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Abstract—While it is well-known and acknowledged that the
performance of graph algorithms is heavily dependent on
the input data, there has been surprisingly little research to
quantify and predict the impact the graph structure has on
performance. Parallel graph algorithms, running on many-core
systems such as GPUs, are no exception: most research has
focused on how to efficiently implement and tune different
graph operations on a specific GPU. However, the performance
impact of the input graph has only been taken into account
indirectly as a result of the graphs used to benchmark the
system.

In this work, we present a case study investigating how
to use the properties of the input graph to improve the
performance of the breadth-first search (BFS) graph traversal.
To do so, we first study the performance variation of 15
different BFS implementations across 248 graphs. Using this
performance data, we show that significant speed-up can
be achieved by combining the best implementation for each
level of the traversal. To make use of this data-dependent
optimization, we must correctly predict the relative performance
of algorithms per graph level, and enable dynamic switching
to the optimal algorithm for each level at runtime.

We use the collected performance data to train a binary
decision tree, to enable high-accuracy predictions and fast
switching. We demonstrate empirically that our decision tree
is both fast enough to allow dynamic switching between
implementations, without noticeable overhead, and accurate
enough in its prediction to enable significant BFS speedup.
We conclude that our model-driven approach (1) enables BFS
to outperform state of the art GPU algorithms, and (2) can
be adapted for other BFS variants, other algorithms, or more
specific datasets.

1. Introduction

Graph processing is an important part of data science,
due to the flexibility of graphs as models for highly interre-
lated data. Given the rapid growth of dataset sizes, as well as
the expected complexity increase of graph processing appli-
cations, a lot of research focuses on parallel and distributed

solutions for graph processing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11].

With the increased popularity of graphics process-
ing units (GPUs), some of this research also “migrated”
to these massively parallel architectures. Tempted by the
high-performance potential of GPUs, researchers investigate
novel ways to circumvent the (apparent) lack of regularity
and data locality [12] in graph processing to accommodate
the massive parallelism of GPUs. Therefore, several GPU-
enabled graph processing frameworks have emerged [3, 13,
14, 15, 16, 17].

Most graph processing frameworks, GPU-enabled or
otherwise, simplify working with graphs by hiding com-
plexity; they maintain a separation between a front-end that
lets users specify their algorithm using high-level primitives
or domain specific languages, and a back-end that provides
high-performance implementations of these primitives for
the given software or hardware platform.

Unfortunately, there is no consensus which primitives
form the “canonical set“ of operations required to implement
graph algorithms. It is not even clear if such a set exists. As
a result, different frameworks choose drastically different
primitives to base their implementation on, e.g., Gather-
Apply-Scatter [18, 19] or vertex-centric operations [20, 1,
21]. To make matters worse, there are often many different
ways to implement the same primitive, e.g., push versus pull
for vertex-centric primitive [10].

If the performance of these primitives and implementa-
tions was only dependent on the hardware, this would be a
tractable optimisation problem: benchmark each implemen-
tation for each piece of hardware and you can select a single
“best“ performing implementation for your system. This is
an arduous task, but not especially complicated.

But the performance of different implementations also
depends on the structural properties of the graph being
processed. While it is accepted as common knowledge that
the performance of data-dependent algorithms is impacted
by the structure of the data, little progress has been made,
for graph processing, in understanding how large this impact
is, or in modeling the correlation between the properties of
the input data and the observed performance [22, 23, 24].
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Theoretically speaking, there are multiple solutions to
understand and/or quantify this correlation: (1) workload
characterization and analytical modeling, (2) controlled (mi-
cro)benchmarking, or (3) statistical modeling.

While workload characterization for graph processing
on parallel systems has been attempted, there is no such
work to be found for GPUs. Moreover, there is very little
work in analytical modeling for parallel graph processing,
precisely because the strong dependence between hardware,
algorithm, and dataset.

In our previous work we attempted to determine the
performance impact of different graph properties by con-
structing an analytical model of the sequential workload
of the implementation. We attempted to link graph prop-
erties to runtime behaviour [23], via metrics like: 1) access
coalescing, 2) occupancy, 3) branch divergence, 4) atomic
retries. Although the model was able to correctly estimate
the amount of work per (algorithm, dataset) pair, its general-
ization for parallel execution on GPUs was less successful.
Therefore, the resulting model had to be discarded due to
its low average accuracy.

Controlled (micro)benchmarking is another interesting
approach, where by a clever selection of the input datasets,
we can study the changes in algorithmic performance behav-
ior and eventually isolate the performance impact of each
graph feature. In order for this approach to work, a large
collection of (synthetic) datasets is required, in which each
property can be varied in isolation.

No repository of such datasets exists. Instead, most
research on graph processing uses: 1) input data from several
publicly available real world datasets, such as SNAP [25]
and KONECT [26], or 2) synthetically generated graphs
using well-known generators/models, such as R-MAT [27],
Kronecker graphs [28], and scale-free graphs [29].

The real world datasets are too noisy for systematic
benchmarking; the graphs vary in almost every property.
The synthetic graphs, although more predictable and control-
lable, still do not cover all properties of interest, and results
cannot be generalised to other types of graphs. We attempted
to generate graphs with the desired properties ourselves, but
were unable to scale the generation to graphs of sufficient
size to do benchmarking [30].

In this work, we focus on the third option towards un-
derstanding the performance impact of dataset properties on
graph processing: data-driven. Specifically, we collect a lot
of performance data from representative graphs, and we use
it as training data for a machine learning approach towards
a model that can predict performance for a given, unseen
graph. While this approach provides less insight into the
actual correlations, it does provide a systematic process for
building a prediction model, and many tuning possibilities
in terms of features, variables, and actual methods.

Among all these methods, we initially selected Random
Forests as the predictive model, and found its accuracy to
be good, but its applicability for fast prediction too limiting.
To simplify the model, we opted for a Binary Decision
Tree (BDT), and found it provides a good balance between
accuracy and applicability. Therefore, this work focuses on

building and using a BDT-based model to: 1) determine
which graph properties have the biggest impact on algo-
rithm performance, and 2) improve the BFS performance
by predicting and deploying the best performing algorithm
for each BFS level.

We have applied this model on the 248 graphs from
KONECT; for each graph we used 20 different traversals,
starting from 20 different nodes, and collected the features
and performance indicators for each traversed level. We
trained the model on a 70% random split of the data.
When testing on the remaining 30% of the data, the model
predicts with 96% accuracy. Finally, we use the model
as a switch predictor for a level-switching adaptive BFS.
With this adaptive BFS, we outperform two popular graph
processing systems for GPUs: we gain on average 2× over
Gunrock [13] and 15× over LonestarGPU [31].

The main contributions of this paper are the following:
• We show that the performance of different BFS imple-

mentations varies dramatically across both graphs and
iterations within the same graph, with differences of up
to two orders of magnitude (Section 3).

• We create a binary decision tree model that can predict
which BFS implementation to use at every level of
BFS. (Section 4.1).

• We show that our decision-tree model is accurate
enough and fast enough to evaluate online, allowing
for dynamic switching of implementations during BFS
(Section 4.3).

• We demonstrate that using our dynamic switching
BFS approach, enabled by the accurate prediction of
our model, may lead to performance gains of ∼20%
to ∼80% over the best single-algorithm BFS (Sec-
tion 4.3).

2. Background

For readers unfamiliar with binary decision trees or
GPGPU processing, this section provides some basic infor-
mation required to understand the rest of this paper.

2.1. Decision Trees

Decision trees are a non-parametric, supervised learning
technique [32]. They come in two flavours, classifiers and
regressors. After constructing a decision tree from a training
set of (X,Y ) pairs, where X is a tuple of 1 or more inputs
and Y is a tuple of 1 or more outputs, we can use this tree
to predict the expected output tuple for a given input tuple.
The working assumption is that the original learning set is
representative of the observable input-output pairs.

To construct a (binary) decision tree we recursively
partition the learning set along one of the N input pa-
rameters, preferring the parameter (and value) that has the
strongest discriminating power, i.e. the one that produces
the partitioning closest to 50–50. The split effectively means
that we assign all elements smaller than the chosen value
to the left branch and the others to the right branch. This



process repeats until we reach a stopping criteria — e.g.,
the maximum tree height, minimal bucket size.

After the stop condition is hit, the output for each
bucket is computed. If the bucket contains 1 output value,
or multiple equal outputs, this is the result for that bucket. If
there are multiple unequal values, the outputs are normalised
to a single output. For regressions this usually done by
averaging all values in the bucket. For classification, this is
usually by selecting the “most likely” value in the bucket,
although more complicated strategies exist.

We can now use this computed binary tree as a pre-
diction model. To compute a prediction using this tree for
an input tuple, we compare the tuple’s value against the
parameter stored in the tree at each level, and walk down
the correct branch. Once we reach a leaf node, we return the
value computed above for that bucket as resulting prediction.

Different decision tree algorithms use different criteria
to compute which parameter and value to split the tree
on. We used the implementation in Python library scikit-
learn [33]. This uses an optimised algorithm based on the
CART [32] algorithm. This algorithm splits the training set
based on which parameter produces the large reduction in
Gini impurity. Gini impurity is a measure of how often an
element in a subset would labelled wrong if all elements
in the subset were labelled randomly, according to the
distribution of labels in that subset.

We can estimate the importance of each input param-
eter by computing its Gini importance. This is done by
computing the total, normalised, reduction of Gini impurity
resulting from that parameter. Similar importance measures
exist for other decision tree algorithms, meaning that we can
relatively easily compute the importance of each parameter
in our input.

To summarise the advantages of decision trees: They
are simple to understand and interpret; Small trees can
be visualised; They require little to no data preparation;
Prediction cost is logarithmic in the number of data points
used; They can handle both categorical and numerical data;
They can handle multi-output problems; Parameter impor-
tance is known after training.

The main downsides of decision trees are: They are
prone to overfitting; Small differences in data can re-
sult in drastically different results (i.e., unstable models);
Constructing optimal decision trees is NP-complete under
several aspects of optimality; They cannot represent all
concepts easily (XOR, parity, multiplexer problems); Biased
trees are easily created, if some classes dominate.

Due to the way trees are constructed, overfitting issues
can become more pronounced if the input parameters in the
learning set are not uniformly distributed across the range
we intend to predict against. Additionally, as the number of
input parameters increases it becomes exponentially more
costly to compute the best discriminator, which in turn
makes the algorithm slower and increases the risk of bias
and overfitting. To reduce and detect overfitting we train
our decision trees on a random subset of our data points
and cross-validate our model against the unseen data points.

See Section 4.4 for a more detailed discussion on concerns
related to overfitting.

2.2. Graph Processing

Graphs are collections of entities (called nodes or ver-
tices) and relationships between them (called edges) —
G = (V,E). Graph processing typically implies some
transformation of the original graph by traversing its edges
and visiting is nodes. The simplest example itself being a
traversal itself, where, given a starting node (also called the
root node), the algorithm has to visit all the nodes accessible
from the root, eventually providing shortest path between
the root and all accessible nodes. There are two types of
traversals: the Breadth-First Search (BFS) and Depth-First
Search (DFS). In this work we focus mainly on BFS.

In general, graph processing applications — and traver-
sal is a good example — are not easy to parallelize due to
their properties: low compute-to-communication ratio, data-
dependent behavior, low data locality, variable parallelism,
and load imbalance, etc. Thus proposing efficient parallel
algorithms for these algorithms is a challenge.

2.3. General Purpose GPU Programming

GPUs (Graphics Processing Units) are the predominant
accelerators for high performance computing. A GPU is,
currently, a very good example of a many-core architecture:
it has hundreds to thousands of slim cores, grouped into
streaming multi-processors with local shared memory and/or
caches; it provides a hierarchical memory model, with large
register files per multi-processor, local L1 and shared L2
caches, and a global memory which increases in size with
every generation.

GPUs promise huge theoretical performance: the peak
performance of a regular card can easily be in excess
of 2 TFLOPs computational throughput and 200–300
GiB/s memory bandwidth. With such performance numbers,
sooner or later, all computational domains will investigate
whether GPUs are a suitable target for their computational
needs.

Graph processing is no exception: our work focuses on
understanding the potential for GPUs to boost the perfor-
mance of graph processing algorithms, which are notori-
ously difficult to parallelize efficiently. In this work, we
use NVIDIA GPUs, due to their superior programmability
provided by CUDA1.

The idea behind the programming model is simple:
CUDA provides a mapping of the programming model
concepts onto the hardware, while preserving a sequen-
tial programming model per thread. For the actual com-
putation, programmers focus on implementing the single-
thread code, called a kernel; they further write the host
code to launch enough threads to (1) cover the space of

1. CUDA is the native programming model for NVIDIA GPUs; it is
proprietary to NVIDIA, but has a huge ecosystem of libraries and helpful
tools, unmatched by models like OpenCL or OpenACC.



the problem, and (2) provide enough potential for latency
hiding [34, 35]. The threads that execute the kernel are
grouped into thread blocks, which are scheduled on the
streaming multi-processors. All blocks form a grid, which
effectively contains all the logical threads that are to be
scheduled and eventually executed on the cores themselves.

In terms of the execution model, NVIDIA GPUs work
with warps. A warp is a group of 32 threads that work in
lock-step: they all execute the same instruction on multiple
data. This model is called SIMT — Single Instruction Mul-
tiple Thread — and enables high performance by massive
parallelism, but is unable to handle diverging threads, it also
poses programming challenges to avoid the severe penalties
that any inner-warp load imbalance might bring. Besides
thread divergence, other performance challenges in GPU
programming are the abuse of atomic operations and lack
of coalescing for the main memory accesses.

Our software stack is based on C++ and CUDA, and it
is available on GitHub2.

3. Experiments

We benchmarked our 15 different BFS implementations
on the graphs found in the KONECT [26] dataset, measuring
both the total time and the time taken for each level of
BFS. We used these results to train and validate our Binary
Decision Tree (BDT) model.

3.1. BFS Implementations

We wrote 5 different implementations of BFS, and for
each of these 5 implemented 3 variants. These 5 imple-
mentations consist of: 2 edge-centric implementations (edge
list and reverse edge list), 2 vertex-centric implementations
(vertex push and vertex pull), and 1 virtual warp-based
implementation based on the work by S. Hong and Oluko-
tun [36]. The 3 different variants are based on how the new
frontier size is computed at the end of each BFS level. In
this subsection we describe how these versions differ from
each other.

Each algorithm starts by initialising all depths to infinity,
then initialising the root node’s depth to 0. During every
level of BFS we compute the frontier size, that is, the
number of vertices that have been assigned a new depth.

3.1.1. Edge List & Reverse Edge List. For every level of
BFS these edge-centric implementations launch one CUDA
thread per edge. If the depth of the origin vertex is equal
to the current BFS level, then the depth of the destination
vertex is updated to the minimum of its current depth and
the BFS level plus one.

The edge list implementation uses the outgoing edges of
every vertex, whereas the reverse edge list implementation
use the incoming edges of every vertex. This difference
affects the amount of memory coalescing and the access
patterns exhibited at runtime.

2. https://github.com/merijn/gpu-benchmarks

The advantage of these edge-centric parallelisations is
that they never suffer from workload imbalance, every thread
in a warp performs the same amount of work. The fact that
many threads have to read the depth of the same origin
vertex helps with coalescing memory access. The downside
is that they result in many parallel updates, resulting in many
heavily contested atomic updates.

3.1.2. Vertex Push & Vertex Pull. For every level of BFS
these vertex-centric implementations launch one CUDA
thread per vertex. For the push implementation, if the vertex
its depth is equal to the current BFS level, the thread iterates
over all its neighbours, updating their depth to the minimum
of their current depths and the BFS level plus one. For the
pull implementation, if the vertex has no depth yet, the
thread iterates over its neighbours until it encounters one
whose depth matches the current BFS level, if this happens
it sets its depth to the current BFS level plus one.

Both implementations are susceptible to workload im-
balance, if vertices with wildly different degrees are in the
same warp, this divergence will result in reduced perfor-
mance. The push version, similar to edge-centric implemen-
tations generates a lot of concurrent updates, requiring a
large number of atomic operations. However, if the frontier
is small it avoids many useless reads, since the depth of
every vertex is only read once.

The pull version does not require atomics as the depth of
a vertex is only ever touched by one thread. The downside
is that, if none of a vertex its neighbours are in the frontier,
a lot of time is wasted iterating over neighbours for nothing.
As such pull becomes more efficient as more vertices are
in the frontier, since a thread can stop looping over its
neighbours as soon as it discovers one in the frontier.

3.1.3. Vertex Push Warp. As mentioned above, this im-
plementation is based on the vertex push implementation,
but rather than assigning one thread per vertex, it uses the
virtual warp method described in [36], which attempts to
mitigate the negative impact produced by workload imbal-
ance between threads.

The basic principle is the same as with vertex push, but
rather than assigning a single thread per vertex, we divide
the warps into smaller “virtual warps”. Each virtual warp
gets assigned a number of vertices, equal to its number
of threads. However, instead of each thread processing the
edges for one vertex, all N threads process the edges of the
first vertex in parallel, then the edges of the second vertex
are processed in parallel, and so on until all vertices assigned
to the virtual warp have been processed.

This reduces the amount of load imbalance occurring
within a virtual warp, since the workload of a virtual warp
is spread out equally across that virtual warp. However, the
optimal size of the virtual warp is challenging to determine.
Moreover, the different graphs and even different levels of
the graph also require tuning of the warp sizes for best
performance.

3.1.4. Variants. In every BFS level, 0 or more new vertices
get discovered. These vertices will form the frontier for the

https://github.com/merijn/gpu-benchmarks
https://github.com/merijn/gpu-benchmarks


No. Graph # Vertices # Edges
1 actor-collaboration 382,219 30,076,166
2 ca-cit-HepPh 28,093 6,296,894
3 cfinder-google 15,763 171,206
4 dbpedia-starring 157,183 562,792
5 discogs affiliation 2,025,594 10,604,552
6 opsahl-ucsocial 1,899 20,296
7 prosper-loans 89,269 3,330,225
8 web-NotreDame 325,729 1,497,134
9 wikipedia link en 12,150,976 378,142,420
10 wikipedia link fr 3,023,165 102,382,410
11 zhishi-hudong-internallink 1,984,484 14,869,484

TABLE 1. DETAILS FOR THE INPUT GRAPHS SHOWN IN FIGURE 1 AND
FIGURE 3.

next level. We need to track the size of the frontier, since
the algorithm terminates when no new nodes are discovered.
To accomplish this task, each thread tracks how many new
vertices it has discovered. At the end of each BFS level, we
need to aggregate these counts to compute the new frontier
size.

We implemented three different methods to do this ag-
gregation. The first variant simply uses a global counter and
every thread performs an atomic addition on this counter.
This approach results in heavily contested atomics opera-
tions. Most of the CUDA literature suggests that we can
reduce the contention and number of atomic operations by
first performing a reduction within a warp or block [37],
before performing the global atomic operation. Thus, the
second variant performs a warp reduction before the global
atomic update, while the third variant performs a warp-and-
block reduction before atomically updating the frontier size.

3.2. Experimental Setup

All measurements have been performed on an NVIDIA
TitanX, using version 7.5 of the CUDA toolkit. The source
code of these benchmarks can be found on GitHub3.

As for datasets, we retrieved all the graphs from the
KONECT repository and ran each of the 3 × 5 implemen-
tations described above on all of them. Additionally, for
every graph, we used 20 different root vertices4. All results
presented here are averaged over 30 runs, and exclude input
data and result transfer times.

The first observation we made about our results is
that both the warp reduction and warp-and-block reduction
variants perform significantly worse than the direct atomic
versions, in all cases. Therefore, we do not include any of
these variants in the plots of this paper, to keep the results
easily readable.

Figure 1 shows the runtimes, normalised to the slowest
implementation for each graph, for a selection of KONECT
graphs5.

3. https://github.com/merijn/GPU-benchmarks
4. For the graphs with less than 20 vertices we used every vertex as root.
5. The full set of performance plots is available at:

https://staff.fnwi.uva.nl/m.e.verstraaten/
(These will be moved to more permanent hosting for the camera-ready
version.)

The plots in fig. 1 were selected to illustrate the point
we made in the introduction: the performance of different
implementations can vary by orders of magnitude across
input graphs.This effectively means that when (accidentally)
choosing the worst algorithm, one can loose 1–2 orders of
magnitude in performance for a BFS traversal compared
with the best option. In turn, this means an informed de-
cision about the algorithm to be used for a given graph is
not only desirable, but quite important for any efficiency
metric. But this is no easy task: no models are available to
determine the best or the worst algorithm for a given graph
traversal task.

One of the reasons for which predicting the best algo-
rithm for the entire graph is difficult is the huge performance
difference that can be observed during traversing a single
graph: (1) between two different BFS levels in the same
graph, the performance of the same algorithm can vary up
to an order of magnitude, and (2) per-level, the differences
between different algorithms can be up to four orders of
magnitude.

In over 75% of the cases the difference between the best
and worst implementation for a single level is more than 2
orders of magnitude, and 4 orders of magnitude in the worst
cases. This, combined with the fact that each algorithm wins
at least once and loses several times, makes a random choice
far from ideal for determining the implementation to use at
a given level.

To illustrate these large performance gaps, fig. 2 presents
an example of the performance of the five main BFS imple-
mentations, per-level, for the actor-collaborations
graph5. We see that the vertex push implementation domi-
nates on most levels, but on a handful of levels it performs
so badly that its overall performance becomes terrible. Such
behaviour is a strong indication that switching algorithms at
every level might be even better than devising a model to
detect the best overall solution.

4. Modeling BFS Performance

There is no consensus on which of a graph’s structural
properties impact the performance of graph algorithms. Our
previous modeling attempts in [23], combined with our
experiences while optimising and developing our implemen-
tations lead us to believe that the graph size and degree dis-
tribution are the biggest factors when it comes to neighbour
iteration. Additionally, the work of Beamer et al. and Li and
Becchi on adaptive BFS [10, 16], and the observed runtime
changes across levels, indicates that the behaviour at each
level is dependent on the size of the frontier discovered in
the previous level, and the percentage of the graph that has
already been discovered. Therefore, these are the features we
focus on when building a performance prediction model.

Further in this section we describe the training process
used to build our model, discuss its accuracy and the appli-
cability for online performance prediction, and analyse the
feasibility of a dynamically switching BFS.

https://github.com/merijn/GPU-benchmarks
https://staff.fnwi.uva.nl/m.e.verstraaten/
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Figure 1. Normalised total runtimes for different BFS implementations on KONECT graphs. See Table 1 for the details of the input graphs.
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Figure 2. Runtimes of different BFS implementations per level of the actor-collaborations graph from KONECT.

4.1. Building the model

The experiments described in the previous section pro-
vide us with timing data for all 15 of our algorithms and
each BFS level of all KONECT graphs. This data allows us
to compute the fastest implementation for each BFS level
and graph combination. We built a training set where we
associated every measured BFS level with the structural
properties of the graph it was run on, and the level’s specific
information. We consider the following relevant features for
our model:

Graph size:
the number of vertices and edges in the graph.

Frontier size:
either as absolute number of vertices or as per-
centage of the graph’s vertices.

Discovered vertex count:
either as absolute number of vertices or as per-
centage of the graph’s vertices.

Degree distribution:
represented by the 5 number summary and stan-
dard deviation of in, out, or absolute degrees.

The models described in the rest of this section consist of
binary decision trees trained to predict the best performing
algorithm for a given level of BFS, based on a mix of the
above properties. We remind the reader that the predicted
value for each leaf in the tree is based on a majority vote
on what is “most likely” given the values in the bucket
associated with that leaf — see section 2.1). However,
there can be special cases when the model cannot deliver a
prediction because no single value can be computed based
on the values in the bucket — e.g., as a result of a tie.

In such cases we talk about an “unknown prediction”.
We opted to resolve unknown predictions for level N of a
BFS by repeating the prediction for level N − 1. In case
of an unknown prediction at the first level of BFS, we
default to predicting the edge list implementation, as this
implementation is the least likely to have extremely bad



performance, which should reduce the likelihood of early
unknown predictions resulting in significant performance
loss.

4.2. Model Accuracy

We define the optimal BFS traversal of a graph as the
traversal where the fastest of our implementations is used at
every level. To evaluate the accuracy of our models, we
take this optimal runtime as a reference (i.e., as 1) and
evaluate the predicted and observed runtimes as a slowdown
compared to this theoretical optimum. The larger the gap,
the further away we are from the optimal performance.

Of the models we have trained using our experimental
dataset, the one that performs best for this prediction task
is one based on the following four features: graph size,
percentage of vertices discovered, the distribution of out
degrees, and the number of vertices in the current frontier.
In table 2 we compare the model’s predictions and the
different implementations against the optimal runtime across
all KONECT graphs. The optimal runtime is the execution
time of the optimal BFS traversal. The “oracle” runtime
shows the fastest algorithm for every graph when dynamic
runtime switching during the BFS computation is disabled
(i.e., the best performing non-switching algorithm for each
graph).

Following our model’s predictions, we observe an aver-
age runtime of 1.40 of optimal, which effectively means a
40% slowdown compared to optimal. However, the oracle
average runtime is 1.65, or 65% slowdown compared to
optimal. In other words, by following the model’s prediction,
we can obtain a 15% speedup compared to this oracle. In
practice, the potential gain is more significant, as such an
oracle does not exist.

These results show that our model results in considerable
speedup compared to our individual implementations. How-
ever, speedup results are only as good as the baseline. We
compare against two existing GPU graph processing frame-
works to establish how much “real world” performance we
gain by using the model described in this paper.

Figure 3 compares our results against the state-of-the-
art GPU graph processing framework Gunrock [13] and the
slightly older BFS benchmark LonestarGPU [31], across
a selection of KONECT graphs. We benchmarked both
Gunrock and LonestarGPU on the same hardware, using 148
different KONECT graphs. On average, Gunrock achieves
a performance of 2.9× of our theoretical optimum. Lon-
estarGPU manages 21× of optimal. Our model’s 1.4× of
optimal means that we are, on average, 2× faster than
Gunrock.

4.3. Feasibility of Dynamic Switching

The results presented in Section 3 indicate a significant
performance improvement when switching between differ-
ent implementations at runtime, but these gains can only
be realised if the cost of switching does not outweigh the
gains. Thus, the feasibility of dynamic switching effectively

depends on (1) how long it takes to compute a prediction
based on the trained model, and (2) how expensive a “con-
text switch” is between these implementations.

To determine whether the runtime prediction is cheap
enough, time-wise, we extracted the binary decision tree
from scikit-learn, converted it into a C array-based data
structure, and corresponding lookup function. We then mea-
sured the time it takes to compute a prediction for each
graph and level in our dataset. The average prediction time
is 144 ns, with a standard deviation of 161 ns, and a
maximum of 16 µs. For comparison, the average BFS level
computation in our dataset takes 28 ms. Thus, computing
the prediction is, on average, insignificant compared with
the actual processing of each level.

We still need to evaluate how expensive the “context
switch” between implementations is. We note that most of
our implementations operate on different representations of
the graph, so to switch to a different implementation, we
need to (a) either generate/bring the new representation in
memory, or (b) simply keep all representations in memory.

Option (a) is not really feasible, because transferring
data to and from the GPU is generally slow, and doing
so for each level would become prohibitive, performance-
wise. For option (b), we mush combine the two different
representations into one, which is is a feasible solution, a
classical time–space trade-off, where we trade memory for
faster computation.

The two main graph representations we use are a Com-
pressed Sparse Row (CSR) for the vertex-centric implemen-
tations, and an edge list for the edge-centric implementa-
tions. We can combine the two by simply storing the origin
vertex for every edge in our CSR. This increases the storage
from 1 int/vertex and 1 int/edge (for CSR) and 2 int/edge
(for edge list), to 1 int/vertex and 2 int/edge. This is not
very expensive, memory-wise: it is a mere 38 MiB for a
graph of 10,000,000 edges.

4.4. Overfitting & Generality Concerns

As mentioned in section 2.1 we took the standard pre-
caution of training our model against a subset of 70%
of our data and validating its accuracy against a separate
test set of 30% of the data points. In this validation, the
model accurately predicts the fastest algorithm in 95% of
the cases. The average difference in runtime between the
fastest implementation and our predicted implementation is
9.9%.

From this data we can conclude that the model’s ac-
curacy is high with regards to our KONECT repository of
graphs. However, we expect the portability of the model
to be highly correlated with how representative the training
set is for the test set. For example, if we train the model
on social networks graphs only, we expect it to be better at
predicting the best BFS for social networks, and less so for,
say, road networks. Therefore, we recommend that the actual
training and modeling process is driven by the prediction
goals.



Algorithm Optimal 1–2× >5× >20× Average Worst
Predicted 56% 41% 1% 0.5% 1.40× 236×
Oracle 23% 55% 2% 0% 1.65× 8.5×
Edge List 10% 61% 7% 0.4% 2.22× 38×
Rev. Edge List 5% 59% 15% 0.6% 2.92× 50×
Vertex Pull 0% 15% 27% 24% 38.62× 2, 671×
Vertex Push 9% 15% 53% 29% 39.66× 1, 048×
Vertex Push Warp 0% 0% 3% 30% 18.69× 97×

TABLE 2. ALGORITHM PERFORMANCE COMPARED TO THEORETICAL OPTIMUM OVER ALL THE GRAPHS IN KONECT.
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Figure 3. Comparison of normalised runtimes of different BFS implementations, predicted performance, and existing optimised BFS implementations on
KONECT graphs. See Table 1 for the details of the input graphs.

For example, If the goal is to build a generic model
to predict most graphs, using a large variety of graphs for
training is mandatory. A collection like KONECT is a good
start, but we have two indicators that it is not a balanced
collection.

First, while validating the model against the KONECT
data set, we noticed that bad model predictions are corre-
lated with several classes of graphs, such as bipartite graphs,
and graphs with extremely skewed degree distributions,
which are less represented in the repository (and, thus, in
our training data).

Second, we also used the model to predict algorithm
selection for 19 graphs from the SNAP repository. For these
graphs, our model performed significantly worse than for
KONECT, achieving an average runtime of 3× compared
to optimal, or 2× worse compared to an oracle that predicts
the best non-switching algorithm. There are two plausible
causes for these mis-predictions: (1) KONECT is indeed not
representative enough of all graphs, causing our model to
miss due to a lack of samples for specific cases, and (2)
there are important structural properties not included in our
current training data.

On the other hand, if the goal is to have a model tweaked
for a specific type of graphs — e.g., social or road networks
— only a subset of the graphs in public repositories can be
useful for training. Whether there are sufficient such graphs

depends on many factors. However, this analysis deserves
a dedicated study, focused on determining what is the ideal
size and composition of a specialized training set; such a
study is beyond the scope of this work.

To summarize, we make no portability claims or guaran-
tees of the trained model for more specialized repositories,
and we recognize the limitations of our training dataset.
However, the training and prediction processes are both
straightforward and generic, and can be easily applied for
different training, eventually improving/tuning the predictor
to match the goal.

5. Related Work

This section briefly introduces relevant work from the
three research directions closest to this work: (1) the design
and implementation of parallel graph processing algorithms,
(2) graph processing frameworks and systems for graph pro-
cessing, and (3) the use of machine learning for performance
modeling and prediction.

5.1. Algorithms

Despite the advances in large-scale graph traversal al-
gorithms, like direction switching BFS [10], distributed-
memory BFS [11], and the matrix-based graph processing



solution [38], there’s still no single best BFS traversal solu-
tion. This is because BFS is highly dependent on the graph
properties, with different algorithms and/or implementation
eventually suffering from different bottlenecks.

When combining this with complex, massive parallel
machines like the GPUs [17], the performance gaps are even
more difficult to predict. In our work, we steer away from
attempting to devise yet another algorithm for BFS, and
focus on using the best existing solution in each iteration.
A somewhat similar approach has been attempted in [16],
but our solution combines more algorithms and uses a more
deterministic, systematic switching criterion. Moreover, our
approach can be extended to incorporate additional BFS
versions, as long as sufficient performance data are available
for training.

5.2. Graph Processing Systems

The new challenges of graph processing have also re-
flected in the amount of systems and frameworks designed
for efficient, high performance graph processing [21, 39].
From these systems, a handful of GPU-enabled systems have
also emerged [13, 31], combining clever BFS algorithms
with specific GPU-based optimisations [36].

Still, none of them can claim the absolute best perfor-
mance for the same reason: the diversity of graphs and their
properties lead to high performance variability for all these
systems [40]. This work is complementary to such systems:
our switching approach can be, in principle, incorporated
in these frameworks. Performance-wise, we are competitive
against such systems (see Section 4.2), thus exploring the
potential of incorporating such an adaptive approach into an
existing system is promising as future work.

5.3. Machine Learning for Performance Modeling

Our adaptive BFS algorithm is based on performance
prediction, which in turn is based on a machine learning
model. Performance prediction based on machine learning
has been attempted in many instances in the past [41, 42,
43, 44, 45, 46]. However, applying machine learning for an
adaptive, level-switching BFS requires significant changes:
features and variable selection, as well as the collection and
selection of training data are specialized for the challenges
of graph analytics. To the best of our knowledge, we are the
first to have attempted training and using such a model for
improving BFS performance by runtime switching.

In summary, our work is the first to employ a perfor-
mance model based on machine learning for building a
generalized version of the direction optimized BFS [10].

6. Conclusion

With the increased availability of large, complex graphs
and the high demand for their analysis, high performance
computing techniques become mandatory to handle large
scale graph processing. Among these techniques, the use

of massively parallel architectures like GPUs has been suc-
cessful in the past: both new algorithms and new processing
systems have been proposed to speed-up large scale graph
processing.

Yet, despite the rapid innovation in the field, there has
been little progress in quantifying the actual correlation
between graph properties and the performance of graph an-
alytics. In other words, the performance variability of graph
processing, visible for most algorithms when processing
different graphs and even when processing different layers
of the same graph, has not been quantified and/or addressed.

In this work, we propose to use this variability to gain
performance for a given graph processing algorithm: BFS
traversal on GPUs. Our approach works as follows: given
a set of BFS algorithms (15 in total), and an input dataset,
we aim to determine and employ, for each level in the BFS
traversal, the best algorithm in the available set. This is an
generalization of the work on direction-switching BFS [10]
and adaptive graph algorithms [16], to which we have added
a much more systematic switching detection.

Specifically, we use machine learning concepts to train
a prediction model, which is used at runtime to determine if
switching is needed and, if so, to which variant we should
switch. This combination of machine learning modeling
and the large set of algorithms makes our approach com-
petitive with state-of-the-art graph processing systems and
algorithms.

Our findings are interesting in two different ways. First,
we demonstrate high performance, with an average gain of
2× over Gunrock and 15× over LonestarGPU. Second, and
more relevant for the original contribution of this work, we
demonstrate that machine learning can be used to build a
high-accuracy model which, taking into account graph and
algorithm properties, can predict the optimal selection of
BFS implementations for ∼56% of all BFS traversals and
within 2× of optimal for ∼97% of all traversals.

We conclude that this work is a step forward in quantify-
ing and using the impact of graph properties on the perfor-
mance of graph processing. For the near future, we plan to
pursue three research objectives: design and automate an ef-
ficient training process, investigate the potential contribution
of other BFS algorithms, and test other modeling techniques
that offer a good balance between accuracy and speed of
run-time evaluation. Finally, on the long term, we plan to
use these results to actually understand the impact of graph
properties on BFS graph traversal on GPUs.
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