel. Of special
interest to this work is [56], where the authors demonstrate why
and how different caches can be instantiated for specific data
structures with different access patterns. PolyMem starts from

38 a parallel software cache

a similar idea, but, benefiting from its multi-view, polymorphic
design, it improves on it by using a single large memory for all
these data structures.

Many of PolyMem’s advantages arise from its PRF-based de-
sign [17], which is more flexible and performs better than alter-
native memory systems [21, 41, 58, 60]; its high performance in
scientific applications has also been proven for practical applica-
tions [15, 18, 65].

In summary, compared to previous work on enabling easy-
to-use memory hierarchies and/or caching mechanisms for FP-
GAs, PolyMem proposes a PRF-based design that, to the best
of our knowledge, is the first to support polymorphic parallel
accesses through a single, multi-view, application-specific soft-
ware cache. Moreover, MAX-PolyMem is the first prototype of a
parallel software cache written entirely in MaxJ, and targeted at
Maxeler DFEs.

3.6 summary

This chapter focused on the performance improvement of FPGA-
accelerated applications through increased memory-system par-
allelism. In this context, PolyMem is an easily configurable, 2D
multi-bank software caching mechanism which provides both
performance - by combining BRAMs, multi-view parallel data
accesses, and concurrent read and write operations - with the
flexibility of read/write operations. Due to its multi-view paral-
lel accesses, PolyMem enables applications with dense and/or
sparse memory access patterns to benefit from memory-system
parallelism.

We have implemented our prototype on the Maxeler platform,
using MaxJ. Thus, MAX-PolyMem is a high bandwidth parallel
caching mechanism, fully implemented in MaxJ, for Maxeler’s
DFEs. As such, it can be directly integrated in other MaxJ designs
which require a parallel memory, as proven by our STREAM
implementation.

We have tested the limits of our prototype on the Maxeler
Vectis DFE board. Our results show that the design can utilize
the entire capacity of on-chip BRAMs, and parallel memories
up to 4MB, featuring up to 16-lanes, and/or supporting up to 4

3.6 summary 39

read ports are feasible. Assuming dense access patterns, MAX-
PolyMem’s estimated peak bandwidth is up to 22GB/s for writes
and above 32GB/s for reads. Finally, using a MaxJ implementa-
tion of the STREAM-Copy benchmark, we were able to confirm
that MAX-PolyMem can achieve more than 99% of the estimated
aggregated (read+write) peak bandwidth in practice.

Additional improvements that can be made to the implemen-
tation of our design are left for future work. The further devel-
opment of a proof-of-concept, systematic method to use MAX-
PolyMem for more complex applications is also desirable. In fact,
our ultimate goal is to provide an HLS toolchain that can analyze
applications, determine the requirements and configurations for
the most suitable PolyMem based configurations, and enable the
seamless integration of these high-bandwidth caching mecha-
nisms with the target applications. A first step towards this goal
is presented in the next chapter.

4
A P P L I C AT I O N - C E N T R I C PA R A L L E L M E M O R I E S

Memory bandwidth is a critical performance factor for many
applications and architectures. Intuitively, a parallel memory
could be a good solution for any bandwidth-limited application,
yet building application-centric custom parallel memories remains a
challenge. In this chapter, we present a comprehensive approach
to tackle this challenge, and demonstrate how to systematically
design and implement application-centric parallel memories. We
build this approach "on top" of the parallel memory design
presented in Chapter 3. Specifically, our approach (1) analyzes
the application memory access traces to extract parallel accesses,
(2) configures the parallel memory for maximum performance,
and (3) builds the actual application-centric memory system. We
further provide a simple performance prediction model for the
constructed memory system.

We evaluate our approach with two sets of experiments. First,
we demonstrate how our parallel memories provide performance
benefits for a broad range of memory access patterns. Second,
we prove the feasibility of our approach and validate our perfor-
mance model by implementing and benchmarking the designed
parallel memories using FPGA hardware and a sparse version
of the STREAM benchmark. Our results demonstrate that such
a systematic approach is feasible, thus addressing RQ2: Can we
define and implement a systematic, application-centric method
to configure a hardware parallel memory?

This chapter is based on:
Giulio Stramondo, Cătălin Bogdan Ciobanu, Ana Lucia Varbanescu,
and Cees de Laat “Towards application-centric parallel memories” [73],
in European Conference on Parallel Processing.

Giulio Stramondo, Cătălin Bogdan Ciobanu, Cees de Laat,
and Ana Lucia Varbanescu “Designing and building application centric
parallel memories” [72], in Concurrency and Computation: Practice and
Experience.

41

42 application-centric parallel memories

4.1 introduction

Many heterogeneous systems are currently based on massively
parallel accelerators (e.g., GPUs), built for compute-heavy ap-
plications. Although these accelerators offer significantly larger
memory bandwidth than regular CPUs, many kernels using
them are bandwidth-bound. This means that, in practice, more
bandwidth is needed for most of our applications. Therefore, our
work addresses the need for increased bandwidth by enabling
more parallelism in the memory system. In other words, for
bandwidth-bound applications, this work demonstrates how to
build heterogeneous platforms using parallel-memory accelera-
tors.

Designing and/or implementing application-specific parallel
memories is non-trivial [4]. Writing the data efficiently, reading
the data with a minimum number of accesses and maximum
parallelism, and using such memories in real applications are
significant challenges. In this paper, we describe our compre-
hensive approach to designing, building, and using parallel-
memory application-specific accelerators. Our parallel memory
is designed based on PolyMem [14], a polymorphic parallel mem-
ory model with a given set of predefined parallel access patterns.
Our approach follows four stages: (1) analyze the memory ac-
cess trace of the given application to extract parallel memory
accesses (Section 4.2), (2) configure PolyMem to maximize the
performance of the memory system for the given application
(Sections 4.3.1- 4.3.3), (3) compute the (close-to-)optimal mapping
and scheduling of application concurrent memory accesses to
PolyMem accesses (Figure 4.1, Section 4.3.4), and (4) implement
the actual accelerator (using MAX-PolyMem), also embedding
its management into the host code (Section 4.5.1).

The performance of our accelerators is assessed using two met-
rics: speed-up against an equivalent accelerator with a sequential
memory, and efficiency. Based on a simple, yet accurate model
that estimates the bandwidth of the resulting memory system.
Using this estimate and benchmarking data, we could further
estimate the overall performance gain of the application using
the newly built heterogeneous system.

4.2 preliminaries and terminology 43

Application Parallel Memory

Access
Trace

Supported
Patterns

Mapping

Figure 4.1: Customizing parallel memories. Our research focuses on
the mapping of the access trace from the application to the
parallel access patterns of the parallel memory.

We validate our approach using 10 Sparse STREAM instances:
the original (dense) and 9 variants with various sparsity levels
(Section 4.5). We demonstrate how our method enables a seam-
less analysis and implementation of 10 accelerators in hardware
(using a Maxeler FPGA board). Finally, using real benchmark-
ing data from the PolyMem-based heterogeneous systems, we
validate our performance model.
In summary, our contribution in this work is four-fold:

• We present a methodology to analyze and transform ap-
plication access traces into a sequence of parallel memory
accesses.

• We provide a systematic approach to optimally config-
ure a polymorphic parallel memory (e.g., PolyMem) and
schedule the set of memory accesses to maximize the per-
formance of the resulting memory system.

• We define and validate a model that predicts the perfor-
mance of our parallel-memory system.

• We present empirical evidence that the designs generated
using our approach can be implemented in hardware as
parallel-memory accelerators, delivering the predicted per-
formance.

4.2 preliminaries and terminology

In this section we remind the reader the terminology and basic
definitions necessary to understand the remainder of this chapter.

44 application-centric parallel memories

4.2.1 Parallel Memories

A parallel memory enables the access to multiple elements in
parallel. It can be realized by combining several sequential memo-
ries.The number of sequential memories used in implementing
such a parallel memory represents the maximum number of ele-
ments that can be read in parallel - also called width of the parallel
memory. The amount of data that can be stored in the (parallel)
memory is called memory capacity.

A specific element contained in a PM is identified by its location,
a combination of a memory module identifier (to specify which
sequential memory hosts the data) and an in-memory address
(to specify where within that memory the element is stored).
We call this pair the parallel memory location of the data element.
Formally, thus, loc(A[I]) = (mk, addr), k = [0..M), where A[I]
represents an element of the application - see Section 4.2.2., mk
is the memory module identifier, M is the width of the PM, and
addr is the in-memory address.

Our approach focuses on non-redundant parallel memories, i.e.,
memories use a one-to-one mapping between the coordinate of an
element in the application space and a memory location, can use
the full capacity of all the memory resources available, and data
consistency is guaranteed by avoiding data replication. However,
these parallel memories restrict the possible parallel accesses:
only elements stored in different memories can be accessed in
parallel (see Section (see Chapter 2).

4.2.2 The Application

We use the term application to refer to the entity using the PM to
read/write data - e.g., a hardware element directly connected to
the PM, or a software application interfaced with the PM.
As seen in Chapter 2, we consider the following terminology:

• The data of an application is stored in an N-dimensions
array A;

• A[I] = A[i0][i1]...[iN−1] are the coordinates of element
I = (i0, i1, ..., iN−1) in the application space.

• A memory access is a read/write memory operation.

4.2 preliminaries and terminology 45

• A concurrent access is a concurrent set of memory accesses,
A[Ij], j = 1..P, which the application can perform concur-
rently.

• An application memory access trace is a temporally-ordered
series of concurrent accesses.

• A parallel memory access is an access to multiple data ele-
ments which actually happens in parallel.

Ideally, to maximize the performance of an application, any
concurrent access should be a parallel access, happening in one
memory cycle. However, when the size of a concurrent access
(P) is larger than the width of the PM (M), a scheduling step is
required, to schedule all P accesses on the M memories. Our goal
is to systematically minimize the number of parallel accesses
for each concurrent access in the application trace. We do so by
tweaking both the memory configuration and the scheduling
itself.

Tweaking the memory configuration

To specify a M-wide parallel access to array A – stored in the PM
–, one can explicitly enumerate M addresses (A[I0]...A[IM−1]), or
use an access pattern. The access pattern is expressed as a M-
wide set of N-dimensional offsets - i.e.,{(o0,0, o0,1, ..., o0,N−1) −
(oM−1,0, oM−1,1, ..., oM−1,N−1)}. Using a reference address - i.e.
A[I] - and the access pattern makes it possible to derive all M ad-
dresses to be accessed. For example, for a 4-wide access (M=4) in
a 2D array (N=2), where the accesses are at the N,E,S,W elements,
the access pattern is {(−1, 0), (0,−1), (1, 0), (0, 1)}. When com-
bining the pattern with a reference address - e.g., (4,4) - we obtain
a set of M element coordinates - e.g, {(3, 4), (4, 3), (5, 4), (4, 5)}.
We call the operation of instantiating a memory access pattern
into a set of addresses based on a reference address resolving the
pattern. In Section 4.3.2 we will use the function resolve_pattern(p,a)
- where p is an access pattern and a is a reference address - to
indicate this operation.

As defined in Chapter 2, in definition 3, a set of memory
accesses A[I0]..A[IQ−1] form a parallel memory access iff the set
constitutes a conflict-free parallel access.

46 application-centric parallel memories

To map the access to an element in application space to a
parallel access in PM space, we need to define a mapping function
that guarantees M-wide conflict free accesses. Determining the
function to use is a key challenge in defining a custom parallel
memory.

Definition 4 (Memory Mapping Function) The Memory Mapping
Function (MMF) maps an application memory access to its parallel
memory location.

MMF : (A[I], M, D[I])→ (mk, addrk), k = [0..M)

where I = (i0, i1, ..., iN−1) are the coordinates of the access in the
application space, M is the width of the parallel memory, and D[I] are
the sizes of each dimension of the application space array.

We note that due to the restriction that only conflict-free ac-
cesses can be parallel accesses, there is a limited set of access
patterns that a parallel memory can support. These patterns are
an immediate consequence of the MMF.

A PM configuration is the pair (MMF, C), where MMF is a
mapping function and C is the capacity of the PM. Customizing
a parallel memory entails finding, for a given application, the
configuration that minimizes the number of parallel accesses to
the PM.

In the remainder of this paper we focus on a methodology to
configure a custom parallel memory with the right M, C, and
MMF for a given application (see Section 4.3 and further).

Scheduling concurrent accesses

Once the parallel memory configuration is known, the trans-
formation between the application concurrent accesses and the
memory parallel accesses is necessary. We call this transformation
scheduling, and note it can be static - i.e., computed pre-runtime,
per concurrent access - or dynamic - i.e., computed at runtime. In
this work, we assume static scheduling is possible, and the actual
schedule is an outcome of our methodology (see Section 4.3 and
further).

4.3 scheduling an application access trace to a pm 47

4.3 scheduling an application access trace to a pm

In this section we describe two approaches for scheduling an
application access trace using a set of PM parallel access patterns.
The first one finds an optimal solution to this problem - the
minimum number of PM accesses that cover the application
access trace - using ILP. The second one proposes an alternative to
ILP, in the form of a heuristic method which trades-off optimality
for speed. Finally, we end this section with an overview of our
full approach towards application-centric parallel memories and
a simple predictive model to calculate the performance of the
resulting memory system.

4.3.1 The set covering problem

We express the problem of scheduling an application access trace
onto a set of PM accesses as a particular instance of the set
covering NP-complete problem [81].

Definition 5 (Set Covering[81]) Given a universe U of n elements,
a collection of sets S = {S1, ..., Sk}, with Si ⊆ U, and a cost function
c : S→ Q+, find a minimum-cost subset of S that covers all elements
of U.

The set cover can be formulated as an integer program:

minimize ∑
Si∈S

c(Si) · xSi

subject to ∑
Si :e∈Si

xSi ≥ 1, e ∈ U.

In this formulation, xSi = {0, 1} is a variable indicating if set Si
is part of the solution, c(Si) is the cost of set Si, and the solution
is constrained to have for each element e ∈ U at least one set
Si : e ∈ Si.

4.3.2 From Concurrent Accesses to Set Covering

An optimal schedule of an application access trace on a set of PM
parallel accesses can be found by reducing this problem to a set

48 application-centric parallel memories

covering one, and leveraging the ILP formulation discussed in the
previous section. Although an application access trace contains a
list of application concurrent accesses, we schedule each of those
separately. For every application concurrent access, the universe
U is formed by all accesses. From the PM predefined parallel
access patterns, we define S as the collection of all possible
parallel accesses in PM (see algorithm 1). Finally, the solution
obtained using an ILP solver, Smin, Smin ⊆ S, is a list of sets which
optimally cover the concurrent accesses, and will be converted
back into a sequence of parallel memory accesses.

Algorithm 1 Generation of the Collection of Sets

1: S← ∅
2: A← {all application elements}
3: U← {all accessed elements}
4: P← {PM parallel access patterns}
5: for p ∈ P do
6: for a ∈ A do
7: pa← resolve_pattern(p, a).
8: Spa ← pa ∩U.
9: S← S∪ Spa

10: end for
11: end for
12: return S.

Algorithm 1 shows how to generate S, from which the min-
imal coverage will be extracted. Set P contains the list of PM
conflict-free accesses patterns, and it is obtained from the PM
configuration. Set A contains the coordinates of the application
data. Each pair of an application element and an access pattern
(i.e., elements from A and P, respectively) is resolved into a set
of coordinates of application elements, pa, by resolve_pattern (see
Section 4.2.1); To map our problem to the ILP formulation above
we need to guarantee that the union of the collection of subsets
in S is equal to the universe U. This is done by removing the
elements that are not being accessed in the concurrent access -i.e.
the elements in A but not in U- from the parallel access pa. The
elements of S will be all these Spa sets, for which it holds that⋃

Spa∈S Spa = U.

4.3 scheduling an application access trace to a pm 49

To solve our original problem, we are interested in finding
the minimum collection of sets Smin such that

⋃
S∈Smin

S = U

and Smin ⊆ S, so the cost function will be defined as c(Spa) =

1, ∀Spa ∈ S. Once S, U, c are defined, an ILP solver can be used
to compute Smin - the minimum collection of sets that covers the
universe U.

4.3.3 An Heuristic Approach

As our preliminary results show that ILP is a major bottleneck in
our system, speed-wise, we also investigate the possibility to offer
an alternative to the ILP formulation for solving the scheduling
problem. Therefore, we have designed and implemented a heuris-
tic approach, based on a greedy algorithm (see Algorithm 2). Our
heuristic is based on [81], and the solution is guaranteed to be
within an harmonic factor from the optimal solution (extracted
with the ILP approach).

Algorithm 2 Heuristic Application Trace Scheduling

1: U← {all accessed elements}
2: S← {possible parallel accesses}
3: Sh ← ∅
4: E← U

5: while E 6= ∅ do
6: Find Spa ∈ S s.t. |E\Spa| is minimum.
7: Sh ← Sh ∪ Spa.
8: E← E\Spa

9: end while
10: return Sh.

Algorithm 2 shows our heuristic approach. E is a set used
to keep track of the elements still to be covered with a parallel
access, and it is initialized with U, the set containing all the
elements in the concurrent access. S contains all parallel accesses
from A for a given PM configuration (Algorithm 1, Section 4.3.2).
In each iteration, the parallel access Spa ∈ S, which contains the
maximum number of elements that still needs to be covered,
is added to the solution, and the elements covered by Spa are
removed from E. Once all the elements in the application concur-

50 application-centric parallel memories

rent access have been covered, the algorithm returns the set of
parallel access Sh containing the solution.

4.3.4 The Complete Approach

Our complete approach is presented in Figure 4.2. We start from
the Application Access Trace, a description of the concurrent ac-
cesses in the application, discussed in detail in Section 4.2.2.
We test different parallel memory configuration by providing
different Configuration Files to our Memory Simulator. Each Config-
uration File contains details regarding mapping scheme, number
of parallel lanes and capacity of the parallel memory. The Memory
Simulator produces all the available parallel accesses, compatible
with the given parallel memory Configuration File, that cover ele-
ments contained in the Application Access Trace. The set of parallel
accesses is then given as input to our ILP or Heuristic solver -
implemented as described in Sections 4.3.2 and 4.3.3. The Solver
selects the minimum number of parallel accesses that fully cover
the elements in the Application Access Trace, thus producing a
Schedule of parallel memory accesses. The Schedule can then di-
rectly be used in the hardware implementation of the application
parallel memory.

An important side-effect of our approach is that the informa-
tion contained in the schedule can further be used to accurately
estimate the performance of the generated memory system. Thus,
to calculate the achievable average bandwidth of the memory
system for the given access trace, we can “penalize” the theoreti-
cal bandwidth (i.e., assuming that all lanes are fully used) by our
efficiency metric: BWreal = BWpeak × E f f iciency = (Frequency ∗
Bitwidth ∗ Lanes)× Nseq

Nelements
. Frequency is the frequency the PM is

operating at, Bitwidth is the size of each element stored in the
PM and Lanes represents the amount of elements that can be
accessed in parallel; Nseq is the number of required sequential
accesses and Nelements is the total number of elements accessed
by the PM using a Schedule.

4.4 evaluation 51

Memory
Simulator

ILP/
HEU

Solver

Schedule
Configuration

File

Application Access
Trace

Set of all
Parallel

Accesses

Analysis

Hw Implementation

Figure 4.2: An overview of our complete approach.
4.4 evaluation

This section describes a statistical analysis, based on simulation
results, of the potential benefits of PMs for different types of
applications, characterized by their memory access patterns. It
further compares the solutions obtained by our heuristic against
the optimal solutions produced by the ILP algorithm (see Sec-
tion 4.3).

4.4.1 Experiment Setup

To empirically demonstrate the potential of parallel memories to
improve bandwidth and, ultimately, provide speed-up over non-
parallel solutions even for non-dense memory access patterns,
we propose an experiment where we test the PM for a large
number of synthetic memory access patterns. We assume that
the capacity of the PM is sufficient to contain the application
data. For each pattern, we measure both the performance gain
and the efficiency of using PMs. This experiment also enables
us compare the two algorithms for scheduling a memory access
trace (see Sections 4.3.3 and 4.3.2).

synthetic application concurrent accesses The set
of concurrent accesses - strided - is generated assuming an 8x8

data structure and using three parameters: offset, number of
reads, and number of skips. The pattern is generated alternating
series of reads and series of skips. The offset defines the number
of elements to skip from the element [0][0]. The entire set of

52 application-centric parallel memories

synthetic concurrent accesses has been generated using 8 by 8

patterns with offset varying from 0 to 7, number of reads varying
from 1 to 8, number of skips from 1 to 8. This resulted in a total
of 512 application access traces.

pm configurations The Memory Mapping Functions
(MMFs) used in the PM configurations guarantee conflict free
access to the following 2D patterns(see Figure 4.1): Rectangle,
Diagonal, Secondary Diagonal, Row, Column, and Transposed
Rectangle. We assumed a memory capacity sufficient to store all
application data, and experimented with a PM width, M, from
2 to 8 (M=8 is sufficient to allow full rows/columns/diagonals
to be read from our synthetic concurrent accesses) - and all
combinations of the PRF access patterns. In total, we tested 448

different PM configurations.

evaluation metrics We introduce two metrics to evaluate
how an application benefits from a parallel memory: speed-up
and efficiency.

Speed-up is a measure of the performance gain from using
a custom parallel memory, defined as: Speed− up =

Nseq
Npar

. Nseq

refers to the number of accesses required using a sequential
memory - i.e. equal to the number of elements in the applica-
tion concurrent access - Npar is the number of parallel memory
accesses, obtained using the algorithms in Section 4.3.

Efficiency is a measure of the "wasted accesses" when using a
custom parallel memory, defined as: E f f iciency =

Nseq
Nelem

. Nelem is
the total number of elements accesses by the PM and it is equal
to Npar ×M, where M is width of PM. We note that efficiency is
an indirect measure of the overhead of a parallel memory for a
sparse access, and can be correlated with the power efficiency of
the memory system.

4.4.2 Results

We have scheduled all 512 synthetic concurrent accesses (Sec-
tion 4.4.1) on all 448 memory configurations (Section 4.4.1) using
both the algorithms proposed in Section 4.3 - ILP and heuristic.

4.4 evaluation 53

To determine whether the custom parallel memories are suc-
cessful in improving the performance of different applications,
we analyze speed-up; to determine whether the heuristic algo-
rithm can be used as a replacement of the ILP-based solution, we
analyze the observed trade-off between the optimality (by ILP
method) and speed (by the heuristic method).

speed-up Figure 4.3a shows the speed-up results, grouped
per PM-width. We make the following observations:

• The bottom parts of the plots, indicating low speed-ups,
are very narrow, showing that only very few concurrent
accesses did not benefit from using PM. This is correlated
to the sparsity of the memory accesses in the concurrent
access and the fact that the parallel access patterns we used
only allow dense parallel accesses.

• The top parts of the violins, corresponding to high speed-
ups, are also narrow, indicating that only few concurrent
accesses can gain maximum speed-up. Moreover, the figure
also shows that for odd numbers of memories (3,5,7), the
occurrence of close-to maximum and maximum speed-up is
very rare: in fact, 1-5 patterns, at most, reach the maximum).

• The majority of the concurrent accesses lies in between
those two extremes, showing that they gain significant
speed-up by using PM, but that it is not possible to fully
utilize the all memory banks.

We note that our efficiency results (not included due to space
limitations) show a similar picture: few (concurrent access, PM
configuration) pairs gain maximum or minimum efficiency, while
the average efficiency varies between 0.8 for 2 memories and 0.58

for 8 memories.

ilp versus heuristic Figure 4.3b presents the speed-up
results for all concurrent accesses and memory configurations,
using the heuristic algorithm instead of the ILP. From the figure,
there is little difference in the distribution of the speed-ups: few
configurations at the bottom and at the top, and most configura-

54 application-centric parallel memories

(a) Violin Plot showing the results
obtained using the ILP algo-
rithm.

(b) Violin Plot showing the results
obtained using the HEU algo-
rithm.

(c) Density plot of the ratio between
the ILP speed-up and the HEU
speed-up.

Figure 4.3: Evaluation of the ILP and Heuristic (HEU) results.

tions in the middle. On average, the heuristic approach gives a
speed-up of 0,05% below the optimum computed with ILP.

To see in how many cases the difference between the ILP and
heuristic approaches is significant, we compute the ratio Speedupheu

SpeedupILP
and plot the density distribution of this ratio in Figure 4.3c. In

4.5 experiments and results 55

the large majority of cases, the speed-ups are similar, with a loss
is less than 15%; the worst result obtained by the heuristic is
53% of the optimal speed-up for one single configuration. These
results indicate that the heuristic algorithm is acceptable as a
replacement of the ILP when quick estimation is required.

4.5 experiments and results

We evaluate the feasibility and performance of our approach by
designing and implementing 10 parallel-memory accelerators on
an FPGA-based system. We use a Maxeler Vectis board, equipped
with a Xilinx Virtex-6 SX475T FPGA1 featuring 475k logic cells
and 4MB of on-chip BRAMs.

4.5.1 MAX-PolyMem

Our parallel memory is based on PolyMem, a design inspired
by the polymorphic register file [16]. The hardware implemen-
tations and performance analysis presented in this section are
all based on the Maxeler version of PolyMem, MAX-PolyMem,
presented in Chapter 3. We include here a brief reminder of
MAX-PolyMem’s design and implementation characteristics.

PolyMem is a non-redundant parallel memory, using multi-
ple lanes to enable parallel data access to bi-dimensional data
structures, and a specialized hardware module that enables par-
allelism for multiple access patterns. For example, an 8-lane
PolyMem allows reading/writing 8 elements at a time from/to a
2D memory. The access shapes supported by PolyMem, defined
as bi-dimensional shapes, are Row, Column, Rectangle, Trans-
posed Rectangle, Main Diagonal, and Secondary Diagonal. Due
to its multi-view design [16], PolyMem supports several access
schemes, i.e, it can perform memory operations with different
access patterns without reconfiguration:

• ReO: Rectangle.

• ReRo: Rectangle, Row, Diagonal, Sec. Diagonal.

1 Xilinx Virtex-6 Family Overview:
http://xilinx.com/support/documentation/data_sheets/ds150.pdf

http://xilinx.com/support/documentation/data_sheets/ds150.pdf

56 application-centric parallel memories

Controller

Host
PolyMem

MUX

MUX

A_IN
B_IN

C_IN

D
EM

U
X

A_OUT
B_OUT

C_OUT

Wi Wj WShape Ri Rj RShape

Out_2

ModeVector
Sizes

PCI-e

STREAM
Kernels

Out_1

Figure 4.4: The implementation of the STREAM benchmark for MAX-
PolyMem (figure updated from [14]). All transfers between
host (the CPU) and PolyMem (on the FPGA) are done via
the PCIe link.

• ReCo: Rectangle, Column, Diagonal, Sec. Diagonal.

• RoCo: Row, Column, Rectangle.

• ReTr: Rectangle, Transposed Rectangle.

4.5.2 Sparse STREAM

To prove the feasibility of our approach, from application access
traces to hardware, we adapt the STREAM benchmark [48, 79], a
well-known tool for memory bandwidth estimation in modern
computing systems, to support sparse accesses.

The original STREAM benchmark uses three dense vectors -
A, B and C - and proposes four kernels: Copy (C=A), Scale
(A = q · B), Sum (A = B + C), and Triad (A = B + q · C).

We have designed a version of STREAM for MAX-PolyMem [14].
A high-level view of our design2, is presented in Figure 4.4.

However, the original STREAM does not challenge our ap-
proach because it uses dense, regular accesses. We therefore pro-
pose Sparse STREAM, an adaptation of STREAM which allows
2D arrays and configurable sparse accesses. Table 4.1 presents 10

possible variants of Sparse STREAM, labeled based on their read
access density. The main difference between these variants is its
number of sequential accesses, Nseq.

We apply our methodology for each variant. Thus, for each
variant, we obtain the (close-to-) optimal schedule per access
scheme. The schedule is characterized by the number of parallel

2 STREAM for MAX-PolyMem is open-source and available online [75].

4.5 experiments and results 57

Pattern description ReRo Scheme RoCo Scheme Selected

Density Pattern Nseq Npar Nelements Speed-up Efficiency Npar Nelements Speed-up Efficiency Scheme

20 RR________RR____ 17408 4369 34952 3.98 49.81 4369 34952 3.98 49.81 ReRo

25 R___R___R___R___ 21760 10880 87040 2.00 25.00 2816 22528 7.73 96.59 RoCo

33 R__R__R__R__R__R 29013 3724 29792 7.79 97.39 9671 77368 3.00 37.50 ReRo

40 RRRR____RRRR____ 34816 8687 69496 4.01 50.10 8687 69496 4.01 50.10 ReRo

50 R_R_R_R_R_R_R_R_ 43519 10880 87040 4.00 50.00 5504 44032 7.91 98.83 RoCo

60 RRRRRR____RRRRRR 52224 8821 70568 5.92 74.01 8821 70568 5.92 74.01 ReRo

66 RR_RR_RR_RR_RR_R 58026 7350 58800 7.89 98.68 9710 77680 5.98 74.70 ReRo

75 RRR_RRR_RRR_RRR_ 65279 10880 87040 6.00 75.00 8192 65536 7.97 99.61 RoCo

80 RRRRRRRR__RRRRRR 69632 8806 70448 7.91 98.84 8806 70448 7.91 98.84 ReRo

100 RRRRRRRRRRRRRRRR 87040 10880 87040 8.00 100.00 10880 87040 8.00 100.00 ReRo

Table 4.1: The 10 variants of the STREAM benchmark and the predicted
performance of the calculated schedules for two schemes
(ReRo and RoCo). The other schemes are omitted because
they are not competitive for these patterns. In the patterns,
only the R elements need to be read.

accesses Npar, and the total number of accessed elements Nelements
(Section 4.3), from which we calculate speed-up and efficiency per
access scheme. We present these results for two schemes (namely,
ReRo and RoCo) in Table 4.1. We select the best performing to
test in hardware.

The final step in our approach is the translation from a sched-
ule to a hardware implementation of our parallel-memory ac-
celerator. The key challenge is to enable the controller (see Fig-
ure 4.4) to orchestrate the parallel memory operations based on
the given schedule. Our current prototype stores the schedule,
which contains information regarding the required sequence of
parallel accesses (coordinates, shape, and mask), in an on-chip
Schedule memory.

4.5.3 Results

We have implemented all 10 STREAM variants in hardware by
configuring MAX-PolyMem, for each test-case, with a memory
of 261120 elements (i.e., the maximum capacity available fit-
ting the arrays A, B, C and the schedule memory), and the best
scheme (see Table 4.1). We have measured the performance of
each STREAM component and compared it against our band-
width estimation.

58 application-centric parallel memories

We measure the bandwidth of our 10 Sparse STREAM kernels
(average over 10000 runs)*3. The results - predicted vs. measured -
are presented in Figure 4.5. We make the following observations:

• Our performance model (see Section 4.3) accurately pre-
dicts the performance of the memory system (below 1%
error in most cases).

• For 6 out of the 9 sparse STREAM variants, we can achieve
close to optimal speed-up due to our parallel memory being
multi-view and polymorphic.

• For S-25, S-50, and S-75, the performance gain versus choos-
ing the alternative scheme used in this experiment is, ac-
cording to Table 4.1, of 70%, 50%, and 24%, respectively.

• Our STREAM PolyMem design uses only 25.98% of the
logic available in the Vectis Maxeler board. More informa-
tion regarding the resource usage is available in [14].

Overall, our experiments are successful: we demonstrated that
the schedule generated by our approach can be used in real-
hardware, and we showed that the measured performance is
practically the same with the predicted one.

4.6 related work

Research on using parallel memories to improve system memory
bandwidth has started in the 70s, and remains of interest today.
Parallel memories that use a set of predefined mapping functions
to enable specifically shaped parallel accesses have improved
to better support more shapes [29, 30, 42], multiple views, and
polymorphic access [16]. Approaches that derive an application-
specific mapping function [83, 88] have also emerged, constantly
improving the efficiency and performance of the generated mem-
ory systems. The current version of this work uses a polymorphic
parallel memory with fixed shapes, to which we add the novel
analysis and configuration methodology.

3 The overhead of uploading/downloading the arrays to PolyMem is not in-
cluded in these results.

4.7 summary 59

0.00

5.00

10.00

15.00

20.00

S-20 S-25 S-33 S-40 S-50 S-60 S-66 S-75 S-80 S-100

Ba
nd

w
id
th
	(G

B/
s)

The	10	STREAM	variants

Copy	(Measured)
Scale	(Measured)
Copy&Scale	(Predicted)
Copy&Scale	(Ideal)
Sum	(Measured)
Triad	(Measured)
Sum&Triad	(Predicted)
Sum&Triad	(Ideal)

Figure 4.5: The performance results (measured, predicted, and ideal)
for the 10 different variants of the STREAM benchmark.
The horizontal lines indicate the theoretical bandwidth of
MAX-PolyMem, configured with 8-byte data, 8 lanes, and 2

(for Copy and Scale) or 3 (for Sum or Triad) parallel oper-
ations. Running at 100MHz, MAX-PolyMem can reach up
to 12.8GB/s for 1-operand benchmarks and up to 19.6GB/s
for 2-operand benchmarks.

As for building such memories in hardware, a lot of research
has been invested in building application-specific caches for
FPGAs. Although successful, such research [10, 63, 86] does not
(yet) address parallel and/or polymorphic memories. Our work
fills this gap, by showing how to efficiently design a polymorphic,
multi-view parallel memory embedded into an FPGA-based
accelerator.

4.7 summary

Modern accelerators, currently embedded in heterogeneous sys-
tems, offer massive parallelism for compute-intensive applica-
tions, but often suffer from memory bandwidth limitations.
Our work investigates the benefits of building accelerators with
application-specific parallel memories as a solution to alleviate
this bottleneck. Our approach is especially effective for applica-
tions with large sets of concurrent accesses.

60 application-centric parallel memories

In this chapter we proposed an end-to-end workflow which,
given an application, analyzes the application access trace, con-
figures and builds a custom non-redundant parallel memory
(e.g., PolyMem), optimized for the data-intensive kernel of inter-
est, generates our parallel-memory accelerator in hardware, and
embeds it in the original host code.

We have empirically validated our approach using Sparse
STREAM with 10 different access densities. We demonstrated
that we can instantiate and benchmark all 10 designs in real hard-
ware (i.e., a Maxeler system and the MAX-PolyMem version).
Our experimental results demonstrate clear bandwidth gains,
and closely match our model’s predictions. To further perfect
this method, more work is needed on the analysis of more appli-
cations. Three important steps need to be taken in this direction:
(1) improve/automate the access traces extraction, (2) provide a
more efficient integration of the parallel-memory accelerator into
the host application, and (3) design an extension of the model
towards accurate full-application performance prediction.

5
C O M P U T E A N D M E M O RY S Y S T E M C O D E S I G N

As we see with most modern accelerators, the growing perfor-
mance gap between memories and processors effectively means
the memory system often determines the overall performance
and power consumption in silicon. One other solution (besides
that presented in Chapter 4) to address the increasing demand
in performance and energy efficiency of both embedded and
high performance computing systems is thorough novel system
architectures such as spatial processors.

The tight interdependency between the memory system and
spatial processor architectures suggests that they can be code-
signed. However, no effective methods and tools are available
for this process: the only possible alternative, the state-of-the-art
design methodologies for processor architecture, are ineffective
for spatial processor architectures because they do not include
the memory system.

In this chapter, we present µ-Genie, an automated framework
for codesign-space exploration of spatial processor architecture
and the memory system, starting from an application description
in a high-level programming language. In addition, we propose
a spatial processor architecture template that can be configured
at design-time for optimal hardware implementation. Thus, this
chapter addresses RQ3: Is there a systematic way to codesign
efficient processing and memory systems from a given applica-
tion?

This chapter is based on:
Giulio Stramondo, Manil Dev Gomony, Bartek Kozicki, Cees De
Laat, and Ana Lucia Varbanescu “µ-Genie: A Framework for Memory-
Aware Custom Processor Architecture Co-Design Exploration” [74], in
Digital System Design.

61

62 compute and memory system codesign

5.1 introduction

In modern embedded and high performance computing systems,
there is increasing interest in spatial processors. These process-
ing architectures consisting of physically distributed Processing
Elements (PEs), and are more energy efficient than traditional
general purpose processors and reconfigurable hardware accel-
erators. [3, 7, 9, 24, 59, 62, 69]. Despite the growing interest, we
are still far from having the right solutions and automated tools
for designing efficient, high-performance spatial processors. An
important drawback of existing design solutions is their inability
to take the memory system into account, despite compelling
evidence that the memory system (both on-chip and off-chip)
has become a dominant factor affecting the overall performance,
power consumption, and silicon area usage [22, 57, 84]. In this
work we argue that, given that the memory system and the
processing elements in a spatial processor architecture are so
tightly interdependent, they must be codesigned to efficiently use
the available resources. A memory-aware design produces spa-
tial architectures having bandwidth close to the bandwidth of
the memory system, effectively reducing the instantiation of un-
required resources. Codesigning becomes especially important
when considering the use of emerging memory technologies,
such as MRAM, eDRAM, PCM, or RRAM [8] in spatial pro-
cessors: they have higher integration density and lower power
than SRAM, but also come with additional "quirks" (e.g., MRAM
features different read and write latencies).

There are CAD tools [6, 19, 78] that reduce the increasing de-
sign complexity of typical application-specific processors. How-
ever, selecting an optimal spatial processor architecture, taking
into account the various trade-offs in latency, power consumption,
and area usage still requires extensive design-space exploration
(DSE) and cannot be performed using the existing CAD tools.
In addition, state-of-the-art design flows for application-specific
processor DSE focus on processing elements optimization [26, 35,
38, 50], and do not include the memory system, as illustrated
in Figure 5.1. Instead, co-optimization of the processor and the
memory system (including emerging memories) is typically done

5.1 introduction 63

through the optimization of cache replacement policies [40, 44,
52, 76].

Traditional design flow used for Application-Specific Processors

µ-Genie

Application
program

(in C/C++)

Spatial Processor
and Memory
Design Space
Exploration

Latency/Area/Power
trade-off

(Spatial Processor +
Memory)

Application-
Specific Processor

Design Space
Exploration

Latency/Area/Power
trade-off (Application-

Specific Processor)

Application-Specific
Processor architecture

Spatial
Processor

architecture

Memory
system

Figure 5.1: Difference between state-of-the-art design flow typically
used for traditional application-specific processors and the
proposed µ-Genie design flow for spatial processors.

This paper presents as main contribution µ-Genie (Section 5.2),
an automated framework for memory-aware spatial processor design-
space exploration. The framework presented in this work allows
the user to customize the different building blocks to be used
in the codesign of the spatial processor and memory system, ex-
plore different architectures automatically generated for a given
application, and estimate area, power and latency of each one of
the architectures.

This chapter highlights the following key contributions:

• Unprecedented configuration options: memory levels tech-
nologies (novel among similar tools), clock frequency (per
memory level, also novel), different read/write latencies,
and data-widths.

• A configurable PE architecture template (Section 5.6) that
allows fast prototyping of spatial processor hardware.

• The Modified Interval Partitioning (MIP) algorithm (Sec-
tion 5.4.3), that enables the memory-aware (co)Design Space
Exploration (Section 5.5).

To demonstrate the capabilities of µ-Genie, we cover three case-
studies, showing how a spatial processor can be designed for
two different applications and many configurations, including
those using MRAM or SRAM for the memory system, can be
generated, analyzed, and compared (Section 6.2).

64 compute and memory system codesign

Application Model
L2 read

Data
Dependency

Analysis

Design Space
Exploration

Most Parallel
Architecture

Most
Sequential

Architecture

Model
L2 write

Hardware
Architectures

Tradeoffs
Analysis

Implementation

RTL PE Programs

Architectural
Template

Configuration
Parameters

Figure 5.2: µ-Genie Framework.

Level 2
Memory
(SRAM,

MRAM,

eDRAM)

Level 1
Memory
(SRAM)

Spatial
Processor

1

2

3

Figure 5.3: The system under analysis.

5.2 the µ-genieframework

The µ-Genie framework, illustrated in Figure 5.2 takes two in-
puts, the Configuration Parameters - described in Section 5.3.2 -
and an Application - detailed in Section 5.3.1, and automatically
generates a set of hardware architectures, behaviorally equivalent
to the input application. The generated hardware architectures
can be realized as RTL implementations, using the architectural
templates described in Section 5.6. The rest of this section provides
a detailed analysis of the design and implementation of µ-Genie.

5.2.1 Model of Execution

The system architecture we assume in this work has two levels
of memory and a spatial processor (Figure 5.3). Level 1 memory
(L1M)1, the first memory level, and the smaller one in size, uses

5.2 the µ-genieframework 65

SRAM as it needs to be physically close to the processor for faster
access. The second level - Level 2 memory (L2M)1 - is larger in
size and can be implemented using any memory technology (on-
chip or off-chip), even with different access latency for read and
write operations. Note that L2M can run at a different clock speed
and different IO width than the processor and L1M. We assume
a model of execution following the three steps, from Figure 5.3,
shown by arrows representing the direction of data flow. Initially,
all the required input data for the application are available in
L2M. The input data is transferred to the processor, using L1M as
intermediate storage (step 1), the data is processed and the results
are temporarily stored in L1M (step 2), and, finally, the data
from L1M is transferred back to L2M (step 3). The data transfer
between L2M and L1M are handled by a Direct Memory Access
(DMA) controller. Note that our model of execution performs the
steps in a pipelined manner, hence only part of the data will be
stored in L1M at any given time.

µ-Genie lets the user specify the parameters of the L2M through
the Configuration Parameters. The L2M parameters are used to
model the data transfer between L2M and L1M (see 5.2.2 and
5.4.1). The L2M model is used to compute arrival time of input el-
ements in the L1M. The arrival time of the element in the L1M is
then used by the Modified Interval Partitioning (MIP) algorithm
- see 5.4.3, to produce spatial architectures having bandwidth
close to the bandwidth of the L2M. This effectively reduces the
instantiation of unrequired resources in both the L1M and the
spatial processor. The L1M is composed of multiple banks having
different depths. The number and depths of the banks composing
the L1M is determined by the MIP as described in 5.5.1.

5.2.2 The L2 Memory Model

Because L2M has higher access latency compared to the L1M
and spatial processor, we model the L2M assuming its data is
accessed in bursts. A read or write burst access to the L2M is

1 These memories are not to be seen as caches; thus, no cache policies are needed:
we schedule data movements at design time. This is why we call them "levels"
instead of "layers", and we abbreviate them with L1M and L2M instead of L1

and L2.

66 compute and memory system codesign

controlled by a Direct Memory Access (DMA) controller, with
the starting address and size of the burst given as input to the
DMA. After an initial setup latency, the accessed elements are
transferred in sequence from the start address to the end address,
from L1M to L2M in case of a write, and from L2M to L1M in
case of a read.

5.3 µ-genie : inputs

This section details the two inputs of µ-Genie: the application and
the Configuration Parameters.

5.3.1 Application

The applications that can be used as input to µ-Genie are com-
pletely defined at compile time, having control-flow instructions
not dependent on input data. Such applications enable the static
extraction of data dependency information performed by the
Data Dependency Analysis module (5.4.2). We currently support
C/C++ applications. However, as the framework uses the LLVM2

Intermediate Representation [43], it can be easily extended to
support other languages as well.

5.3.2 Configuration Parameters

The second input to the framework is a configuration file for
the different building blocks to be used for hardware architec-
ture realization. Through this file, the user can specify: different
compute units (e.g. multipliers, adders), process technology to
be used (e.g. 16nm, 28nm), the clock frequency of the processor
and L1M, and the clock frequency L2M. Moreover, the user can
specify the data-width used by the compute units, L1M and L2M.
Information to model the L2M burst accesses is also specified in
this file: the setup latency for write/read accesses, the type of
L2M to be used (e.g. MRAM, SRAM) and the size of the L2M.
The different parameters in the configuration file are then used to
access a database containing estimates (obtained by synthesis or

2 LLVM used to stand for Low Level Virtual Machine, but this abbreviation has
been officially removed.

5.4 µ-genie : analysis 67

from specs) of area usage, static and dynamic power, and latency
of each of the building blocks. Our L1M implementation uses
multiple memory banks of different sizes (see 5.5.1). To estimate
the resource usage of the different types of these memories we
built a linear model, using synthesis data. We compared the
ability of our linear model to predict area, latency and power
consumption against the data generated using the synthesis tool
and we found it to be accurate - less then 2% error in the area
and static energy model and less than 28% error in the dynamic
energy model.

5.4 µ-genie : analysis

This section describes the parts of the framework involved in
modeling the data transfers between L2M and L1M, Model L2
read and Model L2 write (5.4.1),the modules that perform data
dependence analysis, Data Dependency Analysis(5.4.2), and the
scheduling of the application operations (5.4.3).

5.4.1 L2 Memory Read and Write Modeling

The first operation performed by the framework is to compute
the transfer time of the application’s input data from L2M to
L1M, implemented in the Model L2 read block of Figure 5.2. Using
static analysis, we obtain details regarding the data structures
used in the application. For example, in a matrix vector multipli-
cation kernel, the static analysis extracts information about three
data structures: an input matrix and an input vector, containing
the input elements of the computation, and an output vector
containing the output elements of the computation. An address
in L2M is given to each input element used by the application;
different data structures are placed in consecutive memory ad-
dresses. The entire data transfer is modeled as a single burst-read
operation from L2M. The information required to compute the
arrival clock cycle of each input element to L1M is extracted
from the Configuration Parameters. Using this information, the
exact clock at which each input element arrives in L1M can be

68 compute and memory system codesign

Symbol Definition

AClki Clock at which element i arrives to L1M

Sr Setup Latency of a L2M burst read

RL2M L2M read latency (per read), in L2M clock cycles

AddL2Mi Offset of element i in the burst access

BL1M Data bitwidth of L1M

BL2M Data bitwidth of L2M

ClkL1M Clock Frequency of L1M

ClkL2M Clock Frequency of L2M

WBLL2M L2M write burst latency

Sw Setup Latency of a L2M burst write

WL2M L2M write latency (per write) in L2M clock cycles

O Total number of output elements

Table 5.1: Definition of symbols used in the equations

computed as seen in (1). The equation symbols are described in
Table 5.1.

AClki = Sr + RL2M ∗ (AddL2Mi + 1) ∗ BL1M

BL2M
∗ ClkL1M

ClkL2M
(5.1)

The schedule produced by the Modified Interval Partitioning
(MIP), discussed in 5.4.3, uses the arrival clock cycle computed
in this phase to determine when each input element will be avail-
able for computation in L1M. The latency of the MIP schedule
includes therefore the L2M→L1M transfer, and the computa-
tion; it does not take into account the L1M→L2M transfer of
the results (phase 3 in Figure 5.3). The Model L2 write block in
Figure 5.2 computes the latency of the L1M→L2M transfer. The
MIP computes the clock cycle at which computation ends (phase
2 in Figure 5.3) and the last data item is written in L1M. The
L1M→L2M transfer can start immediately after the last output is
generated. The latency of the L1M→L2M transfer is calculated
using (2),

WBLL2M = Sw + WL2M ∗O ∗ BL2M

BL1M
∗ ClkL1M

ClkL2M
(5.2)

where the symbols have been defined in Table 5.1.

5.4 µ-genie : analysis 69

5.4.2 Data Dependency Analysis

The Data Dependency Analysis (DDA) module operates in three
stages. The first two stages are the extraction of the Data Depen-
dency Graph (DDG)[33] from the application and the schedule
of the DDG using the As Soon As Possible (ASAP) and As Late
As Possible (ALAP) methodologies. These two steps are core ele-
ments in the analysis of high level code for hardware design[32].
Finally, the third step (see 5.4.3) maps DDG instructions to hard-
ware components - or PEs - using a modified Interval Partitioning
algorithm [53].

To extract the DDG from an application, we use LLVM and cus-
tom transformations. We first convert the input application code
to its LLVM Intermediate Representation. We then transform
the code into static single assignment (SSA) form and perform
full-loop unrolling on all of the application loops. After these
transformations, there will be no control flow instructions in the
application body, and each variable will be defined only once. It
is now possible to follow the definition and use chain of the vari-
ables to produce a Data Dependency Graph like the one shown
in Figure 5.4. The DDG represents each operation as a node - in
Figure 5.4 the input and output nodes represent respectively load
and store instructions, while oval nodes represent computations -
and each edge represents a dependency between operations.

We further process the obtained DDG, aiming to reduce the
length of the path between the input nodes and the output nodes.
This additional transformation is important because the length
of these paths is equivalent to the number of sequential opera-
tions required to obtain the outputs, which in turn determines
the latency of the application. Taking advantage of operation
associativity (where possible) we can transform a long sequence
of operations - like the one highlighted in Figure 5.4 - into an
equivalent shorter tree.

Next, we apply the ASAP and ALAP scheduling methodolo-
gies[32] to the generated DDG. These schedules will associate to
each DDG node a clock cycle where the instruction is executed,
and bound the design space of possible architectures by determin-
ing the maximally parallel architectures. We start by scheduling
the input nodes of the DDG using the arrival clock time of their

70 compute and memory system codesign

A[0]

mul6

B[0]

add7.1

A[1]

mul6.1

B[1]

add7.2

A[2]

mul6.2

B[2]

add7.3

A[3]

mul6.3

B[3]

add7.4

A[4]

mul6.4

B[4]

C[0]

Figure 5.4: A Data Dependency Graph: inverse triangles represent in-
put data, obtained from the load instructions; ovals describe
operations on data; the triangle at the bottom represents
the result, derived from a store instruction. Highlighted, a
chain of associative operations before being optimized by
the DDA module (5.4.2).

input data, computed as explained in Section 5.4.1, thus taking
into account the L2M - L1M transfer time. Next, we determine the
minimal latency required to obtain the outputs of the application
with the ASAP schedule: starting from the DDG input leafs, each
instruction node is scheduled as soon as its dependencies are
resolved. Once ASAP is completed, we can perform the ALAP
scheduling: starting from the output leaf nodes, each node is
scheduled as late as possible according to its dependencies. Once
ALAP is completed, every node is annotated with an ASAP clock
cycle and an ALAP one. The difference between these two clock
cycles, called instruction mobility, identifies an interval in which
the instruction can be scheduled without changing the overall
latency of the application.

The final stage of the Data Dependency Analysis module will
allocate the DDG nodes to PEs, leveraging the nodes mobility to
minimize the number of PEs of the final hardware architecture.

5.4 µ-genie : analysis 71

5.4.3 PE allocation with Modified Interval Partitioning

To generate a hardware architecture behaviorally equivalent to
the input application and with the latency identified during the
ASAP-ALAP scheduling, there are two main requirements: (1)
each instruction needs to be computed within its ASAP-ALAP
interval, and (2) instructions in the DDG which are executed
by the same PE cannot be scheduled at the same time. Our
Modified Interval Partitioning (MIP) algorithm - based on the
original greedy Interval Partitioning algorithm [53] - is designed
to generate, from a DDG, hardware architectures that meet both
requirements. Listing 5.1 presents MIP, in pseudo-code. The
original Interval Partitioning problem addresses the issue of
assigning a number of jobs, with known starting and ending
time, to the minimum amount of resources, ensuring that the jobs
assigned to a resource do not overlap. To use Interval Partitioning
for our problem, we consider instructions as jobs and PEs as
resources. There are, however, three main differences between
our problem and the canonical Interval Partitioning.

1. The original algorithm considers any job can use any re-
source, while our architecture requires different PEs for
different instructions. We therefore perform interval parti-
tioning several times (lines 5-20), once for each instruction
type (e.g., four times for the graph in Figure 5.4). This en-
sures a correct allocation of instructions to PEs performing
the same operation.

2. Due to mobility, instructions do not have a fixed starting
time. MIP takes the mobility of an instruction into account
by allowing a given instruction to start at any time within
its allowed interval (lines 11-13).

3. Our instructions are dependent on each other, which is not
the case for the jobs in the original interval partitioning. To
account for this extra constraint, we ensure that any given
instruction (a) is only allocated after its dependencies are
allocated (line 4), and (b) is scheduled to start after the
ending time of its dependencies (line 7-8).

72 compute and memory system codesign

Listing 5.1: Modified Interval Partitioning (MIP) Algorithm

ASAP[i] and ALAP[i] contain the scheduled cycles for instruction i
SetPEs is the set of Processing Elements in the architecture
SetPEs = []
s o r t i n s t r u c t i o n s by ASAP[i]
f o r each i n s t r u c t i o n i

a l l o c a t e d = Fa lse
dep_deadline = maximum end−time of a l l i n s t r u c t i o n s depending on i
schedule [i] = max(ASAP[i] , dep_deadline)
f o r each PE in SetPEs

i f i n s t r u c t i o n i matches PE
i f ALAP[i] >= n e x t _ f r e e _ s l o t [PE]

add i n s t r u c t i o n i to PE
schedule [i] = max(schedule [i] , n e x t _ f r e e _ s l o t [PE])
n e x t _ f r e e _ s l o t [PE] = schedule [i] + l a t e n c y (i)
a l l o c a t e d = True

i f not a l l o c a t e d
c r e a t e new PE with type (i)
add i n s t r u c t i o n i to PE
n e x t _ f r e e _ s l o t [PE] = schedule [i] + l a t e n c y (i)
add PE to setPEs

The MIP algorithm returns setPEs and a schedule for the
current design: setPEs is the list of processing elements that
form the architecture, with each PE containing the instructions it
has to execute, while schedule contains the clock cycle at which
each instruction is scheduled to be executed.

5.4.4 Most Parallel and Most Sequential Architectures

The result of the DDA module is the Most Parallel Architecture
(MostPar). This architecture takes full advantage of the paral-
lelism of the application and performs the computation with the
minimum latency. However, MostPar uses the maximum number
of PEs - in the worst case scenario equivalent to the number of
instructions in the application - and it will hence have the largest
area. At the other end of the spectrum of architectures we can
imagine the Most Sequential Architecture (MostSeq), where no
parallelism is used and the instruction are scheduled sequentially
respecting their dependencies. This architecture will have the
worst possible latency, but the minimal impact in area - using
only one PE per operation type. Probably none of these two ar-
chitectures will be of direct interest for the user as they represent
two extreme cases. Instead, the interesting architectures are the
ones in between MostSeq and MostPar, because they offer inter-
esting trade-offs between power, latency and area. Section 5.5
describes how these intermediate architectures can be generated
using MostPar and MostSeq respectively as upper and lower
bounds of the design space.

5.5 µ-genie : design space exploration (dse) 73

5.5 µ-genie : design space exploration (dse)

The Design Space Exploration µ-Genie module generates hardware
architectures, behaviorally equivalent to the input application,
which exhibit area, latency and power tradeoffs. Our DSE - de-
scribed in Listing 5.2 - is an iterative process which produces, at
the end of each iteration, a different hardware architecture. The
iterative process starts its sweep from MostPar, and ends when
MostSeq is generated.

Listing 5.2: Design Space Exploration

c u r r e n t A r c h i t e c t u r e = MostPar
found_MostSeq=Fa lse
GeneratedArchi tectures = []
while (! found_MostSeq)

type_count = { }
found_MostSeq=True
f o r each PE in c u r r e n t A r c h i t e c t u r e

type_count [type (PE)]+=1

i f type_count [type (PE)] > 1

found_MostSeq=Fa lse
break

i f found_MostSeq
break

f o r each i n s t u c t i o n i in DDG
i f type (i) == ’ s t o r e ’

ALAP[i] = ALAP[i]+1

ALAP=performALAPschedule (i n s t r u c t i o n s , dependencies)
SetPEs=MIP(i n s t r u c t i o n s , ASAP,ALAP)
GeneratedArchi tectures +=[SetPEs]
c u r r e n t A r c h i t e c t u r e =SetPEs

An iteration consists of three steps. First, the instructions cor-
responding to output leaf nodes in the DDG are selected. The
ALAP schedule of these iterations is increased by 1 (lines 14-16),
and the ALAP scheduling of the rest of the nodes in the DDG is
updated accordingly (line 17). Consequently, the mobility of each
instruction node is increased by one. Finally, the MIP is ran again
(line 18), using the new ALAP schedule. Due to the increased
mobility of each instruction the generated architecture is likely to
use less PEs. The process stops as soon as one iteration generates
MostSeq, which can be recognized because it contains only one
PE per operation type (lines 6-13).

There are two side benefits of our DSE approach. First, the
user can tune the granularity of the exploration: by increasing
the ALAP "slack" beyond 1, the exploration speeds-up, but less
architectures are generated. Second, the DSE process can be easily
parallelized, because its iterations are independent.

74 compute and memory system codesign

5.5.1 Architecture Tradeoffs

For a given input application and a given configuration, µ-
Genie outputs a set of hardware architectures - composed of
spatial processor and L1M - with different area and latency trade-
offs. Figure 5.5 shows three of the architectures generated during
the DSE. Each box represents a PE. The different load and store
PEs are implemented as separate L1M banks. As an example, the
architecture in Figure 5.5b has 1 L1M bank to store the input data
and 5 banks to store the results. This architecture can therefore
receive 1 input element per clock cycle from the L2M, and store
up to 5 results per clock in the L1M store banks. The remaining
PEs are obtained from computing instructions. We allow the
architectures to have cycles because the circuit is synchronous,
and every instruction has been carefully scheduled. A self-loop
in a PE indicates data reuse (see Section 5.6 for implementation
details).

(a)

(b)

(c)

Figure 5.5: Example of architectures generated from a matrix vector
multiply application of size 5x5. The MostPar (a), an inter-
mediate architecture (b) and the MostSeq (c).

5.6 architectural template

To implement in hardware the architectures generated by µ-
Genie, we propose a PE template, shown in Figure 5.6. Each
PE has an Instruction Memory (IM) where the operations to
be performed at each clock cycle are stored. Each instruction is

5.6 architectural template 75

PE1 PE2 PE3 PE4

X-bar

MuxA MuxB X-bar

RF RF

X-bar

OP

Demux

Demux

Out1 ...Out3

IM

Figure 5.6: Functional Unit template. PE1-PE4 represent "parent" PEs
that generate input data. IM is an internal Instruction Mem-
ory,where the PE stores the operations to be performed.
RFs are internal Register Files, which store reuse data and
inputs to be used in the future. OP is the hardware unit
actually performing the PE operation.

labeled with the clock cycle in which it should be scheduled. An
internal clock counter is compared to the label to decide when to
issue the instruction. The internal Register Files (RFs) are used
to store input data that needs to be processed in the future, as
well as output data that needs to be reused. The white rectangles
in the diagram represent configurable crossbars, which can send
data from any input port to any output port. OP is the hardware
unit that performs an arithmetic (or logical) operation - e.g. add
or multiply. This PE template allows modular implementation
of the spatial processor architecture - given that the instructions
to execute are stored the local IM. The inputs to a PE can either
be generated by other PEs or the output generated by the same
PE in the previous clock cycle. In addition, the inputs to the PE
can be used as operands for immediate computation or stored in
the RFs for future use. We have implemented the template PE in
RTL that can be configured to build all types of PEs found in the
architectures generated by µ-Genie.

76 compute and memory system codesign

5.7 summary

In this chapter, we presented µ-Genie, a novel framework for co-
designing memory-aware custom spatial processors. The frame-
work enables design-space exploration of spatial processor ar-
chitectures including the memory system. We have empirically
demonstrated that different spatial processor architectures can
be quickly implemented using our novel PE hardware template.
In the following chapter, we follow this with the description of
the design space explored by µ-Genie, and demonstrate how
the framework can be used to perform quantitative analysis of
alternative technologies.

6
D S E F O R C O D E S I G N E D C O M P U T E A N D
M E M O RY S Y S T E M S

The µ-Genie framework presented in chapter 5, allows the pro-
cedural generation of spatial architectures where the compute
and memory systems are codesigned. Given an application and
providing information regarding the technology to be used, we
are able to predict latency, area and energy consumption for
each of the generated architectures. The selection of one archi-
tecture among the set of generated architectures represents a
multi-objective optimization problem in an architecture space
defined by latency, area and energy consumption.

In this chapter we describe the characteristics of the design
space explored by µ-Genie; additionally we describe how the data
obtained by our framework can be used to perform quantitative
comparisons between different technologies from an application-
centric perspective. Specifically, this chapter addresses RQ4: Is de-
sign exploration a feasible method to codesign parallel-memory
computing systems?

This chapter is based on:
Giulio Stramondo, Manil Dev Gomony, Bartek Kozicki, Cees De
Laat, and Ana Lucia Varbanescu “µ-Genie: A Framework for Memory-
Aware Custom Processor Architecture Co-Design Exploration” [74], in
Digital System Design.

6.1 multi-configuration design space exploration

µ-Genie can also perform design space exploration on the config-
uration parameters (Section 5.3.2), generating one configuration
file for each combination of configuration parameters and aggre-
gating the architectural trade-offs. This allows, as an example,
to estimate the effect that different clock frequencies or different
memory technology have on the area,latency and energy trade-
offs. The use cases discussed in 6.2.2 and 6.2.3 are examples of
multi-configuration DSEs.

77

78 dse for codesigned compute and memory systems

6.2 case studies

In this section, we demonstrate the capabilities of µ-Genie us-
ing three case studies. To do so, we analyze the architectures
generated by µ-Genie and the energy consumption and latency
(or execution time) of each design. We selected two representa-
tive applications: matrix-vector (MV) and matrix-matrix (MM)
multiplication with matrix sizes 5× 5, 10× 10, and 15× 15. We
used the TSMC 28nm target technology library for generating
the database containing the area usage and energy consumption
of the different building blocks, as required by our framework.
We generated multiple input Configuration Parameters to let µ-
Genie explore the parameter space, and compute the latency,
area usage, and energy consumption of the architectures. Each
generated architecture has a known latency imposed in each
iteration of the DSE (Section 5.5), which we use to compute its
static energy consumption. Moreover, after applying the Modi-
fied Interval Partitioning algorithm, the instructions performed
by each PE are known and this information is used to compute
the dynamic energy consumption of an architecture.

In the first case study - Section 6.2.1 - we illustrate how DSE
works for 5x5 MV and a single configuration - i.e. one configu-
ration parameter file, see 5.3.2. The second case study - Section
6.2.2 - compares the use of MRAM - modeled according to [23]
- and SRAM for L2M (both in 28nm) for the two applications,
thus showing the impact of choosing different memory technolo-
gies in the L2M. The last case study - Section 6.2.3 - compares
µ-Genie architectures for the different MV sizes.

6.2.1 Single configuration DSE

The goal of this case-study is to illustrate the ability of µ-Genie to
generate, given a single configuration, architectures with different
energy consumption. We selected a configuration that uses SRAM
in both levels. L2M is clocked at 350MHz, while L1M and the
spatial processor are clocked at 1GHz. Figure 7a shows the energy
consumption of 30 different pareto-optimal spatial processor
architectures, with different latency and energy consumption. We
make two observations: (1) the latency and energy consumption

6.2 case studies 79

of each design range between the min and max latency, as given
by the MostPar and MostSeq architectures, and (2) as expected,
faster designs result in higher energy consumption, due to their
larger numbers of PEs.

6.2.2 MRAM vs SRAM Level 2 Memory

In this case study we compare the energy efficiency of two al-
ternative technologies to implement L2M: MRAM and SRAM.
The comparison is performed using both applications - MV and
MM - with 10× 10 matrices (see Fig 6.1b and 6.1c, respectively).
In both graphs, each point is relative to a hardware architec-
ture generated by µ-Genie; moreover shapes identify different
input configurations. Specifically, we compare a total of 18 con-
figurations: 2 L2M technologies, MRAM and SRAM, clocked at
350MHz, and 9 different clock frequencies (400MHz - 1GHz, in
steps of 200) for the processor and L1M ensemble.

In both figures we can identify two clusters: LL-HE (low-
latency, high-energy) and HL-LE (high-latency, low-energy). Each
cluster belongs to one memory technology: LL-HE contains all
SRAM designs, while HL-LE contains all MRAM designs. For
the MV application (Fig 6.1b) the fastest architecture - using
SRAM memory - has a latency of 1375ns and consumes over
1× 105Joules. The most energy efficient SRAM architecture has
instead a latency of 1525ns and consumes under 0.3× 105Joules,
thus being 3x more energy efficient than the fastest, with a la-
tency increase of only 10%. The most energy efficient architecture
using MRAM technology has instead a latency of 2210ns and
consumes 0.24× 105Joules, hence having 45% higher latency than
the best SRAM counterpart, with 25% lower energy consumption.
The matrix multiplication, Figure 6.1c, performs 10 times more
operations than the matrix vector multiplication, hence there
is a clear overall increase in latency - about 30% - and energy
consumption - about 4 times - in comparison to the previous
application. In this case the SRAM architecture consuming the
least amount of energy has 2% higher latency than the fastest
SRAM architecture, but consumes 50% less energy. However, the
introduction of MRAM technology in the L2M is not as beneficial
as it was for the matrix vector application. The MRAM architec-

80 dse for codesigned compute and memory systems

ture consuming the least amount of energy has a 3% slowdown
compared to the most energy efficient SRAM, while attaining
only a 2.2% improvement in energy consumption.

6.2.3 Different Matrix Dimensions

In this case study we compare three different matrix sizes for
MV - 5× 5, 10× 10 and 15× 15, using the same configurations
used in 6.2.2, to evaluate how the energy consumption of an
L2M MRAM scales with respect to an L2M SRAM. Figure 6.2
shows the Pareto-optimal architectures generated from each in-
put application. The increase in the matrix size is reflected by an
increase in latency: all MV-5× 5 application-specific processors
have latency below 1000ns, the MV-10× 10 have latency between
1250ns and 2500ns, and the latency of all MV-15× 15 is beyond
2500ns. However, the increased number of operations results
instead in wider trade-offs possibilities. Thus, the normalized
latency gap between the most energy efficient SRAM and MRAM,
decreases with the matrix size, from 82% for the 5× 5, to 42%
for the 10x10 and even 32% for the 15× 15. The reduction in
energy consumption between the same pair of results is instead
20% for the 5× 5 and 10× 10, while for the 15× 15 drops to
16%. Therefore, as the size of the matrix grows, the benefits in
energy consumption diminish when using MRAM technology
in the L2M. This behavior caused by the increased number of
write operations that have high energy impact when the MRAM
technology is used.

6.3 related work

Previous work on designing spatial processor focuses on the hard-
ware architecture of the processor, while the optimization of the
memory system is only partially taken into account. In [59] a spa-
tial processor with distributed control across PE using triggered
instructions is presented. Their architecture is built around the
guarded-action programming paradigm, where guards - boolean
expressions specifying if an action is legal - are evaluated by
a scheduler and trigger computations. Support for high level
languages is missing, so this spatial processor needs to be pro-

6.3 related work 81

grammed in a low level guarded-action language and the compu-
tation needs to be manually mapped on the PEs. Their memory
system consist of two levels of memories (L1 and L2) and dis-
tributed scratch-pad memories located within the PEs. The design
is not tailored for a specific set of applications and they do not
perform analysis on the interactions between the memory and
processing systems, leaving the modeling of the memory system
as future work.

Plasticine, a spatial processor optimized for the acceleration
of parallel patterns is presented in [62]. Their memory system is
composed of Pattern Memory Units (PMUs) which are connected
through a network to Pattern Compute Units (PCUs). Although
it allows some degree of configuration, Plasticine is not meant to
be optimized around specific applications. The input application
needs to be written in a language exposing its parallel patterns
- Delite Hardware Definition Language (DHDL) - and then it
is mapped on the Plasticine architecture. Hence, the number of
memory units (PMUs) and processing units (PCUs), and their
interconnections are not optimized around specific applications.

In [3], a framework to generate Application Specific Hardware
(ASH) from a C application is presented. The final architecture
it produces is asynchronous, and operation dependencies are
handled using a token-based mechanism which is implemented
in hardware. The memory system of the architecture consists of a
monolithic memory. To handle concurrent memory requests the
design uses a hierarchy of busses and arbiters, which creates a
bottleneck. This means that their memory system is overwhelmed
because it is not tailored for the PEs it uses.

Spatially distributed PEs with a dedicated configuration regis-
ter allow to configure the PEs to one of the operating modes [69]
at compile time. Few PEs are connected back-to-back, forming
systolic arrays which are then interconnected using an on-chip
interconnect. Thus, the processor architecture is quite general-
purpose, i.e, the interconnect allows a PE array to be connected
to any another PE array. However, there is no automated design
flow to efficiently map algorithms to the processor architecture.

An interesting approach is Catena[7], an ultra-low-power spa-
tial processor with a distributed architecture, where multiple
techniques - clock gating, power gating and voltage boosting - are

82 dse for codesigned compute and memory systems

applied in a fine-grained way to optimize energy efficiency. These
techniques can be used to explore the power/latency tradeoff of
specific applications. However, the impact of the memory system
on the performance of the design is not modeled and the memory
system is not co-designed with the spatial processor, potentially
resulting in an inefficient utilization of the hardware resources;
moreover, Catena lacks high-level language support.

In summary, a comparison of µ-Genie against existing work is
presented in Table 6.1.

Framework Type Application Memory Architectural High Level

(see 2.3.2) Optimized Co-Design DSE Language

µ-Genie Dist. Control Yes Yes Yes Yes, C

[59] Dist. Control No No No No

[62] Dist. Control No No No Yes, DHDL

[69] Dist. Control No No No No

[3] Logic Yes No No Yes, C

Grained

[7] Dist. Control Yes No Yes No

Table 6.1: Comparison with related work.

6.4 summary

In this chapter we have demonstrated the capabilities of the
framework presented in Chapter 5 as a tool for DSE. To this
end, we analysed in detail three case studies, which illustrate
the sanity of our DSE approach and its ability to facilitate a
comparison between the use of MRAM and SRAM technologies.
For example, using our approach, we were able to conclude
that, for a matrix vector multiplication 10x10, the most energy
efficient architecture generated with µ-Genie with MRAM L2M
has 45% higher latency than the best SRAM counterpart, with
25% decrease in power consumption.

Future work should focuse on the use µ-Genie to analyze many
more applications. A further interesting direction of research is
to enhance the framework with the capability of automatically
merging multiple spatial processor architectures, to generate a
single multi-application spatial processor. We believe such an ap-

6.4 summary 83

proach would provide new interesting trade-offs, especially in
the space of area, latency, and energy efficiency.

84 dse for codesigned compute and memory systems

415 420 425 430 435
Latency (Clocks)

6×103

7×103

8×103

9×103

104

1.1×104

En
er

gy
 (J

ou
le

s)

Energy - Single SRAM configuration

(a) 5x5 MM

1400 1600 1800 2000 2200
Latency (ns)

3×104

4×104

5×104

6×104

7×104

8×104

9×104

105

En
er

gy
 (J

ou
le

s)

Energy Pareto - Matrix Vec 10x10

(b) MV 10x10

3450 3500 3550 3600 3650
Latency (ns)

2.8×105

3×105

3.2×105

3.4×105

3.6×105

3.8×105

4×105

4.2×105

En
er

gy
 (J

ou
le

s)

Energy Pareto - Matrix Mul 10x10

(c) MM 10x10

Figure 6.1: Each point represents one µ-Genie spatial processor. Dif-
ferent shapes (in 6.1b and 6.1c) identify different input
configurations. 6.1a shows the architecture’s Energy over
Latency in clock cycles generated from a single configura-
tion of a matrix vector multiplication of size 5× 5. Note that
(a) presents all designs, while (b) and (c) only include the
Pareto-optimal designs.

6.4 summary 85

1000 2000 3000 4000
Latency (ns)

0

5×104

105

1.5×105

2×105

2.5×105

3×105

3.5×105

4×105

En
er

gy
 (J

ou
le

s)

Energy Pareto - Matrix Vec 5x5,10x10,15x15

Figure 6.2: Energy Pareto optimal architectures generated by µ-
Genie for different sizes of Matrix Vector multiplication
5x5 - with latency ranging from 0 to 1000,10x10 - having la-
tency between 1000ns and 2500ns , and 15x15- with latency
above 2500ns. Each point corresponds to an architecture
generated by the framework.

7
C O N C L U S I O N

Innovation in the processing system of modern computing sys-
tems has seen heterogeneous architectures, combining multi- and
many-core processors in complicated processors [5, 70, 80]. How-
ever, the performance gap between the memory and computation
still increases, and we still see the performance effects of the mem-
ory wall phenomenon [85]: applications’ performance stagnates
(i.e., applications hit the memory wall) because accessing data
is much slower than processing data. Therefore, rethinking our
memory systems becomes a crucial step to enable applications to
make efficient use of the processing system. This thesis proposed
two novel solutions for the design and implementation of parallel
memory systems: (1) adapting a polymorphic parallel memory to a
given application access pattern, and (2) completely co-designing
the memory and processing system to serve a target applica-
tion. Moreover, these solutions were implemented as prototype
frameworks and tools, and validated with relevant case-studies.

7.1 main findings

In this section, we revisit the main research questions driving this
work, and formulate our answers based on our research results.

RQ1: What is a feasible design for a configurable hardware parallel
memory?

We empirically demonstrated (see Chapter 3) that it is feasible
to design a parallel memory system using FPGA technology.
Specifically, we presented a configurable parallel memory design
(MAX-PolyMem) and performed extensive tests to establish its
performance using a Maxeler Vectis DFE FPGA board. The re-
sults in Section 3.3 show that our design is able to utilize the
entire capacity of the on-chip BRAMs present in the FPGA, im-
plementing parallel memories able to store up to 4MB, having

87

88 conclusion

up to 16-lanes, and supporting up to 4 read ports. The estimated
peak performance of MAX-PolyMemis up to 22GB/s for writes
and above 32GB/s for reads. Moreover, using the STREAM-Copy
benchmark, we were able to confirm that MAX-PolyMem is, in
practice, able to attain more than 99% of the estimated peak
bandwidth.

RQ2: Can we define and implement a systematic, application-centric
method to configure a hardware parallel memory?

To answer this research question, we first defined two metrics
- speedup and efficiency - to enable quantitative comparisons be-
tween different MAX-PolyMem configurations. We further de-
vised a methodology to systematically determine the optimal
(and close to optimal) parallel memory configuration - i.e., the
configuration(s) that maximize these metrics - for a given applica-
tion (see Chapter 4). To showcase the benefits of our methodology,
we proposed the Sparse STREAM benchmark, an extension of
the STREAM benchmark [79], which includes the original four
applications (copy, scale, sum, and triad), but enables benchmark
measurements for increasingly sparse datasets. The empirical
analysis of our methodology, using the Sparse STREAM bench-
mark, demonstrated that MAX-PolyMem in combination with
our application-centric parallel memory design methodology is
not only useful for dense accesses, but also provides significant
speed-up for sparser accesses.

RQ3 - Is there a systematic way to co-design efficient processing and
memory systems for a given application?

Current methods for system design focus on the processing
components, and consider the memory system as an add-on.
In Chapter 5, we have demonstrated that the co-design of effi-
cient processing and memory system is possible with µ-Genie, a
framework we devised to systematically generate co-designed
spatial architectures. Leveraging the concurrent optimization of
processing and memory, our framework is able to minimize the
waste of resources by matching the performance of the two sys-
tems. Moreover, the highly flexible architectural template used

7.1 main findings 89

by framework allows for fine-grained tuning of the allocated
resources for the target application. Finally, the methodology
employed by µ-Genie, is able to generate multiple spatial archi-
tectures for a given application, each featuring different latency,
area, and energy consumption properties.

RQ4 - Is design exploration a feasible method to codesign parallel-
memory computing systems?

For our co-designed application-tailored computing systems,
we have identified as primary performance metrics latency, area
and energy consumption. We further showed that, using a multi-
configuration DSE, additional dimensions can be added to the
design space - e.g., clock frequency and memory technology. We
then demonstrated using three case studies that µ-Genie is able to
generate designs that provide different latency, area, and energy
consumption trade-offs, allowing users to select the architecture
that best suits their needs. Finally, we showed that the proposed
framework can be used to facilitate comparison between alterna-
tive technology, as the SRAM and MRAM memory technologies.
For example, we were able to conclude that using MRAM instead
of SRAM memories for a matrix vector multiplication 10× 10 it
is possible to decrease the energy consumption by 25%.

In summary, and we can formulate an answer to the overarching
research question of this work:

How can we design and implement efficient application-
specific parallel memories?

Our results indicate that, whenever possible, the design an
efficient parallel memory system should not be done in iso-
lation, but it should be combined with application optimiza-
tion. We evaluated two options for this combined approach:
application-centric design and codesign. Our application-centric
design (Chapters 3, 4) demonstrated performance can be gained
from a highly-tuned configuration of a parallel memory, when
compared against traditional models. However, it still lead to a
memory system with lower efficiency compared to the codesign

90 conclusion

approach (Chapters 5, 6). The codesign approach, in fact, guaran-
tees by construction close-to optimal efficiency - and should be
preferred.

7.2 main contributions

The main contribution this thesis makes are as follows.

• We introduce PolyMem, a Polymorphic Parallel Memory
built using BRAMs as a high-throughput software-cache
for FPGAs (Chapter 3)

• We perform a DSE analysis to show how MAX-PolyMem
scales with the number of lanes, capacity, clock frequency,
and peak bandwidth (Chapter 3)

• We provide a systematic approach to optimally configure
PolyMem and schedule the set of memory accesses to max-
imize the performance of the resulting memory system
(Chapter 4)

• We define and validate a model that predicts the perfor-
mance of our parallel-memory system (Chapter 4)

• We present mu-Genie, a framework that allows to codesign
spatial processor and memory system, explore different ar-
chitectures automatically generated for a given application,
and estimate area, power and latency of each one of the
architectures (Chapter 5)

• We propose a sytematic methodology that can be used to
perform quantitative comparisons among alternative de-
sign choices for codesigned spatial processor and memory
system (Chapter 6)

7.3 future research directions

Our work opens up several research directions.
First, PolyMem, the parallel-memory design presented in Chap-

ter 3, can be improved further in terms of flexibility and perfor-
mance. The work we presented used five mapping schemes (i.e.,

7.3 future research directions 91

predefined ways to specify the in-memory data layout), and each
of these supports different shapes of parallel accesses. A system-
atic way to explore the space of the possible mapping schemes,
and consequently to enable more parallel access shapes would
improve the flexibility and performance of the design.

Second, the application-design methodology we use to find a
(close to) optimal configuration for MAX-PolyMem, uses static
analysis to extract the application access trace. Thus, we only sup-
port applications that are statically analyzable. Moreover, during
the extraction of the access trace, we assume that the applica-
tion is completely parallelizable. Both these constraints limit the
set of supported applications. To reduce these constraints, and
thus extend our approach to more applications, the trace extrac-
tion phase may be enhanced using data dependency analysis
techniques.

Third, we are actively working on the enhancement of µ-Genie
(Chapter 5) with an architecture merging module. The spatial ar-
chitectures currently generated by the framework support the
execution of only one application. This merging module allows a
user to select two spatial architectures, generated from different
input applications, and outputs a combined spatial architecture
able to execute both applications. Moreover, it is possible to
reduce the resource overhead, letting both application use, when-
ever possible, the same Processing Elements.

Finally, there is active research in the development of many
novel memory technologies (e.g. Magnetoresistive RAM (MRAM)
[55], Ferroelectric RAM (FeRAM) [11], resistive RAM [68]). Yet,
each novel memory technology has its benefits and drawbacks,
and we do not envision any such technology will single-handedly
outperform the use of parallel memories. Instead, in the near
future, we envision more technologies and parallelism to be used
in combination. A hybrid memory system could combine the
benefits of different memory technologies, while at the same time
using more parallelism to further increase bandwidth and capac-
ity. The µ-Genie framework (Chapter 5), can be easily extended
to support further research into such hybrid memory systems.

B I B L I O G R A P H Y

[1] Michael Adler, Kermin E. Fleming, Angshuman Parashar,
Michael Pellauer, and Joel Emer. “Leap Scratchpads: Auto-
matic Memory and Cache Management for Reconfigurable
Logic.” In: FPGA ’11. 2011, pp. 25–28.

[2] Debjyoti Bhattacharjee, Farhad Merchant, and Anupam
Chattopadhyay. “Enabling in-memory computation of bi-
nary BLAS using ReRAM crossbar arrays.” In: 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-
SoC). IEEE. 2016, pp. 1–6.

[3] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and
Seth Copen Goldstein. “Spatial computation.” In: Proceed-
ings of the 11th international conference on Architectural sup-
port for programming languages and operating systems. 2004,
pp. 14–26.

[4] Paul Budnik and Davis J Kuck. “The organization and use
of parallel memories.” In: IEEE transactions on computers
100.12 (1971), pp. 1566–1569.

[5] Anastasiia Butko, Florent Bruguier, Abdoulaye Gamatié,
Gilles Sassatelli, David Novo, Lionel Torres, and Michel
Robert. “Full-system simulation of big. little multicore
architecture for performance and energy exploration.”
In: 2016 IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC). IEEE. 2016,
pp. 201–208.

[6] Cadence Design Systems, Inc. “Tensilica Customizable Pro-
cessors.” In: https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-
customizable.

[7] Joao P Cerqueira, Thomas J Repetti, Yu Pu, Shivam Priyadarshi,
Martha A Kim, and Mingoo Seok. “Catena: A Near-Threshold,
Sub-0.4-mW, 16-Core Programmable Spatial Array Acceler-
ator for the Ultralow-Power Mobile and Embedded Internet
of Things.” In: IEEE Journal of Solid-State Circuits (2020).

93

94 bibliography

[8] An Chen. “A review of emerging non-volatile memory
(NVM) technologies and applications.” In: Solid-State Elec-
tronics 125 (July 2016). doi: 10.1016/j.sse.2016.07.006.

[9] Y. Chen, T. Yang, J. Emer, and V. Sze. “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile
Devices.” In: IEEE JETCAS (June 2019). doi: 10 . 1109 /

JETCAS.2019.2910232.

[10] Eric S. Chung, James C. Hoe, and Ken Mai. “CoRAM: An
In-fabric Memory Architecture for FPGA-based Comput-
ing.” In: FPGA’11. 2011, pp. 97–106.

[11] Yeonbae Chung, Byung-Gil Jeon, and Kang-Deog Suh. “A
3.3-V, 4-Mb nonvolatile ferroelectric RAM with selectively
driven double-pulsed plate read/write-back scheme.” In:
IEEE Journal of Solid-State Circuits 35.5 (2000), pp. 697–704.

[12] Alessandro Cilardo and Luca Gallo. “Improving multibank
memory access parallelism with lattice-based partitioning.”
In: ACM Transactions on Architecture and Code Optimization
(TACO) 11.4 (2015), pp. 1–25.

[13] C. B. Ciobanu, G. Stramondo, C. de Laat, and A. L. Var-
banescu. “MAX-PolyMem: High-Bandwidth Polymorphic
Parallel Memories for DFEs.” In: 2018 IEEE International Par-
allel and Distributed Processing Symposium Workshops. May
2018, pp. 107–114. doi: 10.1109/IPDPSW.2018.00025.

[14] C. B. Ciobanu, G. Stramondo, Cees de Laat, and Ana Lucia
Varbanescu. “MAX-PolyMem: High-Bandwidth Polymor-
phic Parallel Memories for DFEs.” In: IPDPSW’18 (RAW’18).
2018.

[15] C. Ciobanu, X. Martorell, G. K. Kuzmanov, A. Ramirez, and
G. N. Gaydadjiev. “Scalability Evaluation of a Polymorphic
Register File: a CG Case Study.” In: Proceedings of ARCS.
2011, pp. 13–25.

[16] Catalin Ciobanu. “Customizable Register Files for Multidi-
mensional SIMD Architectures.” PhD thesis. Delft, Nether-
lands: Delft University of Technology, Mar. 2013. isbn: 978-
94-6186-121-4.

http://dx.doi.org/10.1016/j.sse.2016.07.006
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/IPDPSW.2018.00025

bibliography 95

[17] C.B. Ciobanu. “Customizable Register Files for Multidimen-
sional SIMD Architectures.” PhD thesis. The Netherlands:
Delft University of Technology, 2013.

[18] C.B. Ciobanu, Georgi Gaydadjiev, Christian Pilato, and
Donatella Sciuto. “The Case for Polymorphic Registers in
Dataflow Computing.” In: International Journal of Parallel
Programming (May 2017).

[19] Codasip Ltd. Codasip Studio. 2019. url: https : / / www .

codasip.com/custom-processor/.

[20] Francis S Collins, Michael Morgan, and Aristides Patri-
nos. “The Human Genome Project: lessons from large-scale
biology.” In: Science 300.5617 (2003), pp. 286–290.

[21] J. Corbal, Roger Espasa, and Mateo Valero. “MOM: a Matrix
SIMD Instruction Set Architecture for Multimedia Appli-
cations.” In: Proceedings of the SC99 Conference. 1999, pp. 1–
12.

[22] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data
center energy consumption modeling: A survey.” In: IEEE
Commun. Surv. Tutor. 18.1 (2015), pp. 732–794.

[23] Q. Dong, Z. Wang, J. Lim, Y. Zhang, Y. Shih, Y. Chih, J.
Chang, D. Blaauw, and D. Sylvester. “A 1Mb 28nm STT-
MRAM with 2.8ns read access time at 1.2V VDD using
single-cap offset-cancelled sense amplifier and in-situ self-
write-termination.” In: 2018 IEEE ISSCC. Feb. 2018. doi:
10.1109/ISSCC.2018.8310393.

[24] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X.
Feng, Y. Chen, and O. Temam. “ShiDianNao: Shifting vision
processing closer to the sensor.” In: 2015 ACM/IEEE 42nd
ISCA. June 2015. doi: 10.1145/2749469.2750389.

[25] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan
Sankaralingam, and Doug Burger. “Dark silicon and the
end of multicore scaling.” In: 2011 38th Annual interna-
tional symposium on computer architecture (ISCA). IEEE. 2011,
pp. 365–376.

https://www.codasip.com/custom-processor/
https://www.codasip.com/custom-processor/
http://dx.doi.org/10.1109/ISSCC.2018.8310393
http://dx.doi.org/10.1145/2749469.2750389

96 bibliography

[26] J.F. Eusse et al. “Pre-architectural performance estimation
for ASIP design based on abstract processor models.”
In: SAMOS XIV. July 2014. doi: 10.1109/SAMOS.2014.
6893204.

[27] Gan Fuxi and Wang Yang. Data storage at the nanoscale:
Advances and applications. Pan Stanford, 2015.

[28] A.D. Santana Gil, J.I. Benavides Benitez, M. Hernandez
Calvino, and E. Herruzo Gomez. “Reconfigurable Cache
Implemented on an FPGA.” In: ReConFig’10. 2010.

[29] Chunyang Gou, Georgi Kuzmanov, and Georgi N Gay-
dadjiev. “SAMS multi-layout memory: providing multiple
views of data to boost SIMD performance.” In: ICS. ACM.
2010, pp. 179–188.

[30] David T Harper. “Block, multistride vector, and FFT ac-
cesses in parallel memory systems.” In: IEEE Transactions
on Parallel and Distributed Systems 2.1 (1991), pp. 43–51.

[31] Friedhelm Meyer auf der Heide, Christian Scheideler, and
Volker Stemann. “Exploiting storage redundancy to speed
up randomized shared memory simulations.” In: Theoretical
Computer Science 162.2 (1996), pp. 245–281.

[32] C-T Hwang, J-H Lee, and Y-C Hsu. “A formal approach to
the scheduling problem in high level synthesis.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 10.4 (1991), pp. 464–475.

[33] Sadahiro Isoda, Yoshizumi Kobayashi, and Toru Ishida.
“Global compaction of horizontal microprograms based on
the generalized data dependency graph.” In: IEEE Trans.
Comput. 10 (1983).

[34] J. Jeddeloh and B. Keeth. “Hybrid memory cube new
DRAM architecture increases density and performance.”
In: VLSIT 2012. 2012, pp. 87–88.

[35] Lech Jozwiak et al. “ASAM: Automatic architecture syn-
thesis and application mapping.” In: Microprocessors and
Microsystems 37.8 PARTC (2013). issn: 01419331. doi: 10.
1016/j.micpro.2013.08.006.

http://dx.doi.org/10.1109/SAMOS.2014.6893204
http://dx.doi.org/10.1109/SAMOS.2014.6893204
http://dx.doi.org/10.1016/j.micpro.2013.08.006
http://dx.doi.org/10.1016/j.micpro.2013.08.006

bibliography 97

[36] H. Jun, J. Cho, K. Lee, H. Y. Son, K. Kim, H. Jin, and
K. Kim. “HBM (High Bandwidth Memory) DRAM Tech-
nology and Architecture.” In: 2017 International Memory
Workshop (IMW). 2017, pp. 1–4.

[37] Richard M Karp. “Reducibility Among Combinatorial Prob-
lems.” In: Complexity of computer computations. Springer,
1972, pp. 85–103.

[38] Kingshuk Karuri, Rainer Leupers, Gerd Ascheid, and Hein-
rich Meyr. “A Generic Design Flow for Application Spe-
cific Processor Customization through Instruction-Set Ex-
tensions (ISEs).” In: SAMOS. Ed. by Koen Bertels, Nikitas
Dimopoulos, Cristina Silvano, and Stephan Wong. Springer
Berlin Heidelberg, 2009. isbn: 978-3-642-03138-0.

[39] Donald E. Knuth. “Computer Programming as an Art.” In:
Communications of the ACM 17.12 (1974), pp. 667–673.

[40] M. P. Komalan, C. Tenllado, J. I. G. Pérez, F. T. Fernández,
and F. Catthoor. “System level exploration of a STT-MRAM
based level 1 data-cache.” In: 2015 DATE. Mar. 2015.

[41] D.J. Kuck and R.A. Stokes. “The Burroughs Scientific Pro-
cessor (BSP).” In: IEEE Trans. on Computers C-31.5 (May
1982), pp. 363–376.

[42] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis. “Multime-
dia Rectangularly Addressable Memory.” In: IEEE Transac-
tions on Multimedia (Apr. 2006), pp. 315–322.

[43] Chris Lattner and Vikram Adve. “LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion.” In: Palo Alto, California: IEEE Computer Society,
2004. isbn: 0-7695-2102-9.

[44] S. Lee, J. Jung, and C. Kyung. “Hybrid cache architecture
replacing SRAM cache with future memory technology.”
In: 2012 IEEE ISCAS. May 2012. doi: 10.1109/ISCAS.2012.
6271803.

[45] Chun-Gi Lyuh and Taewhan Kim. “Memory access schedul-
ing and binding considering energy minimization in multi-
bank memory systems.” In: Proceedings of the 41st annual
Design Automation Conference. 2004, pp. 81–86.

http://dx.doi.org/10.1109/ISCAS.2012.6271803
http://dx.doi.org/10.1109/ISCAS.2012.6271803

98 bibliography

[46] Henry Markram. “The human brain project.” In: Scientific
American 306.6 (2012), pp. 50–55.

[47] MaxCompiler. url: www.maxeler.com/products/software/
maxcompiler.

[48] John D McCalpin. “A survey of memory bandwidth and
machine balance in current high performance computers.”
In: IEEE TCCA Newsletter 19 (1995), p. 25.

[49] Sally A McKee. “Reflections on the memory wall.” In: Pro-
ceedings of the 1st conference on Computing frontiers. 2004,
p. 162.

[50] Paolo Meloni, Sebastiano Pomata, Giuseppe Tuveri, Simone
Secchi, Luigi Raffo, and Menno Lindwer. “Enabling Fast
ASIP Design Space Exploration: An FPGA-based Runtime
Reconfigurable Prototyper.” In: VLSI Des. (Jan. 2012). issn:
1065-514X. doi: 10.1155/2012/580584.

[51] Vincent Mirian and Paul Chow. “FCache: A System for
Cache Coherent Processing on FPGAs.” In: FPGA ’12. 2012,
pp. 233–236.

[52] Sparsh Mittal. “A Technique for Efficiently Managing SRAM-
NVM Hybrid Cache.” In: CoRR abs/1311.0170 (2013). arXiv:
1311.0170. url: http://arxiv.org/abs/1311.0170.

[53] Dave Mount. Greedy Algorithms for Scheduling. 2017. url:
http://www.cs.umd.edu/class/fall2017/cmsc451-0101/

Lects/lect07-greedy-sched.pdf.

[54] Onur Mutlu. “Memory scaling: A systems architecture per-
spective.” In: 2013 5th IEEE International Memory Workshop.
IEEE. 2013, pp. 21–25.

[55] Peter K Naji, Mark Durlam, Saied Tehrani, John Calder,
and Mark F DeHerrera. “A 256 kb 3.0 v 1t1mtj nonvolatile
magnetoresistive ram.” In: 2001 IEEE International Solid-
State Circuits Conference. Digest of Technical Papers. ISSCC
(Cat. No. 01CH37177). IEEE. 2001, pp. 122–123.

[56] Pradeep Nalabalapu and R. Sass. “Bandwidth management
with a reconfigurable data cache.” In: IPDPS 2005. IEEE,
2005.

www.maxeler.com/products/software/maxcompiler
www.maxeler.com/products/software/maxcompiler
http://dx.doi.org/10.1155/2012/580584
http://arxiv.org/abs/1311.0170
http://arxiv.org/abs/1311.0170
http://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect07-greedy-sched.pdf
http://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect07-greedy-sched.pdf

bibliography 99

[57] Taecheol Oh, Hyunjin Lee, Kiyeon Lee, and Sangyeun Cho.
“An analytical model to study optimal area breakdown
between cores and caches in a chip multiprocessor.” In:
2009 IEEE ISVLSI. IEEE. 2009, pp. 181–186.

[58] D.K. Panda and K. Hwang. “Reconfigurable Vector Regis-
ter Windows for Fast Matrix Computation on the Orthog-
onal Multiprocessor.” In: Proceedings of ASAP. May 1990,
pp. 202–213.

[59] Angshuman Parashar, Michael Pellauer, Michael Adler,
Bushra Ahsan, Neal Crago, Daniel Lustig, Vladimir Pavlov,
Antonia Zhai, Mohit Gambhir, Aamer Jaleel, et al. “Effi-
cient spatial processing element control via triggered in-
structions.” In: IEEE Micro 34.3 (2014), pp. 120–137.

[60] JongSoo Park, Sung-Boem Park, James D. Balfour, David
Black-Schaffer, Christos Kozyrakis, and William J. Dally.
“Register Pointer Architecture for Efficient Embedded Pro-
cessors.” In: Proceedings of DATE. Nice, France, 2007, pp. 600–
605.

[61] PolyMem Code. github.com/giuliostramondo/RAW2018.

[62] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt
Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Chris-
tos Kozyrakis, and Kunle Olukotun. “Plasticine: A re-
configurable architecture for parallel patterns.” In: 2017
ACM/IEEE 44th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE. 2017, pp. 389–402.

[63] Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff Ma-
son, and Prasanna Sundararajan. “CHiMPS: A High-level
Compilation Flow for Hybrid CPU-FPGA Architectures.”
In: FPGA ’08. 2008, pp. 261–261.

[64] Andrew Putnam, Susan Eggers, Dave Bennett, Eric Dellinger,
Jeff Mason, Henry Styles, Prasanna Sundararajan, and
Ralph Wittig. “Performance and Power of Cache-based
Reconfigurable Computing.” In: ISCA ’09. 2009, pp. 395–
405.

github.com/giuliostramondo/RAW2018

100 bibliography

[65] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa,
F. Sanchez, A. Azevedo, C. Meenderinck, C. Ciobanu, S.
Isaza, and G. Gaydadjiev. “The SARC Architecture.” In:
IEEE Micro 30.5 (2010), pp. 16–29.

[66] Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco
AZ Alves, Eduardo C Almeida, and Luigi Carro. “Operand
size reconfiguration for big data processing in memory.” In:
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE. 2017, pp. 710–715.

[67] John Shalf, Sudip Dosanjh, and John Morrison. “Exascale
computing technology challenges.” In: International Confer-
ence on High Performance Computing for Computational Science.
Springer. 2010, pp. 1–25.

[68] Shyh-Shyuan Sheu, Kuo-Hsing Cheng, Meng-Fan Chang,
Pei-Chia Chiang, Wen-Pin Lin, Heng-Yuan Lee, Pang-Shiu
Chen, Yu-Sheng Chen, Tai-Yuan Wu, Frederick T Chen,
et al. “Fast-write resistive RAM (RRAM) for embedded ap-
plications.” In: IEEE Design & Test of Computers 28.1 (2010),
pp. 64–71.

[69] S. Smets, T. Goedemé, A. Mittal, and M. Verhelst. “2.2 A
978GOPS/W Flexible Streaming Processor for Real-Time
Image Processing Applications in 22nm FDSOI.” In: 2019
IEEE International Solid- State Circuits Conference - (ISSCC).
Feb. 2019, pp. 44–46.

[70] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop
Kim, Krishna Vinod, Sundaram Chinthamani, Steven Hut-
sell, Rajat Agarwal, and Yen-Chen Liu. “Knights landing:
Second-generation intel xeon phi product.” In: Ieee micro
36.2 (2016), pp. 34–46.

[71] G Stramondo, A.L. Varbanescu, and C.B. Ciobanu. “The
Case for Custom Parallel Memories: an Application-centric
Analysis.” In: H2RC. 2016.

[72] Giulio Stramondo, Cătălin Bogdan Ciobanu, Cees de Laat,
and Ana Lucia Varbanescu. “Designing and building appli-
cation centric parallel memories.” In: Concurrency and Com-
putation: Practice and Experience (). doi: 10.1002/cpe.5485.

http://dx.doi.org/10.1002/cpe.5485

bibliography 101

[73] Giulio Stramondo, Cătălin Bogdan Ciobanu, Ana Lucia
Varbanescu, and Cees de Laat. “Towards application-centric
parallel memories.” In: European Conference on Parallel Pro-
cessing. Springer. 2018, pp. 481–493. doi: 10.1007/978-3-
030-10549-5_38.

[74] Giulio Stramondo, Manil Dev Gomony, Bartek Kozicki,
Cees De Laat, and Ana Lucia Varbanescu. “µ-Genie: A
Framework for Memory-Aware Custom Processor Archi-
tecture Co-Design Exploration.” In: Digital System Design
(2020).

[75] STREAM-Copy PolyMem MaxJ Code. url: https://github.
com/giuliostramondo/PolyMemStream.

[76] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. “A novel architec-
ture of the 3D stacked MRAM L2 cache for CMPs.” In: 2009
IEEE HPCA. Feb. 2009. doi: 10.1109/HPCA.2009.4798259.

[77] Steven Swanson, Andrew Schwerin, Martha Mercaldi, An-
drew Petersen, Andrew Putnam, Ken Michelson, Mark Os-
kin, and Susan J Eggers. “The wavescalar architecture.” In:
ACM Transactions on Computer Systems (TOCS) 25.2 (2007),
pp. 1–54.

[78] Synopsys Inc. Synopsys IP designer. 2019. url: https://www.
synopsys.com/dw/ipdir.php?ds=asip-designer.

[79] The STREAM benchmark website. cs.virginia.edu/stream/.

[80] Kuen Hung Tsoi and Wayne Luk. “Axel: a heterogeneous
cluster with FPGAs and GPUs.” In: Proceedings of the 18th
annual ACM/SIGDA international symposium on Field pro-
grammable gate arrays. 2010, pp. 115–124.

[81] Vijay V Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013.

[82] Luis Villa, Michael Zhang, and Krste Asanović. “Dynamic
zero compression for cache energy reduction.” In: Proceed-
ings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture. 2000, pp. 214–220.

[83] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason
Cong. “Memory partitioning for multidimensional arrays
in high-level synthesis.” In: DAC. ACM. 2013, p. 12.

http://dx.doi.org/10.1007/978-3-030-10549-5_38
http://dx.doi.org/10.1007/978-3-030-10549-5_38
https://github.com/giuliostramondo/PolyMemStream
https://github.com/giuliostramondo/PolyMemStream
http://dx.doi.org/10.1109/HPCA.2009.4798259
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
cs.virginia.edu/stream/

102 bibliography

[84] Samuel Williams, Andrew Waterman, and David Patterson.
Roofline: An insightful visual performance model for floating-
point programs and multicore architectures. Tech. rep. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States),
2009.

[85] Wm A Wulf and Sally A McKee. “Hitting the memory wall:
implications of the obvious.” In: ACM SIGARCH computer
architecture news 23.1 (1995), pp. 20–24.

[86] Hsin-Jung Yang, Kermin Fleming, Felix Winterstein, An-
nie I. Chen, Michael Adler, and Joel Emer. “Automatic
Construction of Program-Optimized FPGA Memory Net-
works.” In: FPGA ’17. 2017, pp. 125–134.

[87] P. Yiannacouras and J. Rose. “A parameterized automatic
cache generator for FPGAs.” In: FPT 2003. 2003.

[88] Shouyi Yin, Zhicong Xie, Chenyue Meng, Leibo Liu, and
Shaojun Wei. “Multibank memory optimization for paral-
lel data access in multiple data arrays.” In: Proceedings of
ICCAD. IEEE. 2016, pp. 1–8.

[89] Jintao Zhang, Zhuo Wang, and Naveen Verma. “In-memory
computation of a machine-learning classifier in a standard
6T SRAM array.” In: IEEE Journal of Solid-State Circuits 52.4
(2017), pp. 915–924.

P U B L I C AT I O N S

List of publications between 2016 and 2020:

• G. Stramondo, A. L. Varbanescu, and C. B. Ciobanu. “The
Case for Custom Parallel Memories: an Application-centric
Analysis.” In: H2RC. 2016. url: https://h2rc.cse.sc.edu/
2016/papers/paper_23.pdf.

• G. Stramondo, C. B. Ciobanu, A. L. Varbanescu, and Cees
de Laat. “Towards application-centric parallel memories.”
In: HeteroPar. 2018, pp. 481–493. DOI: 10.1007/978-3-030-
10549-5_38.

• G. Stramondo, C. B. Ciobanu, C. de Laat, and A. L. Var-
banescu. “Designing and building application centric par-
allel memories.” In: CCPE. 2019, DOI: 10.1002/cpe.5485.

• G. Stramondo, M. D. Gomony, B. Kozicki, C. De Laat, and
A. L. Varbanescu. “µ-Genie: A Framework for Memory-
Aware Custom Processor Architecture Co-Design Explo-
ration.” In: DSD 2020.

• L. Stornaiuolo, M. Rabozzi, D. Sciuto, M. D. Santambrogio,
G. Stramondo, C. Ciobanu, and A. L. Varbanescu. “HLS
Support for Polymorphic Parallel Memories.” In: VLSI-SoC.
2018, pp. 143–148. DOI: 10.1109/VLSI-SoC.2018.8644899.

• C. B. Ciobanu, G. Stramondo, C. de Laat, and A. L. Var-
banescu. “MAX-PolyMem: High-Bandwidth Polymorphic
Parallel Memories for DFEs.” In: IPDPSW RAW. 2018, pp.
107–114. DOI: 10.1109/IPDPSW.2018.00025.

• C. B. Ciobanu, G. Stramondo, A. L. Varbanescu, A. Brokalakis,
A. Nikitakis, L. Di Tucci, M. Rabozzi, L. Stornaiuolo, M. D.
Santambrogio, G. Chrysos, and D. Pnevmatikatos “EXTRA:
An Open Platform for Reconfigurable Architectures.” In:
SAMOS. 2018. DOI: 10.1145/3229631.3236092.

103

https://h2rc.cse.sc.edu/2016/papers/paper_23.pdf
https://h2rc.cse.sc.edu/2016/papers/paper_23.pdf
https://doi.org/10.1007/978-3-030-10549-5_38
https://doi.org/10.1007/978-3-030-10549-5_38
https://doi.org/10.1002/cpe.5485
https://doi.org/10.1109/VLSI-SoC.2018.8644899
https://doi.org/10.1109/IPDPSW.2018.00025
https://doi.org/10.1145/3229631.3236092

104 publications

• A. Kulkarni, P. Bahrebar, D. Stroobandt, G. Stramondo,
C. B. Ciobanu, and A. L. Varbanescu. “A NoC-based cus-
tom FPGA configuration memory architecture for ultra-fast
micro-reconfiguration.” In: ICFPT. 2017, pp. 203–206. DOI:
10.1109/FPT.2017.8280141.

• G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sci-
uto, and M. D. Santambrogio. “A polyhedral model-based
framework for dataflow implementation on FPGA devices
of Iterative Stencil Loops.” In: ICCAD. 2016, pp. 1– 8. DOI:
10.1145/2966986.2966995.

• L. Stornaiuolo, M. Rabozzi, M. D. Santambrogio, D. Sci-
uto, C. B. Ciobanu, G. Stramondo, and A. L. Varbanescu.
“Building High-Performance, Easy-to-Use Polymorphic Par-
allel Memories with HLS.” In: VLSI-SoC 2018, pp. 53–78.
DOI: 10.1007/978-3-030-23425-6_4.

https://doi.org/10.1109/FPT.2017.8280141
https://doi.org/10.1145/2966986.2966995
https://doi.org/10.1007/978-3-030-23425-6_4

S O F T WA R E A N D D ATA

This section references the software and data produced in this
work:

• Max-PolyMem Stream: Configurable parallel memory tem-
plate linked to a Sparse-STREAM kernel (Ch. 3, Ch. 4)
https:github.com/giuliostramondo/PolyMemStream

• Polymorphic Register File Simulator (Ch. 3)https://github.
com/giuliostramondo/prf-simulator

• Max-PolyMem Synthesis Data: Configurable parallel mem-
ory template and syntesis results (Ch. 3, Ch. 4) https:

//github.com/giuliostramondo/prf_maxeler_samos

• Access Trace Generation and Analysis: Tools to gener-
ate and analyse application access traces (Ch. 4) https:

//github.com/giuliostramondo/atrace_utils

105

https:github.com/giuliostramondo/PolyMemStream
https://github.com/giuliostramondo/prf-simulator
https://github.com/giuliostramondo/prf-simulator
https://github.com/giuliostramondo/prf_maxeler_samos
https://github.com/giuliostramondo/prf_maxeler_samos
https://github.com/giuliostramondo/atrace_utils
https://github.com/giuliostramondo/atrace_utils

S U M M A RY

Computing drives a lot of developments all around us, and
leads to innovation in many fields of science, engineering, and
entertainment. As such, the need for computing is increasing
at fast pace. This pace has seen the prevalent use of multi- and
many-core processors, where parallelism is a sustainable way (for
now) to feed our computing needs. We now see single machines
reaching multiple TFLOPs in performance, when combining
multi-core CPUs and many-core accelerators.

However, a second bottleneck arises in many of these comput-
ing systems: the memory. The so-called "memory wall", a term
coined in 1994 by Wulf and McKee [85], is a metaphor for the
the significant performance limitations that the memory itself
poses for computing systems. Simply put, the memory system is
often unable to provide enough data to the computing system,
creating a bottleneck and limiting the performance of the entire
computing system.

One way to go around the memory wall is to redesign the
memory system to support more parallelism, and be better suited
for the applications running on the computing system. The work
presented in this thesis illustrates different ways in which such
a novel design can be approached and deployed, as well as the
potential performance gains such novel memory systems can
provide.

main contributions and findings

In this work, we present four alternatives to design and/or deploy
alternative memory systems.

A parallel software cache [13]

A first challenge we address in this work is the feasibility of
designing and implementing parallel memories in FPGAs, such
that they can be further reusable for real applications. To this end,

107

108 summary

we present a configurable parallel memory design (Polymem)
which acts as a software cache and enables parallel memory
accesses for different combinations of access patterns. Our design
supports multiple lanes, multiple read ports, and concurrent
read and write operations. We further present Max-PolyMem,
an implementation of PolyMem for the Maxeler reconfigurable
platform. We conduct a thorough design space exploration to
empirically determine the best configurations - having maximal
bandwidth - and/or the performance bounds for Max-Polymem.
For example, we demonstrate that the design with the maximum
read bandwidth is a 512KB memory, with 4 read ports, running
at 137MHz, and reaching a peak read bandwidth of 32GB/s.

Application-centric parallel memories [72, 73]

To further enable the use of parallel memories in real applica-
tions, we propose a comprehensive approach to designing and
implementing application-centric parallel memories based on
PolyMem. Our approach enables the acceleration of a memory-
bound region of an application by (1) analyzing the memory
access to extract parallel accesses, (2) configuring PolyMem to
deliver maximum speed-up for the detected accesses, and (3)
building an actual FPGA-based parallel-memory accelerator for
this region, with predictable performance. We show that our
performance model accurately predicts the performance of the
memory system (below 1% error in most cases).

A method for application-specific compute- and memory-system co-
design [74]

PolyMem offers a feasible approach to deploy a semi-flexible
parallel memory for a given application. For increased flexibil-
ity, we further investigate the feasibility of the computing- and
memory-system co-design. Thus, we present µ-Genie, an auto-
mated framework for co-design-space exploration of custom-
processor architecture and memory system, starting from an
application description in a high-level programming language.
In addition, we propose a spatial processor architecture template
that can be configured at design-time for optimal hardware im-

summary 109

plementation. The architecture template is then used to validate
our methodology in a hardware simulation environment.

Design-Space exploration for compute- and memory-system co-design:
a collection of case-studies [74]

Finally, to demonstrate the effectiveness of our µ-Genie, we
show extensive DSE experiments in which we co-design custom-
processor architectures using different memory technologies. For
each generated architecture the framework predicts area, latency
and energy consumption allowing a comparison of different de-
signs and technologies. As an example of the insight obtained
during our DSE, we were able to conclude that changing the
memory system technology (i.e. SRAM to MRAM) it is possible
to obtain a 25% decrease in power consumption for a matrix
vector multiplication application.

summary and future work

This work describes two methodologies for the design and use
of application-specific parallel memories. The first methodology
leverages PolyMem, a configurable parallel memory design with
a fixed set of access shapes, which can be tuned, using an appli-
cation memory trace, to be an efficient software cache for that
specific application. The second methodology, implemented in
our µ-Genie framework, provides additional flexibility by co-
designing the memory system and computing system, using
the application data dependency analysis. As future work, we
plan to expand Max-Polymem to support an increased variety of
applications. Moreover, we aim to extend µ-Genie to allow the
generation of multi-application application-specific architectures.

S A M E N VAT T I N G

Computing is de drijvende kracht achter vele ontwikkelingen om
ons heen, en brengt ons innovatie in velden van onder andere
wetenschap, engineering, en entertainment. We zien de vraag
dan ook snel stijgen. Deze snelheid heeft gezorgd voor een preva-
lent gebruik van multi- en many-core processors, waarbij parallel
werken (voor nu) een duurzame manier is om te zorgen dat
we genoeg rekenkracht ter beschikking hebben. We zien enkele
machines meerdere TFLOPS bereiken qua prestatie. Echter, er is
een tweede knelpunt in veel systemen: het geheugen. De zoge-
noemde geheugenmuur, een term bedacht door Wulf en McKee
in 1994 [85], is een metafoor voor de significante limitaties op
de prestatie, die het geheugen zelf opwerpt voor computing sys-
temen. Eenvoudig gesteld, het werkgeheugen van het systeem
is vaak niet in staat om genoeg data beschikbaar te stellen aan
het systeem, zodat er daar een knelpunt ontstaat, en de algehele
prestatie van het systeem gelimiteerd wordt. Een manier om deze
limitaties te verminderen, is door het systeem zo her in te richten
dat het meer parallelisme ondersteunt, en beter geschikt is voor
de applicaties die draaien op het systeem. Het in deze thesis gep-
resenteerde werk laat verschillende manieren van herinrichting
zien, en geeft weer hoe dezen kunnen worden benaderd, worden
geïmplementeerd, en geeft een beeld van de mogelijke winst die
zo’n andere aanpak kan opleveren.

belangrijkste bijdragen en bevindingen

In dit werk presenteren we vier alternatieven voor ontwerp en /
of implementatie van alternatieve geheugensystemen.

Een parallele software cache [13]

Een eerste uitdaging die we bespreken in dit werk, is de haal-
baarheid van het ontwerpen en implementeren van parallelle
geheugens in FPGAs, zodat ze hergebruikt kunnen worden voor

111

112 samenvatting

echte applicaties. Om dit te bewerkstelligen, presenteren we
een te configureren parallel geheugen ontwerp (Polymem), die
zich gedraagt als een software cache en die toegang tot parallel
geheugen voor verschillende combinaties van toegangspatronen
toestaat.

Ons design ondersteunt meerdere banen, meerdere leespoorten,
en gelijktijdige lees- en schrijfoperaties. Tevens presenteren we
Max-Polymem: een implementatie van Polymem voor het hercon-
figureerbare platform Maxeler. We voeren een volledige ontwerp-
ruimte verkenning (DSE) uit om empirisch te kunnen vaststellen
wat de beste configuraties zijn – maximale bandbreedte – en / of
de prestatiegrenzen van Max-Polymem. We laten bijvoorbeeld
zien dat het design met de maximale lees-bandbreedte 512KB
geheugen, met 4 leespoorten, draaiend op 137Mhz, met een piek
lees-bandbreedte van 32GB/s, is.

Applicatie-gebaseerd parallel geheugen [72, 73]

Om verder gebruik van parallel geheugen in echte applicaties
mogelijk te maken, stellen we een uitgebreide aanpak van het
ontwerp en de implementatie van op Polymem gestoeld, par-
allel geheugen waarbij de toepassing centraal staat, voor. Onze
benadering zorgt voor versnelling van een geheugen-begrensde
regio van een applicatie door het (1) analyseren van geheugen-
toegang om de parallelle toegangen eruit te halen, (2) het config-
ureren van PolyMem om maximale versnelling te leveren voor
de gevonden toegangen, en (3) het bouwen van een echte FPGA-
gebaseerde parallel geheugenversneller voor deze regio, met
voorspelbare prestaties. We laten zien dat ons prestatiemodel
nauwkeurig de prestaties van het geheugensysteem kan voor-
spellen (met een foutmarge van onder de 1% in de meeste
gevallen).

Een methode voor applicatie-specifieke rekenkracht- en geheugen-systemen
co-design [74]

Polymem verschaft ons een haalbare manier om een semi-flexibel
parallel geheugen in te zetten voor een gegeven applicatie. Voor
meer flexibiliteit onderzoeken we de haalbaarheid van het reken-

samenvatting 113

en geheugen-systeem co-design. Dus presenteren we µ-Genie,
een geautomatiseerd raamwerk voor co-design-ruimte explo-
ratie van maatwerk-processor architectuur en geheugensysteem,
beginnend bij een beschrijving van een applicatie in een program-
meertaal van hoog niveau. Vervolgens stellen we een spatiele
processor architectuur-sjabloon voor, dat geconfigureerd kan wor-
den tijdens de design-fase, voor optimale hardware implemen-
tatie. Het architectuur-sjabloon wordt daarna gebruikt om onze
methodologie te valideren in een hardware-simulatie omgeving.

Design-Space exploration for compute- and memory-system co-design:
a collection of case-studies [74]

Om tenslotte de effectiviteit van onze µ-Genie weer te geven,
laten we uitgebreide DSE-experimenten zien, waar we met ver-
schillende geheugentechnieken de maatwerk processor architec-
turen co-designen. Het raamwerk voorspelt voor elke gegenereerde
architectuur de latentie en energieconsumptie, zodat een vergeli-
jking van verschillende designs en technologieën mogelijk is. Een
voorbeeld van een verkregen inzicht tijdens de DSE, is dat we
kunnen concluderen dat het wijzigen van geheugensysteem tech-
nologie (zoals RAM naar MRAM) ervoor kan zorgen dat er een
25% daling van energieconsumptie voor een matrix vectorver-
menigvuldiging applicatie kan plaatsvinden.

samenvatting en toekomstig werk

Dit werk beschrijft twee methodologieën voor ontwerp en ge-
bruik van applicatie-specifieke parallelle geheugens. De eerste
methodologie gebruikt Polymem, een configuureerbaar paral-
lel geheugen ontwerp met een vaste set van toegangsvormen,
die afgesteld kunnen worden, door middel van een applicatie
geheugen trace, om een efficiënte software cache te zijn voor
deze specifieke applicatie. De tweede methodologie, geïmple-
menteerd in ons µ-Genie raamwerk, voorziet in extra flexibiliteit
door het co-designen van het geheugensysteem en het rekensys-
teem, met gebruik van de applicatiedata afhankelijkheidsanalyse.
Voor toekomstig werk, zijn we van plan om Max-Polymem uit te
breiden, om een grotere variëteit aan applicaties te ondersteunen.

114 samenvatting

Bovendien zijn we van plan om µ-Genie uit te breiden, om een
generatie aan multi-applicatie, applicatie-specifieke architecturen
te kunnen genereren.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Research questions and approach
	1.2 Structure of this thesis

	2 Background and Terminology
	2.1 Memory and processing systems
	2.1.1 Parallel Memories
	2.1.2 Types of Parallel Memories
	2.1.3 The target application

	2.2 Memory Technologies
	2.3 Hardware Platforms
	2.3.1 Field Programmable Gate Arrays (FPGAs)
	2.3.2 Spatial Processor

	3 A parallel software cache
	3.1 Introduction
	3.1.1 The Polymorphic Register File

	3.2 Design and Implementation
	3.2.1 End-to-end design
	3.2.2 From PolyMem to MAX-PolyMem
	3.2.3 Productivity Analysis

	3.3 Design Space Exploration and Results
	3.3.1 Design Space Exploration setup
	3.3.2 Memory Performance
	3.3.3 Resource utilization

	3.4 STREAM-Copy: Bandwidth Benchmarking
	3.5 Related Work
	3.6 Summary

	4 Application-Centric Parallel Memories
	4.1 Introduction
	4.2 Preliminaries and Terminology
	4.2.1 Parallel Memories
	4.2.2 The Application

	4.3 Scheduling an Application Access Trace to a PM
	4.3.1 The set covering problem
	4.3.2 From Concurrent Accesses to Set Covering
	4.3.3 An Heuristic Approach
	4.3.4 The Complete Approach

	4.4 Evaluation
	4.4.1 Experiment Setup
	4.4.2 Results

	4.5 Experiments and Results
	4.5.1 MAX-PolyMem
	4.5.2 Sparse STREAM
	4.5.3 Results

	4.6 Related Work
	4.7 Summary

	5 Compute and memory system codesign
	5.1 Introduction
	5.2 The -Genieframework
	5.2.1 Model of Execution
	5.2.2 The L2 Memory Model

	5.3 -Genie: Inputs
	5.3.1 Application
	5.3.2 Configuration Parameters

	5.4 -Genie: Analysis
	5.4.1 L2 Memory Read and Write Modeling
	5.4.2 Data Dependency Analysis
	5.4.3 PE allocation with Modified Interval Partitioning
	5.4.4 Most Parallel and Most Sequential Architectures

	5.5 -Genie: Design Space Exploration (DSE)
	5.5.1 Architecture Tradeoffs

	5.6 Architectural Template
	5.7 Summary

	6 DSE for codesigned compute and memory systems
	6.1 Multi-Configuration Design Space Exploration
	6.2 Case Studies
	6.2.1 Single configuration DSE
	6.2.2 MRAM vs SRAM Level 2 Memory
	6.2.3 Different Matrix Dimensions

	6.3 Related Work
	6.4 Summary

	7 Conclusion
	7.1 Main Findings
	7.2 Main contributions
	7.3 Future Research Directions

	 Bibliography
	 Publications
	 Software and Data
	Summary
	Summary

	 Summary
	Samenvatting
	Samenvatting

	 Samenvatting

