
Uitnodiging

op woensdag 24 februari
2016, om 14.00 uur
in de Agnietenkapel,

Ouderzijds Voorburgwal
229-231, 1012 EZ

Amsterdam

Access Control for
On-demand Provisioned

Cloud Infrastructure
Services

Voor het bijwonen van
de verdediging van mijn
proefschrift getiteld

Canh Trong Ngo
canhnt@gmail.com

Paranimfen

Cuong Viet Dinh
cuongdv@gmail.com

Minh-Duc Pham
duc@cwi.nl

Access Control for On-demand
Provisioned Cloud Infrastructure

Services

Canh Trong Ngo

Access C
ontrol for O

n-dem
and Provisioned C

loud Infrastructure Services
C

anh Trong N
go

Access Control for On-demand
Provisioned Cloud Infrastructure

Services

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 24 februari 2016, te 14:00 uur

door

Canh Trong Ngo
geboren te Hanoi, Vietnam

Promotor: Prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam
Copromotor: Dr. Y. Demchenko Universiteit van Amsterdam

Overige Leden: Prof. dr. M.T. Bubak Universiteit van Amsterdam
Prof. dr. R.J. Meijer Universiteit van Amsterdam
Prof. dr. P.W. Adriaans Universiteit van Amsterdam
Dr. P. Grosso Universiteit van Amsterdam
Prof. dr. D.W. Chadwick University of Kent
Dr. L.H.M Gommans KLM

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 346.

This research was supported by FP7 EU funded projects The Generalised Architec-
ture for Dynamic Infrastructure Services (GEYSERS, FP7-ICT-248657).

Copyright © 2015 by Canh Trong Ngo
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form, electronic, mechanical, photocopying
or otherwise, without the prior written permission of the author.

Typeset by LATEX.
Printed and bound by Ipskamp Drukkers
ISBN: 978-94-028-0037-1

To my family...

2

Contents

1 Introduction 1
1.1 Cloud Computing Characteristics 1
1.2 Convergence of Cloud Infrastructures and Optical Network Virtual-

ization . 4
1.3 Access Control Requirements for Clouds Service Providers 6
1.4 Related Work . 6
1.5 Research Questions . 11
1.6 Contributions . 12

2 Multi-tenant Access Control for Single Cloud Providers 15
2.1 Introduction . 15
2.2 Related Work . 16
2.3 Problem Statement . 18
2.4 Preliminaries . 20
2.5 Proposed Model . 23
2.6 Analysis . 32
2.7 Integration MT-ABAC with INDL . 33
2.8 Mechanism to Manage Contexts in MT-ABAC 36
2.9 System Design . 39
2.10 Implementation and Evaluation . 43
2.11 Conclusions . 45

3 Multi-tenant Access Control for Intercloud 47
3.1 Introduction . 47
3.2 Problem Statement . 48
3.3 Extended Model for Multiple Providers 49
3.4 Implementation and Evaluation . 52
3.5 Conclusions . 52

4 Logical Model and Mechanisms for XACML 55
4.1 Introduction . 55
4.2 Related Work . 57
4.3 Semantics of XACML Policy Components 58
4.4 Multi-data-types Interval Decision Diagrams 65
4.5 Interval Processing and Decision Diagram Operations 69

i

ii CONTENTS

4.6 Applications . 75
4.7 Conclusions . 76

5 High Performance XACML Policy Evaluation 77
5.1 Introduction . 77
5.2 XACML Policy Transformations . 78
5.3 XACML Policy Evaluations . 82
5.4 Analysis . 83
5.5 Implementation and Evaluation . 84
5.6 Conclusions . 87

6 Conclusion 89
6.1 Answers to Research Questions . 89
6.2 Discussion . 90
6.3 Future Research . 91

Acronyms 93

Bibliography 95

Publications 103

Publication Authorship 105

List of Figures 107

List of Tables 109

Summary 111

Samenvatting 113

Acknowledgements 115

Chapter 1

Introduction

Cloud Computing is effectively used to improve scalability, availability, elasticity
and security of IT management in many application areas. It adopts advantages
of many technologies such as virtualization, service-oriented architecture, Grid
Computing and Utility Computing to allow customers and providers to cut costs on
system deployments and operations. Many studies and best practices documents
related to clouds deployment, design, development, operations and management
have been proposed to incorporate above technologies [1–6]. Clouds in such
approaches enable users’ data to store on share virtualized cloud infrastructures,
which are on-demand provisioned at providers’ facilities. The virtualized infras-
tructures capacities can be elastically scaled up and down depending on varying
users’ demands. In clouds, the diversity of accesses on shared resources brings
challenges to protect confidentiality, integrity and availability. The cloud systems
must guarantee unauthorized parties cannot access or modify protected resources.
Therefore, access control is one of the crucial component in the cloud security. In
this thesis, we focus on designing flexible and efficient access control mechanisms to
protect cloud resources and simultaneously inter-operate with cloud infrastructures
of providers.

1.1 Cloud Computing Characteristics
Cloud Computing was presented as the prospective development model of dis-
tributed computing which would influence the whole IT industry. It was initially
introduced as a new product on utility computing by Amazon Web Services (AWS)
[7], along with different concepts and definitions [1, 3, 5, 8–10]. It has been
developed to address scales of data and service processing in both scientific and
industry communities with efforts to reduce consumers’ costs and optimizing re-
source utilization. Although there are many Cloud Computing definitions [1, 3, 5,
8], the most popular one is from US. National Institute of Standards and Technol-
ogy (NIST) [5] including essential characteristics, deployment models and service
models. Figure 1.1 presents the conceptual reference model of the NIST Cloud
Computing architecture.

1

2 INTRODUCTION

Figure 1.1: The NIST Cloud Computing conceptual reference model [9]

According to NIST [5], Cloud Computing has the following essential character-
istics:

• On-demand self-service: consumers can obtain services as and when needed
without requiring human interaction.

• Broad network access: Users can access services using wide range of network
clients such as mobile phones, tablets, laptops, and workstations.

• Resource pooling: the provider’s computing resources are not dedicated to
particular consumers but are pooled to serve multiple consumers using a
multi-tenant model.

• Rapid elasticity: the amount of allocated resources can be provisioned and
expanded rapidly commensurate with consumers’ demands.

• Measured service: amount of resources consumed is measured by a metering
capability that appropriates to the type of services, (e.g. storage, processing,
bandwidth, and active accounts).

NIST also defines other Cloud Computing aspects such as service types, de-
ployment models, use-cases and business opportunities [5]. The classification of
cloud services relates to the separation of responsibilities between providers and
customers on system managements. Prior to the clouds, customers were responsible
for their whole computing system stack, from hardware devices, operating systems
to middleware, and applications. Normally they were all deployed on-premise
at customers’ sites. Cloud Computing was then proposed to provide separations
of responsibilities on layers, in which the lowers were essentially outsourced to

CLOUD COMPUTING CHARACTERISTICS 3

Figure 1.2: Scope of controls between provider and consumer in NIST cloud services
[9]

providers. It also provided the scalability and cost reduction in deployment, opera-
tion and management. Depending on either cloud providers or customers are in
charge of what parts, cloud services can be classified into the following types:

• Infrastructure as a Service (IaaS): providers take care the networking, storage,
computing and virtualization platforms, while customers control operating
systems, middleware, runtime libraries and applications. Examples of this
cloud service type are the Amazon EC2 [11], Microsoft Azure Compute
& Network Services [12], Google Compute Engine [13], and Rackspace
Managed cloud [14].

• Platform as a Service (PaaS): In this model, operating systems, middleware
and runtime libraries are managed by providers. The customers need to focus
only on their deployed applications and data. Typical PaaS platforms are
Google App Engine [15], Microsoft Azure [12], Salesforce Heroku [16].

• Software as a Service (SaaS): this type of service gives customers the whole
application service as if it is running on-premise. The difference is that
providers take care on management of all the system from hardware, operat-
ing systems, networking to application deployment. This service model can
be seen in Google Apps [17], Apple iCloud [18] and Microsoft Office 365
[19].

The Figure 1.2 illustrates the separations of controls between providers and
consumers in mentioned cloud service types.

These cloud services can be deployed in different deployment models [5]: (i)
private cloud, (ii) community cloud, (iii) public cloud or (iv) hybrid cloud. Actors in
clouds use-cases are therefore defined according to the respective cloud architecture
[9], including cloud consumer, cloud provider, cloud auditor, cloud broker and
cloud carrier.

4 INTRODUCTION

1.2 Convergence of Cloud Infrastructures and Optical
Network Virtualization
In the research efforts for developing advanced cloud infrastructures using future
network technologies, GEYSERS project [10] developed concepts and solutions
corresponding to the above Cloud Computing characteristics.

• Huge increase in the number of users/applications and a rapid increase in
available bandwidth for users beyond 1Gbps: GEYSERS defined and de-
veloped a novel dynamic wavelength service provisioning mechanism that
enables network operators to manage their capacity to support large number
of users with high bandwidth optical connectivity.

• High bandwidth requirement applications with 10Gbps or more become more
popular in transferring data between data centers, networks for HD and
SHD multimedia content distribution, large remote sensor networks or huge
scientific data. GEYSERS defined and implemented a new mechanism for
network operators to request and setup scheduled high bandwidth optical
network connectivity between endpoints in an on-demand manner.

• GEYSERS provided multi-domain, inter-provider network and IT resources to
users. They are managed by the consistent, dynamically provisioned security
and access control policies.

• For applications requiring large-scale convergence of IT and network services
which are similar to Amazon virtualized services and Microsoft SharePoint,
GEYSERS contained a novel end-to-end service provisioning mechanism that
automatically and efficiently bundles suitable IT resources with the required
optical network connectivity services to provide to the user in a single step in
an on-demand manner.

• GEYSERS defined and developed methods allowing infrastructure providers
to partition their resources (optical network or IT resources) to compose
logical infrastructures and offer to network operators as a service. The
logical composition mechanism supported dynamic and on-demand changes
of combined optical network and IT resources.

The GEYSERS reference model is illustrated in Figure 1.3.
The project was aiming to provide the coordination between optical net-

works and IT resources across multiple provider domains, including infrastructure
providers and network operators. Based on the novel mechanism to partition infras-
tructure resources to compose and deployed at different providers, the architecture
implies a new business framework with cost and energy efficiencies. Such features
bring requirements on architecture and system design as well as implementation
[20].

GEYSERS models entities participating to specific workflows defined in its
use-cases [21]. Nowadays, telecom and IT service operators use integrated roles

CONVERGENCE OF CLOUD INFRASTRUCTURES AND OPTICAL NETWORK
VIRTUALIZATION 5

Physical Infrastructure

Virtual Resource Pool

Virtual Infrastructure

L
o
g
ic

a
l
In

fr
a
s
tr

u
c
tu

re

C
o
m

p
o
si

ti
o
n
 L

a
y
e
r
(L

IC
L
)

Physical IT

resource

Virtual IT resource

Physical Network

resource

Virtual Network resource

Virtual Network node

controller

Virtual IT node

controller

Inter-layer

communication

IT-aware Network Control Plane (NCP+)

Virtual IT Management (VITM)

Service Middleware Layer (SML)

Service Consumer

Figure 1.3: GEYSERS reference model

of infrastructure providers and infrastructure operators. It is expected they own
the physical infrastructure, operate it, and finally, run services on top of it. This
approach is highly inflexible, inefficient and extremely expensive as a whole, but
not in specific business sub-processes. In the new architecture, GEYSERS enhances
the current business models with following roles to reflect the importance of
virtualization of the network and IT infrastructure:

• Physical Infrastructure Provider (PIP): The PIP role in GEYSERS implements
the possession and operation of the physical infrastructure.

• Virtual Infrastructure Provider (VIP): The VIP role implements the virtual
resource handling and composition for producing Virtual Infrastructures
(VIs).

• Virtual Infrastructure Operator (VIO): The VIO role implements the configu-
ration and operation of the infrastructure and also provides final services to
consumers.

The research presented in this thesis is carried out in the context of and sup-
ported by the GEYSERS project [10]. The proposed architecture encounters chal-
lenges on designing and implementation access control mechanisms for distributed,
inter-domain, multi-provider environments. It motivated us to perform research on
access control approaches for inter-domain and multi-provider cloud infrastructure
systems. The following section defines necessary requirements for access control in
cloud infrastructure systems.

6 INTRODUCTION

1.3 Access Control Requirements for Clouds Service Providers
From Cloud Computing characteristics identified by NIST and in the context of
multi-provider cloud infrastructures in GEYSERS, the access control for cloud
infrastructure systems should contain following features:

• On-demand provisioning and self-configuration: cloud resources are nor-
mally allocated and adjusted dynamically according to customers’ require-
ments. They are reflected by the on-demand updating of resource meta-data.
The access control mechanisms to manage cloud resources should bind and
synchronize to these dynamic meta-data.

• Fine-grained access control: The access control mechanism must support
rule-based definitions which are flexible enough to adapt different access
control use-cases. More specific, it should provide ways to care about rich
conditions requirements (i.e., who, what, when, where, why and how clauses
in authorization statements) to consent accesses.

• Flexible multi-tenancy: An essential characteristic of clouds is to serve
pooled resources for multiple customers following the multi-tenant model.
In this manner, the proposed access control system must provide the multi-
tenancy features by design.

• Scalability: A cloud provider should be able to manage its virtualized re-
sources to serve large scale of customers. It requires that system performance
must be critical in adopting suitable access control mechanisms.

• Distributed: Business models and use-cases of cloud infrastructures target
for distributed environments. Therefore we need to provide mechanisms
to inter-operate access control systems among multiple distributed cloud
providers.

In the next section, we revisit existing access control models and most popular
policy languages to identify what can be used in the cloud security. They will be
used to justify our research goals in section 1.5.

1.4 Related Work

1.4.1 Preliminaries on Access Control Models

Access control has the purpose to protect the confidentiality and integrity of the
system information. Besides authentication systems are in charge of confirming
the truth of users identities, the access control regulates subjects’ operations on
data and resources. Based on functionalities, an access control system can be
separated into the decision and the enforcement components [22, 23]. In the
Access Control Framework for Open Systems ISO 10181-3 [22] illustrated in Figure
1.4, the initiator is the active subject who submits access requests to the Access

RELATED WORK 7

Control Enforcement Function (AEF). Here they are mediated by sending decision
requests to a Access Control Decision Function (ADF) which determines whether
they should be granted or denied. Depending on responded decisions, the AEF will
enforce requests, e.g. either subjects can access the resources or denied messages
are thrown.

Initiator

ADF

AEF Target

Submit access
request

Decision
request

Decision

Present access
request

Figure 1.4: ISO 10181-3 access control framework [22]

In [23], Policy Enforcement Points (PEPs) at resource locations send decision
requests to the Policy Decision Point (PDP), which is in charge of giving decisions
from the predefined policies. In this way, policies can be stored and managed
separately from resources. Access control models therefore are proposed to define
interactions between PDPs and PEPs, as well as manage policies in authorization
systems. Although there are many different access control models for various
systems, they can be classified into following types:

1.4.1.1 Discretionary Access Control

In the Discretionary Access Control (DAC), a resource is assigned the ownership
to one or more entities. The owners have all controls to decide who can access
the protected resources and which permissions they allow to do. Policies in DAC
models are implemented by either the access control matrix or the access control
list [24, 25].

1.4.1.2 Mandatory Access Control

The Mandatory Access Control (MAC) is designed to prevent illegitimate informa-
tion leakage based on clearance definitions. The data owners cannot set permissions
like in the DAC. Instead of that, resources and subjects are attached security labels.
The system configuration defines access rules based on labels and enforce them
strictly.

The typical access rules in MAC are security clearance levels: i.e., labels could
be in partial order-sets: top-secret, secret, confidential, restricted, official, unclas-
sified, clearance [25]; or in categories, in which different areas are disjoint and
competence (e.g. the Chinese Wall model [26]). The best known model to secure
information flows is Bell-LaPadula model [27] which uses both MAC and DAC.

8 INTRODUCTION

On-demand
self-service

Fine-grained
authorization

Multi-
tenancy

Scalability Distributed

DAC - - - - -
MAC - - - - -
RBAC families - - X - X
ABAC - X - - X

Table 1.1: Access control models comparisons

1.4.1.3 Role-Based Access Control

The Role-based Access Control (RBAC) families [28–30] are introduced with roles
as an abstraction layer decoupling users and permissions. Rather than assigning
directly to users in DAC models, the basic RBAC0 model groups permissions into
roles according to task descriptions, which is known as the role engineering process.
Users assigned to roles will contain all permissions of the active roles. In extensions,
roles can be organized in hierarchy in RBAC1 [29], constraints to limit user and role
assignments with RBAC2 and RBAC3. In practical, RBAC approaches are applied in
different databases and operating systems. The common feature of these systems
is that they have stable structures in which tasks are defined static. Hence, role
organizing after the role engineering process mostly is unchanged. Rather, RBAC
systems have drawbacks to support fine-grained authorizations such as dynamical
assigning roles according to variable contexts (e.g. time, location, authorization
states), which may lead to role explosion problems [31, 32].

Some extended RBAC approaches are proposed to support multi-tenancy fea-
tures for clouds [33–35]. However they either have drawbacks in dynamic on-
demand supports, fine-grained authorization and scalability [33, 34] or lack of
practical mechanisms [35].

1.4.1.4 Attribute-based Access Control

To overcome limitations of RBAC systems, Attribute-based Access Control (ABAC)
model is identified with the central idea that access can be determined based on
present attributes of objects, actions, subjects and environment in the authorization
context. It means that the ABAC is more flexible and scalable for real-time envi-
ronments than RBAC. However, managing large number of attributes in ABAC is a
challenge. Also, the complexity of attributes criteria in rules and conflict resolutions
may arise during applying ABAC in access control for large-scale systems like cloud.
ABAC implementation like eXtensible Access Control Markup Language (XACML)
[36] only defines a general ABAC policy language with fine-grained authorization
capability. Making it applicable with features analyzed in Section 1.3 requires both
extensions and practical implementation mechanisms. This is the purpose of this
thesis.

The Table 1.1 summarizes access control models adapting requirements in
section 1.3.

In ABAC, the flexible and fine-grained authorization capabilities depend on the
expressiveness of the provided policy language. Mechanisms such as AWS Identity

RELATED WORK 9

and Access Management (IAM) JSON-style authorization policy [37], XACML
standards [36, 38] provide different flexible degrees. For simplicity purposes,
Amazon JSON-style policy [37] is quite limited compared to XACML [36] such as
policy hierarchy, combining algorithms, attribute comparisons, etc. In this thesis,
we adopt XACML [36] to present our authorization rules and policies. However
policies with the high expressiveness also have their complexity. So to apply XACML
successfully, we need to investigate approaches in our implementation. Next section
gives a brief overview of XACML to identify its implementation challenges.

1.4.2 Access Control Policy Languages

1.4.2.1 Ponder

Ponder [39] is a declarative, object-oriented policy language designed for dis-
tributed object systems. It consists of five types of policies: the authorization
policies could define positive or negative decisions upon matching of subject, target
resource, action and the optional environment constraint; the filtering policies
extend by associating an action with filter expressions, where input or output
parameters are defined; the delegation policies are used to transfer access rights
defined in an authorization policy temporarily; refrain policies bind to subjects
to avoid operations in spite of permitted by authorization policies; finally, the
obligation policies define tasks must be performed upon specific events occurs.
Ponder provides the ability to organize policies in groups and roles in hierarchy to
reflect organizational structures, so supporting RBAC features.

However, Ponder has some limitations when applying in Cloud Computing. First,
the language does not mention how to process and evaluate policies. The Ponder
Toolkit only contains a compiler to transform policies in to a system dependent
language (e.g. Java code). Secondly, in distributed environment, policies can
be defined by different authorities while Ponder does not define policy issuers,
thus assumes that all policies are trusted. The policy repository must implement
an enforcement mechanism to manage trusted policies. And finally, the Ponder
implementation is obsoleted and no longer supported [40].

1.4.2.2 PERMIS

PrivilEge and Role Management Infrastructure Standards (PERMIS) [41] is a role-
based access control infrastructure using X.509 attribute certificates [42] to store
users’ role values. In this system, their integrity is protected by digital signatures
of Attribute Authorities (AAs). Storing attributes in X.509 certificates is similar
to the Security Assertion Markup Language (SAML) [43] with the XML-based
structure. To implement RBAC concepts, PERMIS uses permission attributes and
role attributes. RBAC operations are defined by a XML-based policy language
containing: subject domain policy to define group of subjects, role hierarchy policy
to define role hierarchical relationships, policy to define assignments from roles
to a subject domain with related validity periods and delegation depths (a.k.a the
role assignment in RBAC), action policy to specify actions binding with a target
resource, and policy to assign actions to a role under conditions (a.k.a the RBAC

10 INTRODUCTION

permission assignment). Policies are created by Privilege Allocators at AAs, then
are stored in Lightweight Directory Access Protocol (LDAP) directory services. The
system follows the ISO 10181-3 Access Control Framework [22]. In this framework,
the ADF retrieves policies from LDAP services, along with attribute certificate
revocation lists to validate principals’ attribute certificates.

In general, the XML-based policy language in PERMIS tried to implement RBAC
operations with X.509 attribute certificates. Therefore, it suffered drawbacks from
RBAC models with the stable role structure. The policy to assign actions to role
containing conditions with Boolean logic could provide some levels of fine-grained
authorization. However, policies in PERMIS have only two decisions: either permit
or deny-by-default, so it cannot handle well intermediate results upon errors or
undefined cases (i.e., conflicting decisions or undefined policies) as in the XACML.

1.4.2.3 XACML

XACML [36, 38] is an authorization policy language in XML format based on the
ABAC model. It composes policies from set of attribute criteria joined by logical
operators, which are used to decide answers for authorization requests. XACML is
scalable in arrange policies in hierarchy order which can be combined and extended
vertically by conflict resolution algorithms. In addition, by supporting delegations,
obligations and advices, XACML is applicable in many areas such as networking,
grids, clouds, enterprise organization and management. However, the growth of
policies to address system scales will increase complexity of the policy repository,
which leads to the drop of policies evaluation performance.

XACML v3.0 [36] organizes components following the model in Figure 1.5. In
the model, policies are arranged hierarchically as follows:

• A policy-set is composed from a set of policies or other policy-sets.

• A policy can contain a set of rules.

• A rule has a logical expression of attribute values as the criteria for rule’s
decision.

• Parent’s decisions of policy elements are the joined of children’s according to
the predefined combining algorithms.

The XACML is considered as a de facto standard for the attribute-based autho-
rization policy language. Adopting XACML allows systems to have advantages
supporting complex fine-grained authorization scenarios than other policy lan-
guage. In spite of that, due to complexities in its evaluation semantics, there are
gaps to apply XACML standards for high performance systems.

The dynamic and elastic features in Cloud Computing identified in section 1.1
require a flexible access control model like the ABAC for multi-tenant systems. It
requires a rich expressive policy language supporting sophisticated, fine-grained
authorization rules. However, the implementation mechanism needs to have
efficient and scalable performance to adapt large-scale cloud management systems
at providers. In the next section, we identify and formulate research questions on
how to resolve these challenges.

RESEARCH QUESTIONS 11

PolicySet

Policy
Target

Policy Combining
Algorithm

AnyOf

AllOf

Rule

Condition Effect

Rule Combining
Algorithm

Obligation
Expression

Advice
Expression

1

1

1..*

1

1

1

1

1

1..*

0..*

1

0..*

1

1

11

1

11

1

0..*

0..*

0..*

0..*

1

0..*

0..*

1

1

Figure 1.5: XACML 3.0 policy model [36]

1.5 Research Questions
In this thesis, we focus on model designs and implementation techniques for access
control solutions for cloud infrastructure services. They are investigated by the
following research questions:

1. How do we design a flexible and scalable access control model supporting the
on-demand provisioned self-service of cloud infrastructure services?

In order to support large numbers of users with elastic resource scaling, cloud
providers need to apply on-demand provisioning mechanisms to manage their
resource capacity. As depicted in section 1.2, they are either the optical wavelength
service provisioning for network operators, or the computing and storage share
resource pool mechanism for IT service providers. In general, these mechanisms
generate changes in numbers and properties of resources over fine-grained time
resolutions, e.g. minutes or hours. However, existing access control models are
eventually designed to manage a stable numbers of resources. Whenever there’s a
change in the system e.g. adding new or removing old resources, policies should
be reconfigured, such as role engineerings in RBAC or updating attribute-based
policies in ABAC. There is no access control model that is aware of life cycles of
provisioned resources. We need a formal model along with its mechanisms binding
between service life-cycles of cloud infrastructures and their access control policy
management. This question will be investigated and answered in Chapter 2.

2. How do we design an access control model for cloud infrastructure providers

12 INTRODUCTION

in which customers can manage their own virtualized resources distributing in
multiple domains?

From cloud providers’ perspective, cloud systems should support sharing re-
source pools to serve multiple customers, where they are able to customize and
exploit subscribed services in an isolated manner. It is known as the multi-tenancy
[5, 44]. In this manner, the access control model for clouds providers should be
designed with multi-tenant features. Tenants are able to customize policies for
their services, while still under the scope of the provider’s policies. The NIST cloud
definitions [5] said that cloud services are able to scale up extensively, not only
from a single provider, but also from multiple, distributed providers. It is illustrated
in the GEYSERS approach [10], in which partitioned resources at multiple providers
can be aggregated to compose customers virtual infrastructures [21]. Therefore
cloud providers should collaborate to offer inter-provider cloud infrastructures
composed from resources crossing distributed domains. Such sophisticated systems
are usually provisioned in multiple domains using service lifecycle managements
[45, 46]. Designing the access control model for inter-provider systems should be
aware of these characteristics. We solve this question in chapters 2 and 3.

3. How do we implement a high performance authorization policy evaluation
engine, which should be required in access control solutions for cloud providers?

Mechanisms for access control models provide different expressiveness. They
represent how much flexibility policies can be configured to moderate managed
resources, i.e., defining criteria in clauses who, what, where, when, how of autho-
rization statements. However, access control is eventually one of overheads of
systems. Such mechanisms should be aware of the overall system performance
of cloud providers, which should handle hundreds or thousands of customers at
the same time. Normally, the more expressive the policy language is, the more
overhead the access control adds to the system. In this thesis, we adopt XACML as
the attribute-based policy language for fine-grained authorization purposes. The
overhead when applying XACML motivates us to investigate and introduce the
mechanism in chapters 4 and 5 to efficiently improve system performance.

1.6 Contributions
The contributions in this thesis are as follows:

• Chapter 2: We propose an access control model for multi-tenant cloud ser-
vices using attribute-based policies. The model could integrate with the
existing information model of cloud resource managements, which allows
dynamic updates and reconfigurations regarding system scaling. It not only
has scalability in terms of number of resources, but also allows delegations
and collaborations among tenants in multiple levels.

• Chapter 3: In this section, we extend the proposed multi-tenant access control
model for distributed multi-domain Intercloud infrastructures. It used the

CONTRIBUTIONS 13

proposed token exchange mechanisms among providers aiming to guarantee
model’s characteristics in the distributed environment. The extension is then
validated in set of Intercloud scenarios involving multiple cloud providers.

• Chapter 4: XACML is a widely used attribute-based policy language that
contains rich functionalities and expressiveness. To facilitate the adoption of
this policy language in our access control model, we analyze and express the
XACML logical model, then design new decision diagram data structures to
represent its elements. These mechanisms could be applied to solve problems
in different XACML policy managements, including the high performance
policy evaluation engine in the next chapter.

• Chapter 5: using defined mechanisms in the previous section, we build
up a high performance XACML policy evaluation engine. It not only has
magnitudes of throughputs compared to previous work, but also maintains
the same policy semantics and expressiveness [47]. The engine is used as the
basis for building high performance PDPs in our multi-tenant access control
model which is implemented and deployed for complex cloud infrastructure
services.

Finally, Chapter 6 summarizes results presented in previous sections to answer
the identified research questions.

14 INTRODUCTION

Chapter 2

Multi-tenant Access Control for
Single Cloud Providers

This chapter is based on the following publications:

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Security framework for
virtualised infrastructure services provisioned on-demand," in Cloud Com-
puting Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, 2011, pp. 698–704 [48].

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Policy and context
management in dynamically provisioned access control service for virtualized
Cloud infrastructures," in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, 2012, pp. 343–349 [49].

• C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant Attribute-based Access
Control for Cloud Infrastructure Services," in Journal of Information Security
and Applications (accepted 2015) [50].

2.1 Introduction
Cloud Computing is emerging as a common service model approach for on-demand
infrastructure services provisioning, including computing, storage and networking.
It allows minimizing infrastructure management costs for both customers and
providers. Besides a wide spectrum of currently available cloud services, there
are numbers of research and standardization activities focusing on definitions,
use-cases, and reference models such as NIST clouds [5, 6], OGF ISOD-RG [51],
and OASIS Cloud Identity [52].

Current cloud concepts identify five essential characteristics [5]: (i) on-demand
self-service; (ii) broad network access and diversity of client devices; (iii) resource
pooling that allows to serve multiple customers using a multi-tenant model, by
managing resource utilization more efficiently with virtualization, partitioning and
workload balancing; (iv) rapid elasticity that allows scaling resources dynamically;

15

16 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

(v) measured service with the pay-per-use business model. Other additional feature
is the heterogeneity on both provider and customer sides, and multi-provider
services.

With all these characteristics, providing consistent security and privacy solutions
for Cloud Computing environment brings many challenges [53]. Several surveys
and researches have shown that the security and privacy are the main obstacles to
widely adopt Cloud Computing [6, 54, 55].

Based on Cloud and Intercloud scenarios analyses from GEYSERS [10] and
GEANT3 [56] projects, this chapter presents an access control model for multi-
tenant cloud services using attribute-based policies. The extended model is applied
for Intercloud scenarios with the exchanging tokens approach for fine-grained
dynamic trust establishment. To facilitate attribute-based policy evaluation and
implementing the proposed model, we apply a new mechanism to transform
complex logical expressions in policies to compact decision diagrams. Our prototype
of the multi-tenant access control system for Intercloud is developed, tested and
integrated into the GEYSERS project. Evaluations demonstrate that our system has
good performance in terms of number of cloud resources, clients and policies.

2.2 Related Work
A number of approaches and contributions in access control for cloud service
management have been proposed with the emergence of Cloud Computing in
2010-2014. Based on the Common Information Model (CIM), authors in [33, 34]
proposed an RBAC model integrating with the CIM. In this work, an authorization
statement is defined as the 4-tuple of 〈issuer, subject, privilege, resource〉 written as a
rule using Semantic Web Rule Language (SWRL) [57]. The rule is then reasoned by
a DL Reasoner to transform into statements using Resource Description Framework
(RDF). Work at [34] illustrated it is possible to use proposed model to support
RBAC features for users of a tenant. Inter-tenant collaborations are represented
by sharing context information, so the trustee can define authorization statements.
However, they do not support multiple level delegations among tenants as well as
granularity of inter-tenant trusts is limited. Besides that, if cloud systems scale up
with number of resources, subjects (tenants and users), complexities of policies
with number of authorization statements, the DL reasoner mechanism could be the
potential bottleneck when number of RDF statements may explode. Moreover, by
utilizing SWRL, an OWL DL implementation, as the access control language, the
expressiveness and flexibility of the policy language is limited compared to other
policy languages like XACML.

The Multi-tenant Role-based Access Control (MT-RBAC) [35] extended the basic
RBAC with a set of models including administration features. Beside regular intra-
tenant permission and role assignment operations, the cross-tenant collaborations
are performed by sharing roles. The trustor tenant can define either all roles to
trustee tenants (MT-RBAC0), the same public roles to all trustees (MT-RBAC1), or
separated public roles to different trustees (MT-RBAC2). In turn, the trustee can
perform two administrative operations: (i) user assignment (UA) to its users and

RELATED WORK 17

(ii) role hierarchy on the shared roles. The prototype was carried out using the
attribute-based policy language XACML with the RBAC profile extension.

Authors in [58] extended the ABAC model from [59] to IaaS scenarios. In
their model, entities were classified into cloud root user who can manage VI and
tenants; tenant root user who can configure attribute profile and manage tenant
admin users; tenant admin users in a tenant can manage tenant regular users and
finally tenant regular users who can operate on cloud resources. Using the policy
language defined in [59], the prototype was integrated with an OpenStack system.
Although the approach used ABAC applying for multi-tenant scenarios, its model
did not aware of policy conflict problems in multi-tenancy when multiple entities
can define policies. Thus, they also did not contain isolation and grant constraints
for policies as in our approach, which would resolve the policy conflict problems.
In addition, their model was not aware of collaborations between tenants.

To protect data in outsourced environments like clouds, Attribute-based En-
cryption (ABE) research [60–62] was proposed for security of outsourcing storage,
while homomorphic encryption [63, 64] was proposed to secure computation on
hostile systems. In the key-policy ABE approach (KP-ABE) [61], request attributes
were associated to ciphertexts, and policies were associated to users’ keys. The
ciphertext-policy ABE (CP-ABE) scheme [62] provided a mechanism that allows
creating users’ keys based on their attributes, and attribute-based policies to protect
data are associated in ciphertexts. The ABE schemes were extended and applied
to secure data on cloud storage services [65, 66]. Although the homomorphic
encryption may provide confidentiality in outsourcing computation, its applications
on cloud were still limited due to the complexity and performance overhead [67].
All these cryptographic mechanisms can be seen as the AEF in the ISO 10181-3
access control framework [22], while our work focuses on access control decision
components. Therefore, ABE and homomorphic encryption are orthogonal with
our proposal.

In collaboration environments, delegation of rights was investigated to support
dynamic decisions in single or multiple security domains [68–71]. Related works on
delegation were analyzed in detail in [68] which provided comprehensive taxonomy
of delegation methods and mechanisms. Delegation models using exchange tokens
were popular in previous work [71–74]. Authors in [70, 71] proposed a general
model for dynamic delegation of authority for multi-domain authorization that used
the Credential Validation Service to validate subject credentials across multiple
security domains. In our work, we use delegation types concepts adopted from
[69] and an authorization token based mechanism to transfer security contexts
between domains. In addition, the proposal in section 3.3 solves the constraints
synchronization issue in on-demand provisioning cloud infrastructure, which was
addressed in previous works.

AWS IAM [37] is the integration of an identity management system and an
access control mechanism. Upon subscribing to an AWS product, each customer
is assigned an AWS tenant account. All operations on AWS products are then
bound to this account. AWS IAM provides a mechanism to create and manage
multiple users binding to the AWS tenant account. Using JSON-style authorization
policies storing at the IAM side or attaching at the AWS product side, the IAM could

18 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

control user activities on AWS resources. To guarantee security requirements on
confidentiality and integrity, users are allocated their own security credentials to
access AWS resources. However, supporting policy language in AWS IAM is not
very expressive with simple attribute-based policies with limited RBAC features.
Cross-account access is defined by creating an IAM policy of the trustor account to
the trustee account. The trustee then can delegate these privileges to its users. It
does not support multiple-level cross-account collaborations.

OAuth authorization framework [74] enables a third-party to access a HTTP
resource by approval of the data owner via tokens. It provides a workflow protocol
for distributed authorization currently applied in various cloud-based services such
as Google APIs and Twitter APIs. However, OAuth authorization framework only
stops at defining a distributed authorization workflow for HTTP resource and does
not specify authorization policy definitions.

Compared to the related work, our proposal resolves the access control prob-
lems for multi-tenancy more complete. We formalize the ABAC in the multi-tenant
model with isolation and grant constraints, that prevent policy conflict problems.
Our approach also supports flexible collaborations between tenants with multiple
levels of delegation. The extended model for Intercloud in Chapter 3 uses the token
exchange approach which synchronizes constraints and applies cryptographic mech-
anisms to solve the distributed authorization with delegation constraints issues,
which is more suitable for our approach than the current OAuth 2.0 framework
[74].

2.3 Problem Statement
A cloud platform should support multi-tenant design that is capable of sharing
services for different tenants as if all of them are using dedicated systems [44,
75]. In this sense, the access control services provided for tenants to manage
their cloud resources must support multi-tenancy features, including isolation
(e.g., performance, administration); on-demand customization of access control
configuration such as authorization policies, identity management, trust anchors;
and bindings between cloud systems and tenant on-site services (e.g., access control
for clouds could interconnect to an on-site LDAP directory service of the tenant).

The on-demand self-service and rapid elasticity properties [5] in clouds require
that the access control design must handle dynamic changes of entities in autho-
rization scenarios. For example, a typical cloud IaaS service provides different
plans (e.g., storage size, speed, computing powers, bandwidth, lifetime, etc) for
the number of subscribed customers may reach thousands. Each of them could
then manage hundreds of end-users. In such cases, numerous resource objects
are provisioned over time with dynamic identifiers. Thus, the cloud management
platform must handle accesses from users using diversity of clients in both types
and numbers (e.g., mobile devices, laptops, workstations) to access these resources.
Moreover, the access control for cloud services should also support rich context at-
tributes (e.g., time, location and types of clients) for the fine-grained authorization.
Such challenges need to be solved in a dynamic robust access control approach for

PROBLEM STATEMENT 19

cloud services.
Traditional access control models are designed to manage accesses from subjects

to objects with specific operations via authorization statements. A trivial statement
is a triple of 〈subject, object, operation〉, in which the 〈object, operation〉 is known
as a permission. RBAC approaches [28–30] were introduced with roles as an
abstraction layer decoupling subjects and permissions. RBAC was supported to
apply in different areas, from stand-alone, enterprise-level or cross-enterprise
applications. However, even the design purpose of RBAC is to large enterprise
systems with even hundreds or thousands of roles and users in tens thousands
[76], such systems may have problems on scalability in role and object explosions
[31, 32]. Analysis in [32] estimates that RBAC should be used for systems with
static structure where roles and hierarchy are clearly defined; entities individuality
and locality are limited; and managed objects are stable. However, large-scale
cloud services management systems often have dynamics of provisioned pooling
objects, varieties of entities and sophisticated fine-grained authorization regarding
dynamical context-specific attributes, in which RBAC approaches may not be
suitable.

To overcome limitations of RBAC systems, ABAC was identified with the central
idea that access can be determined based on present attributes of objects, actions,
subjects and environment in the authorization context [59, 77, 78]. The ABAC can
be used to model RBAC as well as other traditional access control models [59]. The
fine-grained authorization feature of ABAC makes it more flexible and scalable than
RBAC. Thus, ABAC is mostly suitable for cloud management services. For example,
a cloud provider may allow different accesses from users of a customer A to a set of
subscribed cloud resources (e.g., storage, Virtual Machine (VM), database) during
subscribing time. In turn, part of these resources are shared read-only to others,
e.g., external consultants from an auditing firm can read during working-time in a
month.

However, using large numbers of attributes in ABAC produce challenges in
management and deployment. The complexity of attributes criteria in rules and
conflict resolutions may arise during applying ABAC in access control for large-scale
systems like cloud. ABAC implementation like XACML standard [36] only limits at
defining a general ABAC policy language but without indicating how to integrate
with system resource information models for attribute management, as well as
defining necessary constraints in policy composition and management for multiple
authorities like the multi-tenant systems.

With all such challenges and motivated by cloud and Intercloud scenarios
analyses [10, 48, 49, 56], as well as related work on access control for clouds [33–
35, 37, 58, 60–62], we introduce the Multi-tenant Attribute-based Access Control
(MT-ABAC) approach which formalize the ABAC applied for the multi-tenancy
pattern. It not only aims to provide a scalable and flexible resources and entities
management of the ABAC, but also contains related policy constraints facilitating
delegations and collaborations among tenants and users in multiple levels. To
facilitate attribute-based policy evaluation and implementing the proposed model,
we apply an efficient mechanism to transform complex logical expressions in
policies to compact decision diagrams. Our prototype of the multi-tenant access

20 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

control system for Intercloud is developed, tested and integrated into the GEYSERS
project [10]. Evaluations demonstrate that our system has good performance in
terms of number of cloud resources, clients and policies.

2.4 Preliminaries

2.4.1 Multi-tenant Systems and Resource Ownerships

Regarding cloud resource management [79], resources in cloud are virtualized and
managed in a common resource pool. Depending on the stage in its life cycle, the
resource may be administrated by one or multiple entities [80], as known as the
multi-tenancy pattern [5, 6, 44]:

• At the initial stage, resources are managed by the provider, who is the
economic and management owner of available idle resources.

• When a tenant subscribes set of cloud resources, their economic and ad-
ministrative ownerships will be transferred exclusively to this tenant during
subscribed period.

• The subscribed tenant may want to allow accesses from its users, or due to
collaboration requirements, share part of its resources to another trusted
tenant with specific conditions like allowed actions, time, location.

• The trusted tenant in turn can manage the shared resources by defining access
control policies for its users, or share to another one.

This paradigm has been discussed in different forms [33–35]. Authors in
[33, 34] used the authorization tuple 〈issuer, subject, privilege, resource〉 to define
the transfers from “issuer" to “subject". But the issuer was used only for tenants,
nor the provider. They assumed the provider has its own mechanism to isolate
allocated resources for different tenants, thus the model missed the isolation
property between tenants at policy management level. Proposed models [33, 34]
even simplified tenants collaborations with coarse-grained resolutions. This inter-
tenant collaboration drawback was improved in MT-RBAC [35] when it allowed
the trustee can manipulate shared roles with user assignment and role hierarchy
operations. However, due to utilizing RBAC, MT-RBAC may suffer role explosion
problem when more fine-grained collaborations are required, e.g., to re-share some
permissions from the shared role to other tenants, or limited with environment
conditions, the trustee must create new separated roles.

To solve such issues, our multi-tenant access control approach contains the
following features for a cloud resource management system:

• Support diversity of subjects: different entities are able to compose policies
to manage their objects, including the cloud provider, subscribed tenant and
shared tenants.

PRELIMINARIES 21

• Policy generation for dynamic objects: In cloud systems, provisioned cloud
resources are the objects of authorization. Their identifiers are generated
during provisioning phases and released at the end of the subscription. The
cloud provider needs to define authorization statements for such objects
automatically according to the on-demand self-service property. Our model is
defined to integrate with the resource information model, that can be used to
generate policies from predefined policy templates binding with cloud service
plans.

• Fine-grained access control based on the ABAC model.

• Flexible inter-tenant collaborations that allows tenants to share subscribed
cloud resources in multiple levels.

• Dynamic constraints applied to policy management for multiple authorities:
we define isolation and grant constraints to check if updated policies are
compliant to the multi-tenant policy management properties. This guarantee
would improve system performance when no conflict occurs during evaluation
run-time. Previous works [33–35] are not aware of this feature.

In this chapter, firstly we introduce an information model used to manage cloud
resources in our scenarios in the GEYSERS project [10] and the basic ABAC model.
Based on this, we propose our model in Section 2.5.

2.4.2 Information Model for Virtual Cloud Infrastructure

Cloud resources management for both physical and virtual aspects requires a well
description for modeling, discovery, composition, monitoring and synchronization.
For such purposes, we use the Infrastructure and Network Description Language
(INDL) [79] to model cloud resources. The ontology of IaaS cloud layer is briefly
illustrated in Figure 2.1. INDL could model Virtual Resources (VRs) implemented
on physical devices in different stages (e.g., abstracted, reserved and instantiated)
that belong to different cloud providers. The VI is the composition built up from
different types of general VRs. It enables on-demand provisioning and elastic
scaling of resource capabilities.

Because the cloud information model such as INDL could represent the ex-
tensibility and flexibility of cloud resources configuration in run-time life cycles,
integration of the access control with the information model permits the policies
can be updated automatically upon such on-demand provisioning changes. For
example, a cloud provider requires that upon subscribing an IaaS plan, the tenant
could perform or manage (i.e. allow its users to act on behalf) on provisioned
VMs and network links (e.g., instantiate, reconfigure, monitor), but not exceeding
tenant’s subscribed capabilities. This requirement can be done either by implement-
ing directly inside the cloud management system, or decoupled the configuration
with access control policies. The latter option using policies to manage capabilities
of the tenant is more flexible due to any changes in the plan can reflex easily by
configuration updates, not implementation changes.

22 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Resource

Node

is-a

Node

Component

is-a

VirtualNode

implements

Memory

Component

Processor

Component

Storage

Component

Switching

Component

is-a is-a is-a is-a

Network

Element

is-a

Link Interface

is-a is-a

Virtual

Resource

Logical

Resource

Resource

Pool

is-a is-a is-a

Virtual

Infrastructure

is-a

Operating

System

is-a

Figure 2.1: Overview of information model for cloud infrastructure resources

2.4.3 Attribute-based Access Control

ABAC definitions has been described in different forms, but in general access is
determined based on matches between specific attribute values of the subject,
resource and environment conditions [78, 81]. The policy implemented in ABAC
is the mechanism that represents the mapping from the attribute values to autho-
rization decisions and it is only limited by expressiveness of the computational
language.

The ABAC concepts from [77, 78] will be applied in our approach:

Definition 2.1 (ABAC concepts). The ABAC has the following concepts:

• Subject: is the active entity to request access on a resource. In our model, the
subject can either be a provider, a tenant, or a user of a tenant. A subject
S is characterized by set of attributes. They may include subject’s identifier,
name, organization, etc. Let As1 , As2 , . . . Asn be value sets (or domains)
of subject’s attributes, the set of subjects S is defined as the subset of the
Cartesian product of k subject’s attribute domains:

S ⊆ As1 ×As2 × · · · ×Ask (2.1)

Each subject s ∈ S is a tuple of subject attribute values: s = (as1 , as2 , . . . ask),
asi ∈ Asi , i ∈ [1, k].

• Resource: is the cloud object that needs to be protected. It could either be in
the idle state managed by the provider, or reservation and deployment states
and managed by a tenant. A resource is referred by its identifier attribute.
However, due to cloud provisioning systems, the identifier of a resource is
unknown prior provisioned to the subscribed tenant. In typical ABAC models,
actions on a resource often depend on the resource’s characteristics. So
without loss of generality, action attributes can be seen as attributes of the
resources. Similar to the subject, the set of resources is defined as:

R ⊆ Ar1 ×Ar2 × · · · ×Arl (2.2)

PROPOSED MODEL 23

in which Ari , i ∈ [1, l] is the domain of a resource’s attribute. A resource
r ∈ R is a tuple of attribute values: r = (ar1 , ar2 , . . . arn), ari ∈ Ari .

• Environment conditions: attributes such as date, time, system security level,
location, etc. are grouped as the environment attributes. The set of environ-
ment conditions is defined as:

E ⊆ Ae1 ×Ae2 × · · · ×Aem (2.3)

in which Aei , i = [1,m] is the domain of an environment’s attribute. An envi-
ronment condition e ∈ E is a tuple of attribute values: e = (ae1 , ae2 , . . . aem),
aei ∈ Aei .

• Authorization request: an authorization request x is a tuple of attribute values
sent by the subject entity s to the PDP asking for access to the resource r
under environment condition e. The set of requests X is defined as:

X = S ×R× E
= {(s, r, e)|s ∈ S, r ∈ R, e ∈ E} (2.4)

• Policy: attribute-based policies are represented by a policy language, that
has the semantic as the first-order logic. A policy is created by an issuer that
asserts the decision for given requests from subjects. It has the semantic as a
predicate function mapping from authorization request domain X in Eq (2.4)
to the decision domain:

f : X 7→ {Y,N} (2.5)

with ‘Y ’ and ‘N’ representing permitted and denied decisions. In this formula,
the predicate function f defines a n-ary relation of authorization request X.

There are different attribute-based policy languages that can be used in ABAC
systems [36, 37]. In our model in section 2.5, we propose the authorization
statement as the abstraction of policy. The implementation in section 2.8 dis-
cusses on how to apply XACML to transformation policies into authorization
statements.

2.5 Proposed Model

2.5.1 Multi-tenant Attribute-based Access Control Model

In this section, we propose our MT-ABAC for cloud resource management. Com-
pared to the general ABAC, it decouples subjects into providers, tenants and users
of tenants, as well as defines constraints for multi-tenant management.

In our model, each cloud provider p is an autonomous system that manages a
set of tenants, a set of users and a set of resources. Interactions between multiple
autonomous systems (i.e. multi-providers) are discussed in Chapter 3.

24 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Provider Context

hasPerm

assertedBy

Permission

Environment

Resource

Policy fP

definesissues

Tenant

hasSubj

User

Policy fT issues

Context

defines assertedBy

hasSubj

hasPerm

Figure 2.2: Multi-tenant access control model for cloud infrastructure resources

The Figure 2.2 represents the relationships between subjects in the cloud
management systems that supports multi-tenancy properties.

The multi-tenant access control model has the following concepts:

2.5.1.1 Provider

Let P ⊆ S be the set of providers who can provide resources in the multi-tenant
system. A provider p ∈ P is the subject to assign cloud resources to tenants. It
is in charge of provisioning and composing the cloud resources from VRs. The
cloud provider uses the information model to provision and scale cloud resources to
tenants, at the same time regulate tenants’ operations according to its information
model.

2.5.1.2 Tenant

Denoted T ⊆ S be set of tenants who can subscribe resources in the multi-tenant
system. The tenant t ∈ T is the subject to manage subscribed cloud resources with
the following operations:

• Define policies to determine which of its users can access on managed re-
sources.

• Delegate policy management to another tenant on the specified resource via
delegation mechanism. This feature is used in the inter-tenant collaboration.

When a tenant subscribes resources from a provider, they have the relation
TenantOf which is defined as follows:

TenantOf ⊆ T × P (2.6)

With this relation, the set of tenants of the provider p ∈ P is denoted as T (p) or Tp:

T (p) = {t ∈ T |t TenantOf p}

PROPOSED MODEL 25

2.5.1.3 User

Let U ⊆ S be the set of all users who consumes resources in the multi-tenant
system. In our model, P , T and U have the following properties:

S = P ∪ T ∪ U
(P ∪ T) ∩ U = ∅

The relation UserOf defines the set of users of a tenant:

UserOf ⊆ U × T (2.7)

Given a tenant t ∈ T , its users is denoted as U(t) = {u ∈ U |u UserOf t}.
The set of users of a provider p is denoted as:

U(p) =
⋃

t∈T (p)

U(t) (2.8)

2.5.1.4 Resource

Let R be set of all resources as in equation (2.2). A set of resources owned by either
a tenant or provider defined by the relation:

ResourceOf ⊆ R× (T ∪ P) (2.9)

A tenant t ∈ T has its subscribed resource R(t) = {r ∈ R|r ResourceOf t}. A
provider p ∈ P manages their idle resources R(p) = {r ∈ R|r ResourceOf p}.
According to the exclusive resource ownership in multi-tenant systems, ∀x, y ∈ T∪P
we have:

R(x) ∩R(y) = ∅ ⇔ x 6= y (2.10)

2.5.1.5 Permission

Let P be the set of permissions defined as:

P ⊆ R× E (2.11)

Each permission is a tuple (r, e) ∈ P represented by a set of attributes identifying a
resource with its action, and specific environment condition attributes.

2.5.1.6 Context

Definition 2.2 (authorization statement). is the assertion to say that the issuer i ∈
S authorizes subject s ∈ S on a permission (r, e). It is denoted as authz(i, s, (r, e)).

The authorization statement has the transitive property [69] as follows:

authz(s1, s2, (r, e)) ∧ authz(s2, s3, (r, e))→ authz(s1, s3, (r, e)) (2.12)

26 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Definition 2.3 (Context). is a statement of the issuer i ∈ S on the approval of
set of permissions to the subject s ∈ S. A statement can be denoted by a tuple
(issuer, subject, {permissions}), in which the issuer can be either a provider or a
tenant and the subject can be either a tenant or a user. The formal definition of the
context is described in equation (2.15).

We classify the following contexts:

• Authorization context (AC): is issued by a tenant to a user:

AC ⊆ T × U × Pn (2.13)

• Delegation context (DC): is issued by either a provider to its tenant or a
tenant to another tenant:

DC ⊆ (P ∪ T)× T × Pn (2.14)

Formally, the context is defined as:

C = AC ∪DC
⊆ (T × U ∪ (P ∪ T)× T)× Pn (2.15)

Given a context c ∈ C, we denote I(c) as the issuer of c, S(c) as the subject of c
and P(c) as the set of permissions in c.

According to definition 2.2, given a context c = (i, s,P(c)), we have:

∀(r, e) ∈ P(c), authz(i, s, (r, e)) (2.16)

Let R(c) be set of resources referred in the context c. Formally, it is defined as:

R(c) = {r|r ∈ R,∃(r, e) ∈ P(c)} (2.17)

2.5.1.7 Authorization Request

The request x = (s, r, e) ∈ X is defined in equation (2.4).
Given a context c, the request x is authorized by a c if and only if:{

s = S(c)
(r, e) ∈ P(c) (2.18)

According to (2.16), we see that it is equivalent to the authorization statement
authz(I(c), s, (r, e)).

The multi-tenant systems have multiple authorities in which each can define
policies freely. According to equation (2.15) in our model, providers and tenants
can create contexts (i.e. define policies). So it is possible that some contexts from
different issuers may be conflicted and their decisions are contradicted which makes
the system inconsistent. In our MT-ABAC, we resolve this problem by defining
the delegation model, trusted contexts and constraints. They guarantee that at a
given state, the system always returns the consistent decision for an authorization
request.

PROPOSED MODEL 27

2.5.2 Delegations in MT-ABAC

2.5.2.1 Types of Delegation Contexts

From equations (2.15), our delegation model defines relations between authorities
in the MT-ABAC , including providers, tenants and users of tenants as follows:

• Providers can issue delegation contexts to tenants.

• A tenant can issue delegation contexts to other tenants.

• A tenant can issue authorization contexts to users.

According to delegation categories classified in [68, 69], we distinguish delega-
tion contexts based on types of issuers and subjects as follows:

• Transfer context (TC): when a provider provisions its cloud resources to a
tenant, it uses the transfer context in which resources are exclusively allocated
to only this tenant. The tenant and the provider then have the relationship
TenantOf as in equation (2.6). The set of transfer contexts is defined as:

TC = {(x, y, {(r, e)})|x ∈ P, y ∈ T (x), (r, e) ∈ P} (2.19)

• Grant context (GC): when a tenant want to share a part of its resources to
another tenant, it creates a grant context.

GC = {(x, y, {(r, e)})|x, y ∈ T \ P, (r, e) ∈ P} (2.20)

It shows that only tenants without having provider role can create grant
contexts.

From the equations (2.19) and (2.20), we have the following properties:

TC ∩GC = ∅ (2.21)

DC = TC ∪GC (2.22)

When transferring a resource r ∈ R from the provider to a tenant t ∈ T , it
creates the relation ResourceOf as in (2.9) between r and t. So the total resource
owned by a tenant t ∈ T is:

R(t) =
⋃

∀c∈TC,S(c)=t

R(c) (2.23)

Based on the accountable properties in cloud, in which a subscribed cloud
resource is exclusively assigned to a tenant during a definite lifetime, we need to
define a constraint on transfer contexts so that a resource cannot be provisioned to
more than one tenant at a specific environment condition. The isolation constraint
will be defined in section 2.5.3.

28 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

The multi-tenancy system allows tenants to collaborate via the inter-tenant
operations, i.e. a resource of a tenant can be accessed by either users of this
tenant, or users of another tenant. The inter-tenant is supported by grant contexts
as described above. However, to guarantee that a tenant cannot create grant
contexts for resources it does not have permissions, we define the grant constraint
in section 2.5.3.

2.5.2.2 Context Relationships

To solve conflicting issues may arise for multiple authorities, we present relation-
ships between issued contexts. At first, they are described for a single provider,
then are extended to multiple providers.

Definition 2.4 (Provider’s trust contexts). In a MT-ABAC system of a provider
p ∈ P with a set of its tenants T (p) and their users U(p) =

⋃
t∈T (p) U(t), let C(p) be

set of contexts trusted by p. A context c = (i, s,P(c)) is trusted by p (a.k.a c ∈ C(p))
if and only if:

∀(r, e) ∈ P(c), authz(p, i, (r, e)) (2.24)

Lemma 1. If c∗ is a transfer context made by p, it is trusted by the provider p:

(c∗ ∈ TC) ∧ (I(c∗) = p)→ c∗ ∈ C(p) (2.25)

Proof: Because c∗ is the transfer context, we have I(c∗) = p. According to
(2.16):

∀(r, e) ∈ P(c∗), authz(p,S(c∗), (r, e))

So by trust context definition (2.24), we conclude c∗ is trusted by p, or c∗ ∈ C(p).
The set of all trusted contexts in the MT-ABAC is denoted as:

C =
⋃
∀p∈P

C(p) (2.26)

To manage trust contexts of a provider efficiently, we define the partial relation-
ship between two contexts:

Definition 2.5 (Partial trust relationship). The partial trust relationship PT ⊆
C × C over two trust contexts of provider p is defined as:

PT = {(ci, cj)|ci, cj ∈ C(p),S(ci) = I(cj) ∧ P(ci) ∩ P(cj) 6= ∅} (2.27)

Thus the function PT (c) returns all contexts in C(p) that c partially trusts. Formally:

PT (c) = {c′ ∈ C(p)|(c, c′) ∈ PT} (2.28)

Definition 2.6 (Tenant privilege scope). the tenant t ∈ T has its privileges scope:

P(t) =
⋃

∀c∈C,S(c)=t

P(c) (2.29)

PROPOSED MODEL 29

C
p,t1

C
p,t2

C
t1,t4

C
t1,t5

C
t5,t7

C
t2,t5

C
t5,t3

C
t5,u1

C
t5,t6

C
p,t5

Figure 2.3: An example of context relationships

The MT-ABAC delegations allow a tenant t to share its resources to another one
via grant contexts. However, these contexts are not always trusted, because t may
grant permissions on unowned resources. To identify if these contexts are trusted,
the system need to check if all their permissions belong to the privilege scope of t.
If a tenant can grant any contexts, the system runtime overhead on checking their
trusts is costly. In section 2.5.3, we define constraints at the policy composition
stage to prevent such overheads on runtime stage. These constraints can improve
the system performance.

The Figure 2.3 presents context trees of the provider p. Transfer contexts cp,t1 ,
cp,t2 and cp,t5 are trusted directly by the provider p. Each connection represents the
trust relationship between contexts. A context can be trusted by only one context
or multiple contexts. In the figure, tenant t1 share some resources directly from its
transfer context to t4, so P(ct1,t4) ⊆ P(cp,t1). In the other case, the context ct5,u1

created by t5 that combined permissions from different contexts cp,t5 , ct1,t5 and
ct2,t5 so ct5,u1

is partially trusted by those contexts.

2.5.3 Multi-tenancy Constraints

The system state of a provider p ∈ P contains the following information: C(p), T (p)
and U(p). To simplify definitions, we shorten the system state as (Cp, Tp, Up). It
evolves over time via administrative operations from the provider and its tenants.
In this section, we define constraints to make sure the MT-ABAC system state is
consistent.

2.5.3.1 Isolation Constraint

The multi-tenancy systems require that tenants should have security isolation [75]
on different layers. It can be achieved by using implicit filter based on the binding
between tenant-id and allocated resources, or with explicit permission-based access

30 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

control isolation. Our work support the later at the conceptual level by the isolation
constraint below.

To guarantee the exclusive resource ownership property in the multi-tenant
system, the equation (2.10) should be satisfied. Given x, y ∈ T , from (2.23) and
(2.10), we have:

∀c1, c2 ∈ TC, (S(c) = x) ∧ (S(c2) = y)→ R(c1) ∩R(c2) = ∅ (2.30)

The equation (2.30) guarantees that the provider does not transfer a resource
to more than one tenant. From this condition, we define the isolation constraint as
follows:

Definition 2.7 (Isolation constraint). Given a system state (Cp, Tp, Up), the con-
straint canTransfer(c∗) on a given transfer context c∗ ∈ TC is valid iff:

∀tc′ ∈ {tc ∈ Cp|I(tc) = p}(I(c∗) = p ∧ S(c∗) ∈ Tp ∧R(c∗) ∩R(tc′) = ∅) (2.31)

in which R(c) are sets of resources referred in contexts c that is defined in equa-
tion (2.17).

2.5.3.2 Grant Constraints

In the Figure 2.3, it is possible that the tenant t5 issues to t3 a context containing
out-of-scope privileges of t5 itself (e.g., the write permission on a t1’s folder, while
t1 only allows t5 to read from it). Therefore, the context ct5,t3 is untrusted. If there
are many untrusted contexts in practical, the authorization process becomes more
complex, that affects the system performance.

To prevent this problem, we define the grant constraint applying to the policy
composition of tenants (i.e. when a tenant adds, removes or updates its policies)
to make sure no context is untrusted. Although this constraint will increase policy
composition checking overhead, the authorization evaluation process of the system
will improve.

Definition 2.8 (Grant constraints). Given a system state (Cp, Tp, Up) and a context
c∗ with i∗ = I(c∗), s∗ = S(c∗), the grant constraints are defined as:

• If c∗ ∈ AC: the constraint canGrantAC(c∗) is valid iff:

(i∗ ∈ Tp) ∧ (s∗ ∈ U(i∗)) ∧ (P(c∗) ⊆ P(i∗)) (2.32)

• If c∗ ∈ GC: the constraint canGrantGC(c∗) is valid iff:

(i∗ ∈ Tp) ∧ (s∗ ∈ Tp) ∧ (i∗ 6= s∗) ∧ (P(c∗) ⊆ P(i∗)) (2.33)

For a given context c∗ ∈ AC ∪ GC, the grant constraint can be written as
canGrant(c∗).

The complexity of the algorithm to determine if the context c meets the grant
constraint depends on the subset checking operation P(c∗) ⊆ P(i∗).

PROPOSED MODEL 31

Lemma 2. Given a system state (Cp, Tp, Up) and a context c∗ ∈ AC ∪ GC. The
context c∗ is trusted by the provider p if and only if it satisfies the grant constraints.

(c∗ ∈ AC ∪GC) ∧ canGrant(c∗)↔ c∗ ∈ C(p) (2.34)

Proof: For the "if" direction: the context c∗ can either be an authorization
context or grant context. In both cases, we have P(c∗) ⊆ P(i∗). So that:

∀(r, e) ∈ P(c∗)→ (r, e) ∈ P(i∗)

According to (2.29):

∀(r, e) ∈ P(c∗),∃c′ ∈ C(p), ((r, e) ∈ P(c′)) ∧ (S(c′) = i∗) (2.35)

From the definition of the trust context (2.24) applied to c′, we have:

c′ ∈ C(p)→ ∀(r, e) ∈ P(c′), authz(p, I(c′), (r, e)) (2.36)

However, based on the definition of the authorization context (2.16), we have:

∀(r, e) ∈ P(c′), authz(I(c′),S(c′), (r, e)) (2.37)

Using the transitive property (2.12), from (2.36) and (2.37), we have

∀(r, e) ∈ P(c′), authz(p,S(c′), (r, e)) (2.38)

Replace i∗ = S(c′) to (2.38) and combine with (2.35):

∀(r, e) ∈ P(c∗), authz(p, i∗, (r, e)) (2.39)

Based on the trust context definition (2.24) applied to (2.39):

∀(r, e) ∈ P(c∗), authz(p, i∗, (r, e))→ c∗ ∈ C(p) (2.40)

For the "only if" direction: according to privilege scope definition (2.29):

P(i∗) =
⋃

∀c∈C(p),S(c)=i∗

P(c)

Because c∗ ∈ C(p), we have P(c∗) ⊆ P(i∗).
If c∗ is an authorization context, we have (i∗ ∈ Tp) ∧ (s∗ ∈ U(i∗)), so the

canGrantAC(c∗) is valid.
If c∗ is a grant context, we have (i∗ ∈ Tp) ∧ (s∗ ∈ Tp), so the canGrantGC(c∗)

is valid.
In other words, the canGrant(c∗) is valid.

32 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

2.5.4 MT-ABAC Operations

We differentiate two phases in the access control: policy composition phase and
authorization evaluation phase. The first occurs when the provider allocates
resources to tenants or a tenant composes policies for its users. The later is for
authorization request evaluations from users to consume cloud resources.

The system state (Cp, Tp, Up) of a provider p ∈ P evolves over times via adminis-
trative commands from the provider p and its tenants Tp. Assume that (C′p, T ′p, U ′p)
is the new state after an administrative command, the Table 2.1 summaries these
commands as follows:

Table 2.1: Administrative commands for MT-ABAC system

Command Condition Update
addTenant(t) t /∈ Tp T ′

p = Tp ∪ {t}
removeTenant(t) @c ∈ Cp(I(c) = t ∨ S(c) = t) T ′

p = Tp \ {t}
addUser(t, u) t ∈ Tp ∧ u /∈ U(t) U ′(t) = U(t) ∪ {u}
removeUser(t, u) t ∈ Tp ∧ @c ∈ Cp(S(c) = u) U ′(t) = U(t) \ {u}
transfer(tc) tc ∈ TC ∧ canTransfer(tc) C′

p = Cp ∪ {tc}
grant(c) (c ∈ AC ∪GC) ∧ canGrant(c) C′

p = Cp ∪ {c}
removeContext(c) c ∈ Cp removeContext(Cp, c)

The algorithm 2.1 is to remove a context c and update Cp.

1 proc removeContext(Cp, c)
2 updateTrustCtxs(Cp, c)
3 Cp ← Cp \ {c}
4 return
5 proc updateTrustCtxs(Cp, c)
6 foreach (c′ ∈ PT (c)) do
7 perms← P(c′) \ P(c)
8 if (perms 6= ∅) then
9 c′ ← (I(c′),S(c′), perms)

10 updateTrustCtxs(Cp, c’)
11 else
12 Cp ← Cp \ {c′}
13 end
14 end
15 return

Algorithm 2.1: Remove a context and update Cp in MT-ABAC

In the authorization evaluation phase, the MT-ABAC evaluates a request x from
a user by finding an authorization context in C so that the request x is authorized
by c as defined in equation (2.18).

2.6 Analysis
In this section, we prove that our system is consistent: given a system state
(Cp, Tp, Up), after any administrative operations, the new system state (C′p, T ′p, U ′p)

INTEGRATION MT-ABAC WITH INDL 33

always maintains the property that all contexts in C′p are trusted:

∀c ∈ C′(p),∀(r, e) ∈ P(c), authz(p, I(c′), (r, e)) (2.41)

For the operations addTenant, removeTenant, addUser, removeUser, the set
of contexts does not change: C′p = Cp, so (2.41) is valid.

For the transfer(tc) operation, C′p = Cp ∪ {tc}. Because tc ∈ TC, according to
Lemma 1, tc is trusted by p, and (2.41) is valid.

For the grant(c) operation, C′p = Cp ∪ {c}. According to Lemma 2, c is trusted
by p then (2.41) is also valid.

For the removeContext(c∗) operation, the algorithm 2.1 is to recalculate all
contexts c that partially trusted by c∗. It removes the common permissions shared
between c and c∗, so makes c∗ and c do not have any relationship: c /∈ PT (c∗). The
updated context of c therefore is still trusted by p. The updating process continues
recursively until no context in C(p) has any share permission with c∗ or PT (c∗) = ∅.
So this algorithm guarantees that all updates contexts are trusted by p.

The consistency of our system guarantees that in the authorization phase, given
a system state (Cp, Tp, Up) and an authorization request x = (s, r, e), the evaluation
process is valid:

∃c∗ ∈ Cp, authz(I(c∗), s, (r, e)) ` authz(p, s, (r, e))

The proof is simple. Because c∗ ∈ Cp, from definition (2.24), we say that
authz(p, I(c∗), (r, e)). Using the transitive property in (2.12), we conclude:

authz(I(c∗), s, (r, e)) ∧ authz(p, I(c∗), (r, e))→ authz(p, s, (r, e))

2.7 Integration MT-ABAC with INDL

2.7.1 Attribute-based Policy Semantic Model

In the MT-ABAC system for clouds, the provider’s policies need to be generated
automatically based on on-demand resource provisioning, while the tenants’ policies
can be configured later by customers. Thus, we integrate the MT-ABAC into the
cloud information model INDL [79] shown in the Figure 2.4, which represents
provider’s policies. Tenants can use other ABAC languages like XACML to compose
their policies without limitation.

Any authorization requests to the resource must be checked against these
attached policies.

In this INDL extension, the provider’s policy is bounded to the resource concept
via the relationship hasPolicy. Because of the inheritance of resource types, derived
resources have all policies of their ancestors, leading conflicting may arise. Thus,
we define combining operators for joining such multiple attached policies. However,
rather than many combining operators as in XACML where multiple parties can
create conflicting policies, we only need permit-override for privilege enrichment

34 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Resource

hasPolicy

hasExpression

hasDecision

#Deny

instanceOf

#Permit

instanceOf

combiningOperator

Combining
Operator

#permit-
override

instanceOf
instanceOf

#deny-
override

Logic
Expression

Decision

Policy

Figure 2.4: Attribute-based policy model integration with INDL

and deny-override for privilege limitation for inheritance relationships: e.g., the
ancestor VirtualNode concept allows to add a new network interface, and its
descendant node, a VM, allow to instantiate, so the permit-override operator can be
used in this case. Thus, it can be seen that the provider’s policies in our MT-ABAC
utilize a subset of XACML.

In cloud resource life-cycles, the reservation and instantiation of resources
occur automatically based on tenants’ requests. We need a mechanism to create
authorization rules to manage these on-demand resources:

• We define policies for each resource components in a VI, which forms a policy
template.

• The policy template is then used to generate the instantiated policies for
deployed cloud resources.

2.7.2 Policy Generation from Cloud Infrastructure Descriptions

In the Figure 2.2, the provider issues policies for tenants to delegate permissions
on their subscribed resources. These operations should be performed automatically
in the cloud resource life-cycles, i.e. issuing, updating and revoking policies at the
reservation, re-planning and decommissioning phases, respectively. We propose
an automatic mechanism to generate policies from cloud infrastructure resource
descriptions using INDL as follows:

• Given an infrastructure resource description using INDL implemented by
RDF/OWL technologies, we use SPARQL queries to obtain detail resource
information of the cloud resources, including resource identifiers, types,
owner, as in Listing 2.1.

• We define the resource policy template using model in Figure 2.4, which
specifies policies could bind to a resource type, as illustrated in Figure 2.5.
The policies are retrieved as in Listing 2.2.

INTEGRATION MT-ABAC WITH INDL 35

• We create policies with the subject be the tenant, resource identifiers and
types along with related actions from the template. They can be either
expressed as the generic attribute-based policy notation or a policy language
standard like XACML [36].

#Virtual
Infrastructure

hasPolicy

#Permit
action-id=

Instantiate-VI

hasDecisionhasExpression

hasPolicy hasPolicyhasPolicyhasPolicy

#VirtualNode

#Virtual
Resource

#Logical
Resource

hasPolicyhasPolicy

hasPolicyhasPolicy

is-a is-a

hasPolicyhasPolicy

decomission-VI
replanning:

Modify-Time
instantiate-VI

replanning:
Add-VR-IT

replanning:
Modify-VR-IT

combiningOperator

#permit-
override

instantiate-VR
get-Available-

VR-Pool

#Resource Pool

is-a

hasPolicyhasPolicy

instantiate-VR
operate-
VR:Stop

operate-
VR:Pause

operate-
VR:Start

remove-
VirtualNetworkI

f

add-
VirtualNetworkI

f

Figure 2.5: Defining policy template sample

36 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns#>
PREFIX imf: <http://geysers.eu/imf.owl#>
SELECT ?vi ?r ?rtype
WHERE {

?vi rdf:type imf:VirtualInfrastructure.
?vi imf:hasResource ?r.
?r rdf:type ?rtype.
?rtype rdfs:subClassOf* imf:Resource.

}

Listing 2.1: Query resource components in the virtual infrastructure

PREFIX rdf: <http://www.w3.org/1999/02/
22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>
PREFIX imf: <http://geysers.eu/imf.owl#>
PREFIX daci: <http://geysers.eu/imf-daci.owl#>
SELECT ?r ?type ?cop ?d ?expr
WHERE {

#resourcetype# rdfs:subClassOf* ?type.
?r rdf:type ?type.
?r daci:combiningOperator ?cop
?r daci:hasPolicy ?p.
?p daci:hasDecision ?d.
?p daci:hasExpression ?expr

}

Listing 2.2: Retrieve actions for a resource type from its ancestors

In Listing 2.2, the resourcetype parameter is a Resource concept in the INDL
ontology. Queried result is translated into XACML policies with the equivalent
combining operator and logic expressions. These providers’ policies are then
transformed into the data structure representing root contexts in the next section.

2.8 Mechanism to Manage Contexts in MT-ABAC
In cloud systems with high-scale of resources and tenants, approaches using
attribute-based policies such as XACML [36, 38] have the advantage of high
expressiveness of policy composition. However, there’s no efficient mechanism in
term of performance to evaluate and manage these policies. Authors in [35] used
traditional XACML implementation [82] with limited results. Approaches in [33,
34] use SWRL and a DL reasoner engine to evaluate policies, which are not mainly
designed as an authorization policy engine.

MECHANISM TO MANAGE CONTEXTS IN MT-ABAC 37

Xi

fxi
P1

f(X)

P1 P2
Pk

...fxi
P2

fxi
Pk

Figure 2.6: A sample Boole-Shannon decision diagram

In [83], we have proposed a new mechanism called Multi-datatype Interval
Decision Diagram (MIDD) to solve such issues on the expressive attribute-based
policies. Detail formulations and definitions of MIDD and Multi-datatype Interval
Decision Diagram for XACML (X-MIDD) data structures can be found in chapter 4.
In this section, we apply the MIDD mechanism to manage contexts of the MT-ABAC
model.

2.8.1 Decision Diagrams

According to the Boole-Shannon expansion, a multi-variable logical function f :
D1 ×D2 . . . ×Dn → Boolean can be decomposed to partial functions which are
free from a variable xi:

f(X) =
∨

P∈P(Di)

hxi
(P) ∧ fxP

i
(2.42)

in which hxi(P) represents a function returning 1 if xi ∈ P , otherwise 0. P is
a partition range of variable xi. This function can be represented by a decision
diagrams as in Figure 2.6:

However, the XACML language that we apply in MT-ABAC has more complex
function signatures. The Match, AllOf, AnyOf and Target elements have the signa-
ture in Eq. (2.43), while Rule, Policy and Policyset elements have the signature in
Eq. (2.44).

f : D1 ×D2 . . .×Dn → VM (2.43)

with VM is the domain of match values from Table 4.3:
VM = {T, F, IN}

38 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Act
(N)

time

{vr1, vr5}

[Monitor-state]

{Start, Pause,
 Stop}

P, O1

[d1,d2]

Res-id
(N)

Figure 2.7: X-MIDD representing authorization statements

f : D1 ×D2 . . .×Dn → VR (2.44)

The VR is the decision rule domain as in Table 4.4:
VR = {P,D,N, INP , IND, INPD}
We define extended decision diagrams as MIDD and X-MIDD representing Eq.

(4.24) and Eq. (4.25) respectively.
The MIDD can express a XACML match component, while the X-MIDD represents

a rule or policy. In [47], we developed algorithms to transform XACML policies
into these data structures for evaluation purpose. The X-MIDD in this chapter can
be used as the basis for the context object in MT-ABAC model. A X-MIDD example
is illustrated in Figure 2.7.

2.8.2 Context Structure

In Section 2.5, we propose the context concept representing authorization state-
ments of policies. In this section, we use X-MIDD as the mechanism to implement
this concept.

According to definitions in Section 2.5.1, a context c contains the issuer I(c),
the subject S(c) and set of permissions P(c). The issuer can either be the provider
or a tenant, the subject identifies a tenant or a user. Set of permissions P(c)
contains a set of tuples (r, e) to indicate which resource can be touched (the r) in
the equivalent condition (e). We define a context data structure that have:

• Issuer identifier: is an attribute value or set of attribute values referring to
the provider or tenants. In our attribute profile for INDL, the provider and
tenants have their unique identifiers, so they can be stored here.

SYSTEM DESIGN 39

• Subject identifier: contains set of subject attributes (e.g., subject-id, subject-
role in XACML attribute profile).

• Permissions: are stored in a X-MIDD structure. It has its variable order, in
which subject attributes are at the high level in the tree, resource and envi-
ronment attributes are at deeper levels, leaf nodes contains permit decisions.
The X-MIDD has multiple paths from root to its leaf nodes, each path is an
authorization statement.

We use XACML as the policy language for tenants, and a subset of XACML as
the policy language of the provider. It is also possible to transform and combine a
XACML policy-tree of the provider or a tenant into a X-MIDD [47]. Then the result
X-MIDDs can represent issued contexts. We need to manage these contexts using
constraints in Section 2.5.3.

2.8.3 Operations

According to Section 2.5, the context has the following operations:

• Function canTransfer(tc): it implements the equation (2.31)

• Functions canGrantAC(c), canGrantGC(c) in formulas (2.32) and (2.33)
are illustrated in the algorithm 2.2.

• Request authorization: given a request x and a context c, check if c authorizes
x. It can be done by traveling from the root of the context’s X-MIDD, if it can
reach the leaf node, then the request is authorized.

2.8.4 Complexities

Given a system with |T | tenants, each defines two policy-trees, one for its users
called intra-tenant policy-tree and the other for tenant sharing called inter-tenant
policy-tree. The provider p issues policies to tenants, which can be combined to a
single policy-tree. Because each policy-tree can be transformed into a X-MIDD [47],
the size of the trusted contexts C is (2|T | + 1). The complexity of the algorithm
canGrant in the worst case is O((2|T |+1).|c|) with |c| is the number of paths from
the root of X-MIDD in the context c.

2.9 System Design

2.9.1 DACI Architecture and Integration

We design the Dynamic Access Control Infrastructure (DACI) as in Figure 2.8 in
collaboration with an Intercloud architecture in GEYSERS project [10]. In this
architecture, the VIP could utilize and aggregate computing, storage and network
resources from set of PIPs to compose VI services for tenants, known as VIOs. The
INDL [79] is used to model and share VRs description between entities.

40 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

1 function canGrant(c)
2 foreach ((r, e) ∈ P(c) do
3 found← false;
4 it← Cp.iterator;
5 while ((¬found ∧ it.hasNext()) do
6 c′ ← it.getNext();
7 if (S(c′) = I(c) ∧ (r, e) ∈ P(c′) then
8 found← true;
9 end

10 end
11 if (¬found) then
12 return false;
13 end
14 end
15 return true
16 function canGrantAC(c)
17 i← I(c)
18 return i ∈ Tp ∧ S(c) ∈ U(t) ∧ canGrant(c)
19 function canGrantGC(c)
20 i← I(c)
21 s← S(c)
22 return i ∈ Tp ∧ s ∈ Tp ∧ i 6= s ∧ canGrant(c)

Algorithm 2.2: Grant constraint functions

Each PIP has an instance of Open Nebula [84] to manage its VRs. PIP runs a sys-
tem (known as Lower-Logical Infrastructure Composition Layer (LICL)) operating
on top the OpenNebula instance via adapters [10] to abstract, control and monitor
virtual resource information. This information is synchronized to the Upper-LICL
system at VIP. The VI composed by VIP could be distributed across different PIP
domains, while the tenant (VIO) of a VI can manage it via the VIP as follows:

• The VIO can send a VI request to the VIP, where the request is analyzed.
Based on current available free resources from registered PIPs, the request is
broken down into parts which will be provisioned at PIPs. The DACI handles
the VI request in reservation phase by the TenantManagement Service, that
generates provider’s delegation policies for a given request. These policies
must satisfy the isolation constraint according to Section 2.5.

• Once the VI is deployed, the VIO can define authorization policies for its
end-users via the TenantAdmin Service. It also can set which parts of the
deployed VI are shared with other tenants via the tenant’s delegation policies.
These policies are composed in XACML.

• The VIO and its end-users can control VI components via VR Proxies of
Upper-LICL, where authorization interceptors extract request attributes and
authorize at DACI against local tenant’s authorization policies, inter-tenant
policies and provider’s delegation policies. Depending on returned decisions,
the interceptors may reject or permit to process requests.

While the DACI services are designed to integrate with cloud management
systems in the GEYSERS project [10], it is also possible to use DACI in other cloud

SYSTEM DESIGN 41

Context resolution
service

Context DB
Tenant’s

delegation
policy DB

Context Handler

Tenant’s
Authz Policy

DB

PDP

Tenant DB

Provider’s
Delegation
Policy DB

PEP
Obligation Service
(e.g. accounting)

Cloud resource
service

request response

Authz Interface

TenantMgrSvc
interface (provider)

Tenant administration
interface (tenant)

Token service

Token Authority

Policy Generator

TenantAdmin
Service

Tenant
Management

Service

Information Model
service

End-users

Figure 2.8: Dynamic Access Control Infrastructure using MT-ABAC model

management systems by means of equivalent cloud resource description models.
In such cases, the policy generator component allows to parse cloud resource
descriptions. The integration APIs with a cloud management system are illustrated
in Table 2.2.

Table 2.2: DACI integration APIs

Phases APIs Description
Reservation reserve(tenantId, res_desc) Generate provider’s policies for

given cloud resource description
Deployment deploy(tenantId) Transform policies into contexts

and store to the context DB.
Decommission release(tenantId) Remove tenant’s policies and con-

texts.

2.9.2 High Performance PDP for Tenant Policies

Tenant’s policies are isolatedly stored in the Tenant Authz Policy DB. Upon receiving
a request from Context Handler, the PDP service loads equivalent tenant’s policies

42 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

for evaluation. To gain high performance throughput, we use SNE-XACML engine
[85] to transform regular XACML policies into X-MIDD data structure with much
improved throughput compared to other PDP engines.

We create a pool of PDP instances, each for a tenant policy root. By this way,
our design is scalable if we plan to extend PDP in different machines.

2.9.3 Context Resolution and Token Exchange

The Context resolution service implements the multi-tenant access control model
by extracting delegation policies of providers and tenants to contexts and storing
them in the Context DB. It finds the trust context for a given request from Context
Handler. If the trust context has its issuer at a different domain (a PIP), it can either
do one of following:

• Proxy method: The VIP creates a VR proxy to send commands to PIP. It’s
transparent to end-users. This method is implemented in LICL testbeds. This
is the direct approach and acceptable with low control and management
traffics because they are centralized and routed via VIP to different PIP
domains.

• Push method: The VIP creates a grant-token and relays via end-users to send
commands to PIPs as in Section 3.3.2. In general Intercloud services, when
the control and management traffics from users to underlying providers are
high, this approach is more scalable.

2.9.4 Tenant Policy Administration

A tenant can define its end-users authorization policies as well as inter-tenant
delegation policies via policy administration APIs as in Table 2.3.

Table 2.3: Tenant policy administration APIs

Type APIs Description

Intra-tenant
addPolicy(policyId, p) Add new policy to the tenant’s store.
updatePolicy(policyId, p) Update an existing policy
deletePolicy(policyId) Delete an existing policy

Inter-tenant
setTrust(trustee, p) Set a new trust relationship between cur-

rent tenant and trustee.
updateTrust(trustee, p) Update an existing relationship between

current tenant and trustee.
removeTrust(trustee, p) Remove an existing relationship between

current tenant and trustee.

Whenever tenants want to add or update policies, the grant constraint in Section
2.5 is checked to make sure no violation happens. Thus, it reduces the authorization
overhead by limiting inconsistent decisions.

IMPLEMENTATION AND EVALUATION 43

Table 2.4: VI Datasets

#VI #Prov. rules #Inter-tenant rules #Intra-tenant rules Total rules
100 401 394 501 1296
300 1217 394 1517 3128
500 2001 500 2501 5002
800 3211 800 4011 8022
1000 3955 1000 4955 9910

2.10 Implementation and Evaluation

2.10.1 Implementation Overview

We develop DACI components as OSGi bundles on Java 1.7. The public DACI
interfaces are REST web services based on JAX-RS APIs of the Apache CXF. In our
testbed, components in a DACI instance are deployed on the Apache ServiceMix
environment [86]. Policies for tenants and providers are stored in a Redis key-value
database system [87] with separated key identifiers for each tenant. It guarantees
the isolation of policy management among tenants.

The policy generator module uses Jena OWL engine [88] to parse input VI
descriptions in INDL [79] and the attribute-based policy template to generate
XACML policies as described in Section 2.7.2. They are stored as provider’s policies
for equivalent VIs.

We use SNE-XACML engine [47] as the core PDP to evaluate intra-tenant policies
in the AuthzService component. For inter-tenant policies and provider’s policies, the
ContextService component transforms into the context objects, each is composed
from a MIDD data structure and the policy’s issuer attributes. These context objects
are stored persistently and used for context validation purposes.

In our testbed, we build a VM representing the VIP role and two VMs for two
different PIPs. Each DACI instance in a PIP’s VM is registered with the VIP’s DACI
instance as a tenant. For testing purpose, we generate sample VI datasets with
different VI sizes as in Table 2.4, each VI is one of the following types:

• Type 1: a storage component connected to a VM via a virtual triangular
topology network of three virtual routers.

• Type 2: two storage components having network links to a VM.

• Type 3: two VMs having network links to a share storage component.

These VI descriptions are used to generate provider delegation XACML policies.
We simulate the inter-tenant operations by generating inter-tenant policies to share
resources between tenants, i.e. tenant ti shares a resource to tenant ti+1. For
intra-tenant policies for each tenant, we generate the default policy indicating
that the subjects belong to admin group of the tenant having all permissions. In
practical, inter-tenant and intra-tenant policies are managed by the tenant via the
TenantAdmin interface.

44 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

PEPs

VI-100
VI-300
VI-500

VI-1000

Figure 2.9: Single cloud provider performance evaluation

The DACI for a provider is deployed in a VM with two virtual cores and 4096MB
RAM. It runs a ServiceMix instance for DACI and a local Redis server for storing
policies.

We use different numbers of PEPs sending requests to the DACI server via the
AuthzSvc RESTful interface. They run simultaneously on different machines from
the DACI VM, each sends 100 random requests. The execution times of PEPs are
measured to calculate the average value.

2.10.2 Evaluation Results

Figure 2.9 shows the performance result for the single provider scenario, where
the AuthzService on DACI performs authorization evaluation on provider local
resources and does not issue tokens. We observe that throughputs are affected
by the number of managed VIs differently. The throughput in VI-100 scenario is
higher 12%-40% compared to other scenarios. For scenarios VI-300, VI-500 and
VI-1000, with the same number of PEPs, their throughputs are stable. It means that
our prototype is scalable for number of resources.

In other aspect, the result also shows that using high number of PEPs for a given
dataset in VI-300, VI-500 or VI-1000 can generate enough requests to saturate
the AuthzSvc message queue. We measure the AuthzSvc service can handle from
1400 to 1600 requests/s. In our prototype, we intentionally do not apply popular
enterprise service patterns like distributed load balancing or decision caching,
which can improve system performance more.

CONCLUSIONS 45

2.11 Conclusions
In this chapter, we presented a multi-tenant attribute-based access control model
for cloud services in which the access control model is integrated with the cloud
infrastructure information description model. Our approach not only can generate
provider delegation policy automatically from cloud resource descriptions but also
can support multiple levels of delegations with high flexibility for inter-tenant
collaborations. Constraints were defined to guarantee consistent and correctness
of semantic policy management. We utilized decision diagram mechanisms to
attribute-based policy evaluation, which also facilitated the implementation of
the proposed context in our model. The prototype was developed, tested and
integrated into the GEYSERS project. The evaluation results demonstrated that our
prototype has good performance in term of number of cloud resources, clients and
policies.

However, the current approach needs to be extended for distributed environ-
ments with multiple cloud providers, in which a tenant can play as the provider
role by giving its own cloud services. It requires inter-connections between multiple
MT-ABAC systems. Chapter 3 will identify and propose mechanisms to solve this
problem.

46 MULTI-TENANT ACCESS CONTROL FOR SINGLE CLOUD PROVIDERS

Chapter 3

Multi-tenant Access Control for
Intercloud

This chapter is based on the following publications:

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Policy and context
management in dynamically provisioned access control service for virtualized
Cloud infrastructures," in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, 2012, pp. 343–349 [49].

• C. Ngo, Y. Demchenko, and C. de Laat, “Toward a Dynamic Trust Establish-
ment Approach for Multi-provider Intercloud Environment," Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International Conference
on. IEEE, 2012 [89].

• C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant Attribute-based Access
Control for Cloud Infrastructure Services," in Journal of Information Security
and Applications (accepted 2015) [50].

3.1 Introduction
NIST’s cloud computing reference architectures [5] provide a basis for cooperation
between providers to bring integrated cloud services to customers, defined as and
referred thereafter as Intercloud [90, 91]. In the general Intercloud architecture,
collaborations between providers form a hierarchical multi-level stack of cloud
services where each service can compose from lower-level services and also be
integrated into upper level ones. In Figure 3.1, IaaS cloud providers can aggregate
individual VRs from different PIPs to build up VIs consisting of virtual computing
nodes, virtual storage, reserved network links [10]. PaaS and SaaS providers can
utilize the outsourced IaaS services to build up their systems. In turn, the end-
user work flow systems may be composed from a set of different cloud resources,
which requires interactions between cloud providers, even they do not have direct
subscription contracts defined by Service Level Agreements (SLAs).

47

48 MULTI-TENANT ACCESS CONTROL FOR INTERCLOUD

PIP
2

PIP
3

PIP
4

PIP
1

IaaS
1

IaaS
2

IaaS
3

PaaS
1

PaaS
3

SaaS
1

SaaS
2

SaaS Provider

Layer

PaaS Provider

Layer

IaaS Provider

Layer

Physical

Provider Layer

End-users

Layer

SaaS
3

PaaS
2

Figure 3.1: An Intercloud scenario

Such cloud collaborations bring challenges on distrusted authorization across
multi-domains between providers. The cloud resources while are directly or indi-
rectly managed at a provider domain, can be accessed by unknown entities based
on the cloud resource owners consents. In Figure 3.1, the software running on
PaaS3 can access to the storage service managed by IaaS1, but located at PIP1

site. Most current authorization frameworks rely on known identifies of entities
or using federated identity management systems with setting up manually when a
member want to join to the federation, while the Intercloud requires the dynamic
relationship establishment at runtime via third-parties. When collecting distributed
decisions, the inconsistency of policies at different domains may lead to high re-
jected cases, i.e., in a chain of decisions, if the final result is denied, for efficiency,
it’d better to be decided at the local domain rather than at a remote one.

We propose a token-based exchanging approach between providers combining
with the attribute-based multi-tenant access control model that guarantees the har-
monization of distributed authorization policies, thus reduces the denied decision
rate to have low system overhead.

3.2 Problem Statement
The model in chapter 2 solves multi-tenant access control problems in a single
security domain with a cloud provider. For Intercloud scenarios, a provider could
play as a tenant of another provider to utilize its cloud resources. This paradigm
can be illustrated in [10] and [49] where the VIP can collect VRs from set of PIPs
to compose the VI. Our model in chapter 2 can be extended to support Intercloud

EXTENDED MODEL FOR MULTIPLE PROVIDERS 49

scenarios by arrange in hierarchy as follows:

• There are set of cloud providers: pi ∈ P , each of them runs the model in
chapter 2.

• When a provider pa subscribes cloud resources from set of providers pb =
{pb1 , pb2 , . . . pbk}, pa becomes the tenant of pbi , thus can manage these re-
sources with its own policies.

• The pa can also transfer permissions to its tenants. Permissions either targets
to local pa resources, or the remote resources at a provider pbi ∈ pb.

• Any pbi may be a tenant of other providers, so the chain of providers can be
extended.

In such scenarios, we need to solve the challenge of distributed authorization in
multiple domains. A request from pa domain may need to be authorized at two
domains, first at pa domain with relevant pa tenants’ policies, then at pbi domain
with the policy issued by pbi to pa. The possible approaches to synchronize and
collect decisions are either exchanging tokens or exposing policies between domains.
The exchanging token approach needs to deal with token management issues,
including storing, synchronization, revocation and overhead of using tokens [68].
In Intercloud paradigm, exchanging policies approach may disclose tenants’ SLAs
out of the provider’s domain while still has similar issues with token management
[68]. This section proposes a token mechanism that solves token management
problems with low overhead on the system performance.

3.3 Extended Model for Multiple Providers

3.3.1 Constraints in Distributed Authorizations

The potential problem in distribute authorization is the conflicting decisions be-
tween domains, resulting to the high rejection requests rate at remote domains
and increasing system overhead. Preferably, denied requests should be answered
as soon as possible at their local domains, rather than at a remote domain in the
chain of distributed authorization. It can be solved by establishing grant constraints
between the policies at tenant side pa with policies at the pb provider sides.

In the above scenario, the provider pbi issues a policy with the context cai
for

the provider pa. At the pa, instead of contexts created by pa, contexts cai|i=1...k

become the root context. All contexts created by pa must be confined by the
root contexts. It can be excepted for local resources Xr physically owned by pa.
To synchronize contexts cai

between pbi and pa, we base on the SLA describing
subscribing resources between them. According to the information model [79],
the SLA request is described by INDL semantic concepts and synchronized upon
provisioning and re-planning. We then can use SPARQL and policy generation
techniques to extract constrained contexts and update to the trusted root list, which
is similar to policy generation in Section 2.5.

50 MULTI-TENANT ACCESS CONTROL FOR INTERCLOUD

Pa domain

Pbi domain

Pa Authz Service

Pbi Authz Service

Pbi Resource Service

(1) authz request

(2) grant token

(3) grant token

(4) access token
User

(5) request | access token

(8)response

ca i

ca i

(6) validate
access token

(7) validation
decision

Figure 3.2: Exchanging tokens in Intercloud: grant token and access token

3.3.2 Token Exchange in Intercloud

The distributed authorization workflow can be the push sequence as in Figure 3.2.
It requires that the user needs to have an access token to verify it’s allowed to access
the resources at remote provider pbi ’s domain. The grant token is initially issued
by the first provider in the chain pa as the consent by pa to subsequent provider
pbi . The pbi must validate the token issuer pa, then evaluate the request attribute
embedded inside the token against its policies. If the decision is positive and the
target resource is located in its local domain, pbi issues an access token allowing
the user to access it. Otherwise, if the target resource is located at another domain,
pb issues another grant token to user for further distributed authorization process.
In this sequence, the communication between authorization services at providers is
relayed through the user via exchanging grant tokens and access token.

3.3.2.1 Grant Token

The grant token needs to have the following information:

• Request content approved by the issuer, who allows the request to act on
behalf of the issuer: it usually is the vector of attributes including issuer’s
subject attributes.

• The approval proof of the issuer: this proof can be enforced by the digital
signature mechanism of the issuer, either based on a digital signature us-
ing public cryptography or a message authentication code algorithm using
symmetric cryptography.

EXTENDED MODEL FOR MULTIPLE PROVIDERS 51

• The lifetime limitation.

• The proof-of-procession of the user, so the issued access token is not a bearer
token and only targets for the user. It’s either the user’s public key, or the
session shared secret key generated by the user.

For the public key cryptography approach, we propose the grant token issued
by pa and returned to the user u as follows:

X := {Xpa , Xr, Xe}
m := X|t|pku
granttoken := SK(skpa ,m) (3.1)

with SK(skpa
,m) is the annotation that the message m is signed by secret key

skpa
of the provider pa. The pku is the user’s public key, t is the lifetime and X is

the vector of attribute request containing pa’s attributes. This grant token allows
user to request on behalf of pa to the remote domain at pb.

For the symmetric key cryptography approach, the grant token has the following
information:

m := X|t|ku
hmac := MAC(Kpa,pbi

,m)

ek := E(Kpa,pbi
, ku)

granttoken := {X|t|ek|hmac} (3.2)

with Kpa,pbi
is the shared secret key between the provider pa and pbi ; MAC is a

message authentication code algorithm; ku is the session key of the user; ek is the
encryption of ku by the Kpa,pbi

.

3.3.2.2 Access Token

According to the public key approach in Formula (3.1), the access token issued by
pbi to the user u is constructed as follows:

accesstoken := SK(skpbi , tid|t) (3.3)

with t is the issuing timestamp, tid is the identifier to the cached authorization
session stored at pbi , which contains access token lifetime, user’s associated key
pku and the involved attributes X.

With symmetric key approach in Formula (3.2), the access token contains
following:

accesstoken := E(ku, tid|t|stoken) (3.4)

ku,pbi = ku|stoken (3.5)

with stoken is the secret generated value by pbi shared to the user. The consequent
requests from the user to pbi are signed with the session key ku,pbi

.
After having the access token, user accesses the protected resource at pbi . Upon

receiving user’s request with access token, the pb’s resource service validates the
access token with either pkbi for public key scheme, or ku,pbi

for symmetric key
scheme. If comparison between the request with involved attributes X is positive,
the service will serve the request.

52 MULTI-TENANT ACCESS CONTROL FOR INTERCLOUD

3.4 Implementation and Evaluation

3.4.1 Implementation Overview

Our exchanging token approach is implemented in the TokenService of the DACI.
The service has a public/private key-pair used for issuing and validating tokens.
Upon registration, each tenant is bound with a separate public/private key-pair
used for Intercloud communication scenario as described in Section 3.1. In our key
management implementation, we choose the RSA algorithm with 2048 bits key
length. For digital signature used in issuing tokens, we define the token structure
in XML schema and use the XML digital signature standard [92] implemented in
the Apache XML security library [93]. We choose RSASSA-PKCS1-v1.5 signature
scheme with SHA-1 algorithm [94]. DACI uses Bouncy Castle v1.49 [95] as the
Java cryptographic provider.

We deploy DACI instances with TokenService in separate VMs having two virtual
cores and 4096 MB RAM. Each VM represents a cloud provider running DACI with
the sample datasets in Table 2.4 as in Chapter 2.

In our inter-provider test scenarios, we have two DACIs for Pa and Pb providers,
in which Pa subscribes resources of the Pb as described in Section 3.2. PEPs at
the user side of the Pa send requests to access to the resource at Pb, so DACI of
the Pa needs to evaluate its local policies prior issuing grant-tokens for further
authorization at Pb. Compared to the intra-provider scenario in the last chapter,
the token issues and validations increase overhead of the original DACI system.

3.4.2 Evaluation Results

From our experiments, the performance tests show that on average, the response
time for an authorization request with issuing grant-token is 320 ms, which is
significantly slower than the response time in the intra-provider scenario. The
overhead here mostly comes from the digital signing tokens with RSA 2048 bits key-
length for every issued token and the XML messages serialization/deserialization.
Therefore, we are developing a hybrid key management scheme in which tenants
and providers use shared secret keys in communications, which are established and
refreshed periodically based on the public/private key-pairs. The symmetric key
scheme using message authentication code could improve the system performance
significantly compared to the public key scheme.

3.5 Conclusions
In this chapter, we extend the MT-ABAC for distributed, multiple collaborative
cloud providers in hierarchy to support Intercloud scenarios with exchanging
tokens approach. In future work, we will improve key management model for
Intercloud using combining public-key and symmetric cryptography, which could
improve the system performance in the Intercloud communications using tokens.
We are planning to develop adapter layers between our DACI system using INDL

CONCLUSIONS 53

with popular cloud management systems like OpenStack, CloudStack or Eucalyptus,
thus could integrate the DACI with these systems. Regarding authorization policy
language, beside XACML in XML profile, we plan to support others as well as
supporting our DACI with legacy on-premise authorization systems.

54 MULTI-TENANT ACCESS CONTROL FOR INTERCLOUD

Chapter 4

Logical Model and Mechanisms for
XACML

This chapter is based on the following publications:

• C. Ngo, M. X. Makkes, Y. Demchenko, and C. de Laat, “Multi-data-types
interval decision diagrams for XACML evaluation engine," in Privacy, Security
and Trust (PST), 2013 Eleventh Annual International Conference on, 2013,
pp. 257–266 [47].

• C. Ngo, Y. Demchenko, and C. de Laat, “Decision Diagrams for XACML Policy
Evaluation and Management," In Computers & Security 49 (2015), pp. 1–16
[83].

4.1 Introduction
XACML is an authorization policy language in XML format based on the ABAC
model. It composes policies from set of attribute criteria joined by logical operators
to decide if authorization requests are granted. XACML is scalable in arranging
policies in the hierarchical order in the repository. The policy language also supports
delegations, obligations and advices, that makes it applicable in many areas such
as networking, grids, clouds, enterprise organization and management. However,
expansions of policies to address system scales will increase the complexity of the
repository, which drops the policies evaluation performance.

XACML policies has complex structures containing a sophisticated logical model
as follows:

• Policies are organized hierarchically in a policy-tree with rules, policies and
policy-sets elements. The tree contains internal nodes and external nodes. An
internal node can either be a policyset or a policy. Children of a policyset node
can be other policysets or policies. Children of a policy are rules, which are
external nodes. Because children can produce conflicting decisions, parent
nodes can resolve them by predefined combining algorithms.

55

56 LOGICAL MODEL AND MECHANISMS FOR XACML

• Policy decisions are not only permit and deny, but also other intermediate
values to handle error and un-matched situations such as not-applicable, inde-
terminate decisions (see section 4.3). It means that operations on combining
policies’ decisions cannot be derived from binary logical operators. They
should be defined in multi-valued logical domains.

• Not all attributes are processed equally, some of them are marked as critical
(with the flag “MustBePresent=true”): during the evaluation, the missing
of these attributes should yield indeterminate values rather than the not-
applicable.

• Because policies have their own predicates to match with requests, attribute
comparisons are scattered in the policy-tree. Thus, typical implementations
discussed in [96] often have redundancies in evaluations: an attribute may
be compared multiple times in different policy nodes.

With these characteristics, there are challenges to propose high performance
policy evaluation solutions or resolve policy analysis and management problems.
We need practical mechanisms that not only can gather predicates and efficiently
reduce them in aware of combining algorithms, but also guarantee multi-valued
logical semantics of the XACML.

To facilitate the high performance policy evaluation mechanism in the access
control systems for clouds using XACML [48, 49, 97], from recent policy evaluation
approaches [98, 99], and state-of-the-art of XACML engines performance [96], in
this chapter we analyze the logic behind XACML standard and propose a practical
decision diagram mechanism. It includes interval partition processing, MIDDs and
their combination algorithms, which are then applied to design a high performance
policy evaluation engine in Chapter 5. Our contributions in this chapter are as
follows:

• Analyze the logic of XACML components evaluation, which essentially is a
many-valued logic system with equivalent operators on different domains.

• Define the MIDD and X-MIDD data structures definitions representing log-
ical expressions in XACML. Along with them, we define interval partition
processing and related operators, which are then used to process XACML
elements.

• Compared to related work, our approach covers most of XACML features
in XACML 3.0 [36], including continuous data-types, complex comparisons,
correctness of combining algorithm semantics, error handling and critical
attribute setting.

The proposed mechanisms can also be applied to solve XACML policy manage-
ment problems such as policy comparison, policy redundancy detection, policy
testings or authorization reverse queries.

The rest of the chapter is organized as follows. Section 4.2 reviews the related
work on policy analysis, management, integration and high performance evaluation.

RELATED WORK 57

Section 4.3 analyzes XACML logic that provides the basis for the proposed solution.
Section 4.4 formulates the approach to evaluate the complete logical expressions
using interval decision diagrams. Section 4.5 defines fundamental operations to
process intervals, partitions and decision diagrams. These materials and mecha-
nisms in this chapter can be applied to solve different policy management problems,
which are pointed out in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.2 Related Work
There are numerous prior works on access control policies that mainly focus on pol-
icy verification, analysis and testing to detect and remove redundancy [100–103].
Authors in [100] used propositional logic in XACML to identify properties of given
policies and analyze the change-impact of two policies to summarize their differ-
ences. The proposal was implemented in the Margrave project using Multi-Terminal
Binary Decision Diagram (MTBDD) [104] as the underlying mechanism. Because
of using one binary variable for each attribute-value pair, their approach is only
applicable for policies containing all predefined attribute values. In other aspect,
by modeling decisions as binary values, it omitted error use-cases handling in all
XACML evaluation semantics. Li & Tripunitara [101] and Hu & Ahn [103] proposed
methodologies to verify and correct policies under the RBAC model. Kolovski et al.
[102] used description logic to represent XACML policies and use DL reasoners for
analysis tasks such as policy comparisons, verification and querying. However, be-
cause description logic could only covers a subset of XACML, this approach did not
handle complex comparisons, indeterminate decisions handling as well as left out
one-applicable combining algorithm. Masi et al. [105] formalized the XACML 2.0
semantics and proposed an alternative syntax supporting policy composition. They
implemented a tool to compile policies into Java classes following the proposed
semantic rules, where these classed are executed to compute policy decisions.

Policy integration and composition was introduced firstly by Bonatti et al. [106].
They defined an algebra with constraints to compose and translate policies into logic
programs. However, the algebra did not bind with any practical policy language.
Mazzoleni et al. [107] proposed the policy integration preferences, which is an
XACML extension that specified how to integrate policies from different parties. In
spite of that, they did not show any applicable mechanisms for such integration.
Bruns et al. [108] attempted to use Belnap logic to formalize XACML 2.0, in which
they map four logic values to XACML policy decisions. Even that, the logic of
XACML is different from Belnap logic because the indeterminate values cannot
map to any Belnap logical value. Subsequently, [109] used D-algebra to formulate
combining algorithms in XACML 2.0. But the D-algebra did not correctly represent
indeterminate decisions: e.g., with permit-override algorithm for indeterminate-p
({p, na }) and deny ({d}), the combination should be indeterminate-dp ({p, d, na })
rather than the {p, d}. Rao et al. [110] defined a 3-value Fine-grained Integration
Algebra (FIA) which attempted to formulate operations of XACML elements via FIA
operators. They used MTBDD to represent their approach. However, the FIA could
not represent all indeterminate values and did not distinguish differences between

58 LOGICAL MODEL AND MECHANISMS FOR XACML

target and rule evaluations which operate on different domains.
To solve the problem of policy evaluation performance, in the preliminary

version [111] and later [98], Liu et al. attempted to transform policies into
decision diagrams. Their approach started with the numericalization by mapping
all attribute values into integer numbers, which was only applicable for equally
comparisons policies with predefined attribute values. Although boosting the
evaluation performance, this proposal only covered a subset of XACML policies
when did not support the complex attribute comparisons, correct indeterminate
decisions handling, critical attribute evaluation as well as obligations. Marouf et al.
[112] reordered most frequent applicable policies using clustering techniques based
on statistics from past requests, which could increase the chance in evaluating
only a subset rather than the whole policies. This technique can only improve
performance when incoming requests repeated with high probability, rather than
the uniform random requests. Moreover, reordering policies would not support
obligations handling.

The approach of Pina Ros et al.[99] extended [111] with interval techniques.
They kept original data types of attributes with more supported comparison opera-
tors. The approach used two trees: the Matching Tree (MT) is a decision diagram
built up from extracted predicates in target expressions, and the Combining Tree
(CT) is at each MT’s leaf nodes. A CT contains a subset of the policy tree with
only applicable rules or policies without Target elements. The CT evaluation fol-
lowed defined combining algorithms in the subtree. This approach is different
from [111] when it stores the subset of policy tree rather than the flat of appli-
cable rules. However, this proposal has following flaws: first, it ignored critical
attribute evaluation handling: e.g., if an attribute is missed from the request, the
evaluation will yield a indeterminate with a critical attribute predicate rather than
not-applicable. This leads to different decisions when combining with other rules,
such as with deny-override algorithm for indeterminate and deny, the outcome
will be indeterminateDP , rather than combining not-applicable and deny to deny.
Second, because the CT only contains applicable rules equivalent to the matching
path from the root of the MT, this approach could not handle error well if an
attribute in the path is missed from the request. The evaluation would be blocked
without giving any decision, while in practice, it always has a consistent answer for
a given request.

Ramli et al. [113] presented the most recent work analyzing the logic behind
XACML, in which evaluation semantics relied on operators over domains V3 and V6.
Comparing to previous work, it covered most aspects in analyzing XACML logic,
however, this approach still omitted to handle critical attribute setting, obligations
as well as did not have any applicable implementation.

4.3 Semantics of XACML Policy Components

4.3.1 Abstraction

XACML elements [36] are organized in a hierarchical order, which contains pol-
icysets, policies and rules. Each of them has a Target expression as the criteria

SEMANTICS OF XACML POLICY COMPONENTS 59

for incoming requests. The returned decision is either defined in the rule’s “effect"
property, or combined decisions of children rules, policies or policysets.

Attributes in XACML have different data types. Without loss of generality, we
assume a XACML attribute domain Di can be normalized to either R or a sub-
domain of R. So we can say that Di is the totally ordered domain representing a
continuous data type.

A XACML request X = {x1, x2, . . . xn} is the set of attribute values, each item
xi ∈ Di with Di is an XACML attribute domain.

XACML specification [36] describes elements in XML using XML Schema Defini-
tion (XSD). For short representation purpose, we abstract main XACML elements
that our logical analysis focuses in Table 4.1 using Backus-Naur Form notation.

The <object> in obligation and advice represents a general object. The <attr-
id> identifies an attribute ai ∈ Di, the <attr-value> specifies a constant value
vi ∈ Di.

The combining algorithms are in the Table. 4.2. They define how to combine
children’s decisions to the policy or policyset result.

Evaluation values of Match, AllOf, AnyOf, Target and Condition elements are
summarized in Table 4.3, while the decision values of Rule, Policy and Policyset
elements are in Table 4.4. XACML extends decision values with “not-applicable"
and “indeterminate", compared to previous policy languages with only “permit" an
“deny" decisions. The “not-applicable" means that the request does not match with
the rules or policies, while the “indeterminate" values indicate that some errors
may occur during evaluation (e.g., requests miss the critical attribute, errors in
parsing policies). Because of this feature, XACML essentially is as a many-valued
logic policy language, while prior work did not analyze and solve following this
direction [98–100, 111].

A sample XACML policy is shown in the Listing 4.1. Originally it is the XML
documents following XACML schema standard [36]. However in this example,
we illustrate policies and rules as JSON objects for short representation. Target
elements in the example are expressed as logical expressions.

In the sample policy, the ‘vol’ is the volume attribute, ‘p’ is the price attribute
and ‘t’ is the time attribute. In the rule R0, ‘vol’ attribute is marked as critical by
the underline, otherwise it is optional.

4.3.2 Predicate Elements

4.3.2.1 Match element

The XACML Match element is composed from a tuple of (match-id, v, x) where the
match-id is a two-operand predicate Boolean function, v is the attribute value as
the first operand and x is the attribute-id as the second one.

The match evaluation returns one of values in Table 4.3 as follows:

• If the comparison returns true, the result is “Matched".

• If there’s either no attribute x found in the request, or the comparison is false,
the result is “No-matched".

60 LOGICAL MODEL AND MECHANISMS FOR XACML

Table 4.1: XACML abstract syntax

〈Policyset〉 ::= (〈target〉, 〈Policy-list〉, 〈combine-algo〉)

〈Policy-list〉 ::= 〈Policy-item〉 | 〈Policy-item〉 〈Policy-list〉

〈Policy-item〉 ::= 〈Policy-set〉 | 〈Policy〉

〈Policy〉 ::= (〈target〉 , 〈Rule-list〉 , 〈combine-algo〉)

〈Rule-list〉 ::= 〈Rule〉 | 〈Rule〉 〈Rule-list〉

〈Rule〉 ::= (〈target〉 , 〈condition〉 , 〈effect〉 , 〈obligation-exprs〉 , 〈advice-exprs〉)

〈target〉 ::= 〈anyof-list〉

〈anyof-list〉 ::= | 〈anyof〉 〈anyof-list〉

〈anyof〉 ::= 〈alloff-list〉

〈allof-list〉 ::= 〈allof〉 | 〈allof〉 〈allof-list〉

〈allof〉 ::= 〈match-list〉

〈match-list〉 ::= 〈match〉 | 〈match〉 〈match-list〉

〈match〉 ::= (〈match-id〉 , 〈attr-value〉 , 〈attr-id〉)

〈obligation-exprs〉 ::= | 〈obligation-expr〉 〈obligation-exprs〉

〈obligation-expr〉 ::= (〈object〉, 〈fulfill-on〉)

〈fulfill-on〉 ::= 〈effect〉

〈advice-exprs〉 ::= | 〈advice-expr〉 〈advice-exprs〉

〈advice-expr〉 ::= (〈object〉, 〈applies-to〉)

〈applies-to〉 ::= 〈effect〉

〈match-id〉 ::= eq | ne | gt | lt | ge | le

〈combine-algo〉 ::= po | do | fa | ooa | pud | dup

〈effect〉 ::= ‘‘permit’’ | ‘‘deny’’

〈request〉 ::= 〈attribute-list〉

〈attribute-list〉 ::= 〈attribute〉 | 〈attribute〉 〈attribute-list〉

〈attribute〉 ::= (〈attr-id〉, 〈attr-value〉)

SEMANTICS OF XACML POLICY COMPONENTS 61

Table 4.2: XACML combining algorithms

Combining algorithms Annotations
Permit-override po
Deny-override do
First-applicable fa

Only-one-applicable ooa
Permit-unless-deny pud
Deny-unless-permit dup

Table 4.3: XACML evaluation values for elements: Match, AllOf, AnyOf, Target and
Condition

Evaluation values Annotations
Matched T

No-matched F
Indeterminate IN

Table 4.4: XACML decision values for Rule, Policy and Policyset elements

Decision values Annotations
Permit P
Deny D

NotApplicable N
Indeterminate{P} INP

Indeterminate{D} IND

Indeterminate{PD} INPD

• If there’s no attribute x found in the request, and this attribute is marked
as critical with the flag MustBePresent=true, the result is “indeterminate",
meaning that an error occurs.

Denoting the set VM := {T, F, IN}, the match evaluation can be represented
as the function mapping from an attribute domain Di to match values VM :

µ(xi) : Di → VM (4.1)

4.3.2.2 AllOf, AnyOf and Target elements

The AllOf element is a list of Match items joined by the ∧ operator. Because the
Match items return values in VM domain, the ∧ operator is extended from the
regular “AND" boolean operator:

k∏
i=1

mi := m1 ∧m2 · · · ∧mk =

 T if ∀i ∈ [1, k],mi = T
F if ∃i ∈ [1, k],mi = F
IN if ∀i ∈ [1, k],mi 6= F ;∃j ∈ [1, k],mj = IN

(4.2)

The AnyOf element is a list of AllOf items joined by the ∨ operator, which is

62 LOGICAL MODEL AND MECHANISMS FOR XACML

Listing 4.1: Sample XACML policies
1 P o l i c y P0 : { combine−algo : po ,
2 t a r g e t : (vol ≥ 100) ∧ (vol ≤ 500) ,
3 rule− l i s t : [R1, R2] ,
4 }
5 Rule R1 : { e f f e c t : permit ,
6 t a r g e t : [(100 ≤ vol ≤ 150) ∧ (12 ≤ t ≤ 17) ∧ (3 ≤ p ≤ 4)]∨
7 [(300 ≤ vol ≤ 500) ∧ (1 ≤ p ≤ 2)]∨
8 [[(100 ≤ vol ≤ 150) ∧ (6 ≤ t ≤ 9) ∧ (1 ≤ p ≤ 2)] ,
9 o b l i g a t i o n s : [{O1, permit}]

10 }
11 Rule R2 : { e f f e c t : deny ,
12 t a r g e t : [(vol = 100) ∧ (t = 17)] ∨ [(100 ≤ vol ≤ 300) ∧ (t = 9)] ∨ [(vol = 500) ∧ (t ≥ 12)] ,
13 o b l i g a t i o n s : [{O2, deny}]
14 }

defined as:

k∐
i=1

ai := a1 ∨ a2 · · · ∨ ak =

 T if ∃i ∈ [1, k], ai = T
F if ∀i ∈ [1, k], ai = F
IN ∀i ∈ [1, k], ai 6= T, ∃j ∈ [1, k], aj = IN

(4.3)

The Target element joins AnyOf elements by the ∧ operator like in Eq. (4.2). In
other aspect, the Target evaluation over incoming request X ∈ D1 ×D2 × . . . Dn is
also defined as the function τ :

τ(X) : D1 ×D2 × . . . Dn → VM (4.4)

The XACML defines that an empty Target element returns the T value.
From Eq. (4.2) and Eq. (4.3), we can see that these operators along with the

set VM form a lattice (VM ,≤) with the order F ≤ IN ≤ T ; ∧ is the meet operator;
∨ is the join operator.

4.3.2.3 Condition element

The Condition element represents a complex logical expression evaluated by the
set of attributes X in the request to return a value in the VM domain. Without loss
of generality, we can denote the Condition element as the function κ:

κ(X) : D1 ×D2 × . . . Dn → VM (4.5)

4.3.3 Rules and Policies

4.3.3.1 Rule Evaluation

The rule R = {t, c, e} in which t, c, e are Target, Condition and Effect elements,
respectively, is evaluated against a request X. The decision is based on the com-

SEMANTICS OF XACML POLICY COMPONENTS 63

bination of Target and Condition results, along with the effect value as in Table
4.5.

Table 4.5: XACML rule evaluation specification

Target Condition Rule Value
T T Effect e
T F N
T IN INP if e = P , IND if e = D
F any value N
IN any value INP if e = P , IND if e = D

Denoting the set E := {P,D} containing effect values and the set VR :=
{P,D,N, INP , IND, INDP } having decision values from Table 4.4, the rule evalu-
ation can be represented as follows:

R(t, c, e) : VM × VM × E → VR (4.6)

in which t, c ∈ VM are the results of the Target and the Condition evaluations,
respectively; e ∈ E is the Effect value. According to Table 4.5, the function R(t, c, e)
is evaluated as:

R(t, c, e) =

P if t ∧ c = T and e = P
D if t ∧ c = T and e = D
N if t ∧ c = F
INe otherwise

(4.7)

The denotation INe means the value INP if e = P and IND if e = D.

4.3.3.2 Policy and Policyset Evaluations

Policy and Policyset evaluations are similar. Their decisions are relied on the Target
element and the combined decision of their children using a combining algorithm.
According to the XACML 3.0 standard, their evaluations are summarized in Table
4.6.

Table 4.6: XACML Policy/Policyset evaluation specification

Target Combining-algo decisions Policy/Policyset decisions
T any value specified by the combining algorithm
F any value N

IN

N N
P INP

D IND

INDP INDP

INP INP

IND IND

Denoting a policy P = {t, ca, {Ri}ki=1} in which t is the evaluation result of the
policy’s target: t = τ(X) ∈ VM ; ca is a combining algorithm in Table 4.2 and Ri is
a child rule of the policy. The policy evaluation P is represented as the function:

64 LOGICAL MODEL AND MECHANISMS FOR XACML

P (t, ωca(Ri)
k
i=1) : VM × VR → VR (4.8)

which ωca(Ri)
k
i=1 ∈ VR is the combining function of children decisions in Section

4.3.4.
According to Table 4.6, denoting ψ = ωca(Ri)

k
i=1, the function in Eq. (4.8) is

evaluated as:

P (t, ψ) := t Z ψ =

ψ if t = T
N if t = F or t = IN, ψ = N
INP if t = IN and ψ ∈ {P, INP }
IND if t = IN and ψ ∈ {D, IND}
INDP if t = IN and ψ = INDP

(4.9)

Given a policyset PS = {t, ca, {Pi}ki=1}, the evaluation also relies on Eq. (4.9)
to combine its policies’ decisions.

4.3.4 Combining Algorithms

XACML 3.0 combining algorithms operate on the VR domain, which are used to
form the ancestor’s decision according to Eq. (4.9). Denoting a combining operator
as the ωca, in which ca is the identifier of an algorithm in Table 4.2:

wca(v1, v2, . . . vk) : V
k
R → VR (4.10)

with vi ∈ VR is the child decision.
Combining functions in Table 4.2 are defined as follows:

ωpo(v1, v2, . . . vk) =

P if ∃vi = P
D if ∀i ∈ [1, k], vi /∈ {INP , INDP } and ∃vj = D
N if ∀i ∈ [1, k], vi = N
INP if ∀i ∈ [1, k], vi ∈ {INP , N},∃vj = INP

IND if ∀i ∈ [1, k], vi ∈ {IND, N},∃vj = IND

INDP otherwise
(4.11)

ωdo(v1, v2, . . . vk) =

P if ∀i ∈ [1, k], vi /∈ {IND, INDP } and ∃vj = P
D if ∃vi = D
N if ∀i ∈ [1, k], vi = N
INP if ∀i ∈ [1, k], vi ∈ {INP , N},∃vj = INP

IND if ∀i ∈ [1, k], vi ∈ {IND, N},∃vj = IND

INDP otherwise
(4.12)

MULTI-DATA-TYPES INTERVAL DECISION DIAGRAMS 65

ωfa(v1, v2, . . . vk) =

P if ∃vi = P and ∀j ∈ [1, i), vj /∈ {P,D}
D if ∃vi = D and ∀j ∈ [1, i), vj /∈ {P,D}
N if ∀i ∈ [1, k], vi = N
IN if ∀i, vi ∈ {N, IN} and ∃vj = IN

(4.13)

ωooa(v1, v2, . . . vk) =

P if ∃!vi = P and ∀j 6= i, vj = N
D if ∃!vi = D and ∀j 6= i, vj = N
N if ∀i, vi = N
IN otherwise

(4.14)

ωpud(v1, v2, . . . vk) =

{
D if ∃i ∈ [1, k], vi = D
P otherwise (4.15)

ωdup(v1, v2, . . . vk) =

{
P if ∃i ∈ [1, k], vi = P
D otherwise (4.16)

We can see that for XACML elements, the Match, AllOf, AnyOf and Target
elements operate over VM domain, while the rule, policy and policyset evaluations
use operators in VR domains. In the next section, we define data structures and
algorithms representing such elements and related operators, which facilitate the
XACML evaluation implementation.

4.4 Multi-data-types Interval Decision Diagrams

4.4.1 Introduction

Binary Decision Diagram (BDD) [114] and its extensions (e.g., Interval Decision
Diagram (IDD) [115], Multi-Terminal Interval Decision Diagram (MTIDD) [116])
are popular in model checking, verification, firewall and policy analysis. However,
they are not fully suitable in XACML processing. In their approaches, attribute
data-types limit in discrete domains [115] or only using equality comparisons [98].
In general, actual attributes use continuous data-types with different comparable
operators.

It is also possible to apply BDD techniques by using a variable for each attribute-
value pair in the proposal of [100]. However, the depth of decision diagrams will be
the product of the number of unique values and the number of attributes, therefore
time and space complexities are much higher than our approach.

In this section, we construct a decision diagram based approach to implement
operators described in the previous section efficiently. We define MIDD data
structures with equivalent operators to meet such requirements. First, the section
will revisit the basic logical function decomposition for continuous variables, which
is represented by the decision diagram G(V,E). However, to match it with our
functions over VM and VR domains in section 4.3, we need to extend the basic
decision diagram into equivalent MIDD and X-MIDD diagrams. Then, we transform
operators in section 4.3 to algorithms over MIDD and X-MIDD as in the next section.

66 LOGICAL MODEL AND MECHANISMS FOR XACML

4.4.2 Logical Function Decomposition

Denoting a multi-variable logical function with following signature:

f : D1 ×D2 . . .×Dn → {true, false} (4.17)

where Di is a totally ordered domain representing a continuous data-type in
XACML. Denoting vector X = (xi|i = 1..n, xi ∈ Di), Eq. (4.17) is also seen as:
f(X)→ {true, false}

Definition 4.1 (Data interval). A data interval I ⊆ Di is a range of values in the
domain Di which is formed by two endpoints. It can either be an open, closed or
half-closed interval, depending on whether endpoints are included in the interval.

Example: The sample policy (Listing 4.1) has different intervals for the ‘vol’
variable: in the rule R1, vol ∈ [100, 150] or vol ∈ [300, 500]; or in the policy P0,
vol ∈ [100, 500].

Definition 4.2 (Interval partition). An interval partition P is a set of disjoint
intervals in the domain Di: P = {I|I ⊆ Di : ∀Ii, Ij ∈ P, i 6= j, Ii ∩ Ij = ∅}

Example: If we want to represent the ‘vol’ variable having values in the range
[100, 150] or [300, 500], we define vol ∈ {[100, 150], [300, 500]}. It is the interval
partition containing disjoint intervals.

Given an interval partition P , the denotation xi ∈ P means that ∃I ∈ P , s.t
xi ∈ I.

We define a boolean function hxi(P) as:

hxi(P) =

{
0 if xi /∈ P
1 if xi ∈ P

(4.18)

Function in Eq. (4.17) is called independent with xi ∈ X in the interval
partition P when:

∀a, b ∈ P, f(X|xi:=a) = f(X|xi:=b) (4.19)

In this case, we denote fxP
i

as the partial function:

fxP
i
:= f(x1..., xi−1, b, xi+1, .., xn)|∀b∈P (4.20)

Example: The function f below is said to be independent with vol in the partition
P = {[100, 150]}:

f(vol, t, p) = (100 ≤ vol ≤ 150) ∧ (12 ≤ t ≤ 17) ∧ (3 ≤ p ≤ 4)

So the partial function fvol[100,150] = (12 ≤ t ≤ 17) ∧ (3 ≤ p ≤ 4).
Given a domain Di, the set of partitions P(Di) = {P1, P2..., Pdi

} is called to
cover the domain Di when

Di =
⋃

P∈P(Di)

(⋃
I∈P

I

)
(4.21)

MULTI-DATA-TYPES INTERVAL DECISION DIAGRAMS 67

The cover P(Di) is disjoint if there’s no common interval between them:

∀i, j ∈ [1, di], i 6= j : Pi ∩ Pj = ∅ (4.22)

According to Boole-Shannon expansion, the function f can be decomposed to
set of partial functions in respect of variable xi against a disjoint, covered partition
P(Di)

f(X) =
∨

P∈P(Di)

hxi(P) ∧ fxP
i

(4.23)

Example: With the example function f above, we define the Boolean function
h
[100,150]
vol = 1 if vol ∈ [100, 150], otherwise h[100,150]vol = 0. So the function f can be

represented by the decomposition:

f(vol, p, t) = h
[100,150]
vol ∧ fvol[100,150]

We can represent the Boolean function h(vol) by a simple decision diagram
with one node having variable ‘vol’, an out-going edge with the predicate [100, 150]
as illustrated in the Figure 4.1.

vol

[100, 150]

fvol
[100, 150]

Figure 4.1: An example of the function decomposition

Each partial function fxP
i

can also be decomposed in respect to other variables,
until it is independent from ∀xi ∈ X. We can symbolize f as a decision diagram
G(V,E) with following properties:

• G is a rooted, directed acyclic graph (DAG) with the node set V having two
types of nodes: internal nodes containing variables and leaf nodes containing
boolean values.

• The internal node vxi
∈ V has a variable xi ∈ Di of the function f . Each

out-going edge exi
∈ E represents the function in Eq. (4.18) over a partition

Pxi ∈ P(Di). It states the clause: xi has the value in the range of the partition
Pxi .

• Each sub-graph of the node vxi
is a partial function fxP

i
in Eq. (4.23).

The Figure. 4.2 illustrates an example of G(V, E).

68 LOGICAL MODEL AND MECHANISMS FOR XACML

Xi

fxi
P1

f(X)

P1 P2
Pk

...fxi
P2

fxi
Pk

Figure 4.2: A decision diagram sample for the function decomposition

4.4.3 Multi-data-type Interval Decision Diagrams

The DAG G(V, E) can only represent a boolean function in Eq. (4.17). In Section
4.3, Match, AllOf, AnyOf and Target elements have the signature in Eq. (4.24),
while Rule, Policy and Policy set elements have the signature in Eq. (4.25).

f : D1 ×D2 . . .×Dn → VM (4.24)

f : D1 ×D2 . . .×Dn → VR (4.25)

We extend G(V, E) to MIDD and X-MIDD representing Eq. (4.24) and Eq. (4.25)
respectively.

Definition 4.3 (MIDD). MIDD is the G(V, E) representing a function having signa-
ture (4.24) over the VM domain:

• Each internal node m in the MIDD is the tuple of (x, s, C) in which x is the
node variable, s is the state value: s ∈ {F, IN}. If x is marked as critical,
s = IN , otherwise s = F .

• The C is the set of tuples (p, c) ∈ C, each represents an out-going edge
containing a reduced interval partition p connecting m to a descendant node
c.

• The descendant node c could either be another internal node or the external
node containing T value. It is called the T-leaf-node.

• The evaluation of a request X against a MIDD is the traversal from the root
node: at an internal node (xi, s, C), an out-going edge (p, c) ∈ C is selected if
the value xi of the request X belongs to the interval partition p: xi ∈ p.

INTERVAL PROCESSING AND DECISION DIAGRAM OPERATIONS 69

• In the evaluation process, if @xi ∈ X, the returned value is the state of the
current internal node, which is either F or IN . The evaluation returns T if it
reaches the T-leaf-node.

Examples of MIDDs can be found in the Figure 4.3.

a) MIDD of the R1's target

time
(F)

price
(F)

[100, 150]

[6,9][12,17]

T

[3,4]

price
(F)

[300, 500]

[1,2]

time
(F)

[100]

time
(F)

[150, 300]

[17] [9]

time
(F)

[500]

[12]

b) MIDD of the R2's target

T

vol
(F)

vol
(F)

(a) MIDD of the R1’s Targeta) MIDD of the R1's target

time
(F)

price
(F)

[100, 150]

[6,9][12,17]

T

[3,4]

price
(F)

[300, 500]

[1,2]

time
(F)

[100]

time
(F)

[150, 300]

[17] [9]

time
(F)

[500]

[12]

b) MIDD of the R2's target

T

vol
(F)

vol
(F)

(b) MIDD of the R2’s Target

Figure 4.3: Sample MIDDs of the Target elements

Definition 4.4 (X-MIDD). X-MIDD is the G(V, E) representing a function having
signature (4.25) over the VR domain:

• An internal node m is the tuple of (x, s,O, C): the state s ∈ VR; O contains
list of obligations and advices matching with s if s ∈ {P,D}, otherwise it is
empty.

• An external node contains a policy evaluation result, which can be represented
as a tuple of (s,O) with s and O are similar to the internal node.

• The evaluation of the X-MIDD can be defined recursively in the Algorithm
4.1.

Examples of X-MIDDs can be found in the Figure 5.1.
We see that functions over VR and VM domains in section 4.3 have their set

of operators. To facilitate the representation of such functions with MIDD and
X-MIDD, we build equivalent algorithms in the next section.

4.5 Interval Processing and Decision Diagram Operations
This section defines interval processing and MIDD composition operations, which
are used to create MIDDs from XACML elements.

70 LOGICAL MODEL AND MECHANISMS FOR XACML

Input: Request X and the X-MIDD with the root m
Output: Evaluation decision

1 begin
2 if (m.x /∈ X) then
3 return (m.s,m.O);
4 else
5 foreach ((p, c) ∈ m.C) do
6 if (X[m.x] ∈ p) then
7 return x_eval(X, c);
8 end
9 end

10 return (m.s,m.O);
11 end
12 end

Algorithm 4.1: X-MIDD evaluation: x_eval function

4.5.1 Interval Partition Operations

Definition 4.5 (Reduced interval partition). A reduced interval partition has least
number of intervals compared to others having the same data ranges.

The reduction process of an interval partition is as follows: we find and combine
intervals having adjacent ranges repeatedly until no adjacent-range interval is found.
The result is the reduced interval partition.

While approach in [115] can only be used for integer data-type, our following
definitions are more general and can support continuous data-types. Given two
reduced interval partitions P1 and P2, we define operations as follows:

Definition 4.6 (Union). P = P1 g P2 has below properties:

• P is a reduced interval partition.

• All values belong to either partitions P1 or P2 also belong to P : ∀v ∈ P1 ∪
P2, v ∈ P

Definition 4.7 (Intersect). P = P1 f P2 has the following properties:

• P is a reduced interval partition.

• P is composed from all common values of P1 and P2: ∀v ∈ P1 ∩ P2, v ∈ P

Definition 4.8 (Complement). P = P1 � P2 is an interval partition that:

• P is a reduced interval partition.

• It contains values of P1 but not P2: ∀v ∈ P1 \ P2, v ∈ P

For example, with P1 = {[−3, 4.5], [6.3, 8]}, P2 = {(2, 5.1], (7.5, 9]}, we have:

• P1 g P2 = {[−3, 5.1], [6.3, 9]}

• P1 f P2 = {(2, 4.5], (7.5, 8]}

• P1 � P2 = {[−3, 2], [6.3, 7.5]}

INTERVAL PROCESSING AND DECISION DIAGRAM OPERATIONS 71

4.5.2 MIDD Operations

Given two functions f1 and f2 following the signature (4.24), we define conjunc-
tive and disjunctive join algorithms representing operators in (4.2) and (4.3),
respectively.

Variable ordering can affect the complexity of the MIDD, that we leave it for
future work. Currently we choose an order in which variables appear in the policies.
In the MIDD, the variable orders are lowest at the root and higher at deeper levels.

Let’s call m1 and m2 are MIDDs for functions f1 and f2, the combining operators
are shown in Algorithm 4.2 and 4.3, respectively.

We denote m.P as the union of all partitions of node m’s out-going edges:
m.P := g{∀p, (p, c) ∈ m.C}

4.5.2.1 MIDD Conjunctive Join

The algorithm representing conjunctive join operation in Algo. 4.2 is as follows:

• If either m1 or m2 is a T-leaf-node, the result is the other.

• Otherwise, if roots of m1 and m2 have the same variable, the root m of the
result MIDD contains the same variable. The node state of m is the result of
joining m1 and m2 states by the ∧ operator. Child nodes of m are created by
conjunctively joining children of m1 and m2 with equivalent intervals.

• If two inputs do not have the same variable, the children of the lower order
(say l) are conjunctively joined with the higher order (say h) to create the
descendants of the result MIDD.

4.5.2.2 MIDD Disjunctive Join

The Algorithm 4.3 for disjunctive join operator is quite similar. We add a new edge
as the complement of all union-ed l’s partitions to connect to h, meaning that if the
value of l.x in the request does not satisfy with l.P predicate, then the decision is
h. A special value ⊥ is defined to handle the situation if the variable l.x does not
exist in the request X, the evaluation can traverse via this edge (lines 21-22).

In the Figure 4.4, we have three MIDDs constructed from parts of the R1’s target
expression in Listing 4.1. Applying the Algorithm 4.3, we have the combined MIDD
representing the target expression of the rule R1 in Figure 4.3a. We note that the
critical attribute setting of the variable ‘vol’ in the first MIDD is transformed into
the ‘IN’ state. However, in the disjunctive combination the result has the ‘F ′ state
due to the operation in the line 5 following Eq. (4.3): F ∨ IN → F

4.5.3 MIDD to X-MIDD Transformation

With conjunctive and disjunctive join algorithms, we can compose MIDDs repre-
senting logical expressions in Target and Condition elements. In the rule evaluation,
we need to transform a MIDD over VM domain into a X-MIDD over VR based on
(4.7) as follows:

72 LOGICAL MODEL AND MECHANISMS FOR XACML

Input: Two MIDDs : m1 and m2

Output: Conjunctive join m = m1 ∧m2

1 begin
2 if (any mi is a T-leaf-node) then
3 return other mj ;
4 else if (m1.x ≡ m2.x) then
5 s← m1.s ∧m2.s;
6 m← (m1.x, s, C := ∅);
7 P ← m1.P fm2.P ;
8 foreach (interval I ∈ P) do
9 c← m1.C[I] ∧m2.C[I]);

10 p← {I};
11 m.C ← m.C ∪ (p, c);
12 end
13 else
14 l← mi that has lower variable order;
15 h← mj that has higher variable order;
16 m← (l.x, l.s, C := ∅);
17 foreach ((p, c) ∈ l.C) do
18 c′ ← c ∧ h;
19 m.C ← m.C ∪ {(p, c′)};
20 end
21 end
22 return m;
23 end

Algorithm 4.2: The MIDD conjunctive join algorithm

• Join Target and Condition MIDDs using ∧ operator.

• Replace the T-leaf-node by the decision-leaf-node containing (e,O): e is the
rule’s effect, O contains applicable obligations and advices.

• For each internal node m := (x, s, C), we map the state m.s from {F, IN} to
VR as follows:

− If m.s = F , the new state is N .

− If m.s = IN , the new state is INe with e is the rule’s effect.

In [47], the critical attribute handling was implemented by the similar trans-
forming function from MIDD to X-MIDD. However it required that critical settings
of the same attribute in match expressions must be identical, which are either
critical or non-critical. In this paper, we improve by the definition 4.3 in which
the state value s can store critical settings of match expressions. This state value
is then handled by all MIDD algorithms in section 4.5.2 and the transformation
process from MIDD to X-MIDD.

4.5.4 X-MIDD Operations

Policy evaluation logic and XACML combining algorithms in sections 4.3.3.2 and
4.3.4 require operations over X-MIDDs, which are represented in following algo-
rithms:

INTERVAL PROCESSING AND DECISION DIAGRAM OPERATIONS 73

Input: Two MIDDs : m1, m2

Output: Disjunctive join m = m1 ∨m2

1 begin
2 if (any mi is a T-leaf-node) then
3 return T-leaf-node;
4 else if (m1.x ≡ m2.x) then
5 s← m1.s ∨m2.s;
6 m← (m1.x, s, C := ∅);
7 P ← m1.P gm2.P ;
8 foreach (interval I ∈ P) do
9 c← m1.C[I] ∨m2.C[I];

10 p← {I};
11 m.C ← m.C ∪ {(p, c)};
12 end
13 else
14 l← mi that has lower variable order;
15 h← mj that has higher variable order;
16 m← (l.x, l.s, C := ∅);
17 foreach ((p, c) ∈ l.C) do
18 c′ ← c ∨ h;
19 m.C ← m.C ∪ {(p, c′)};
20 end
21 p′ ← ({(−∞,+∞)} � l.P) g {⊥} ;
22 m.C ← m.C ∪ {(p′, h)};
23 end
24 return m;
25 end

Algorithm 4.3: The MIDD disjunctive join algorithm

4.5.4.1 Join Target with a Combined Children X-MIDD

The Algorithm 4.4 for policy evaluation Eq. (4.9) is almost similar to the MIDD
conjunctive operator (Algorithm 4.2), with the differences that the join ∧ is replaced
by the Z operator.

4.5.4.2 Join X-MIDDs using XACML Combining Operators

Combining operators in Section 4.3.4 are used to join X-MIDDs, which are imple-
mented in the Algorithm 4.5.

In the algorithm, if both m1 and m2 are decision-leaf-nodes, their decisions are
combined using ωca operator with matching obligations and advices.

Otherwise, if roots of m1 and m2 have the same variable, the root of new
X-MIDDalso contains this variable. The default returned decisions from m1 and
m2 are combined using ωca. Its children is the combination of each of m1 and m2

children, respectively, aligned with each interval in the union interval partition
P = m1.P gm2.P .

If a mi (say l) has lower variable order than the other (say h), we combine h
with each child of l and add the output as the descendant of result MIDD m. We
also add a new edge as the complement of all union-ed l’s partitions to connect to
h, meaning that if the value of l.x in the request does not satisfy with l.P predicate,

74 LOGICAL MODEL AND MECHANISMS FOR XACML

vol
(IN)

[100, 150]

t
(F)

[12, 17]

T

p
(F)

vol
(F)

[300, 500]

p
(F)

[1, 2]

T

vol
(F)

[100, 150]

t
(F)

T

p
(F)

[6, 9]

[3, 4] [1, 2]

Figure 4.4: MIDDs of the R0 target expression

Input: A MIDD m and a X-MIDD m
Output: A joined X-MIDD: m′ = m Zm

1 begin
2 if (m is a T-leaf-node) then
3 return m;
4 end
5 if (m.x ≡ m.x) then
6 s← m.s Zm.s;
7 O ← (s ∈ {P,D}) ? m.O(s) : ∅;
8 m′ ← (m.x, s,O, C := ∅);
9 P ← m.P fm.P ;

10 foreach (interval I ∈ P) do
11 c← m.C[I] Zm.C[I]);
12 p← {I};
13 m′.C ← m′.C ∪ {(p, c)};
14 end
15 else
16 l← mi that has lower variable order;
17 h← mj that has higher variable order;
18 m′ ← (l.x, l.s, l.O, C := ∅);
19 foreach ((p, c) ∈ l.C) do
20 c′ ← c Z h;
21 m′.C ← m′.C ∪ {(p, c′)};
22 end
23 end
24 return m′;
25 end

Algorithm 4.4: Join algorithm following policy evaluation (4.9)

then the decision is h. A special value ⊥ is defined to handle the situation if the
variable l.x does not exist in the request X, the evaluation can traverse via this
edge.

APPLICATIONS 75

Input: X-MIDDs m1,m2; combining algorithm ca
Output: Combined X-MIDD: m = ωca(m1,m2)

1 begin
2 if (all mi are decision-leaf nodes) then
3 s← ωca(m1.s,m2.s);
4 O ← m1.O(s) ∪m2.O(s);
5 return (s,O);
6 end
7 if (m1.x ≡ m2.x) then
8 s← ωca(m1.s,m2.s);
9 O ← m1.O(s) ∪m2.O(s);

10 m← (m1.x, s,O, C := ∅);
11 P ← m1.P gm2.P ;
12 foreach (interval I ∈ P) do
13 c← ωca(m1.C[I],m2.C[I]);
14 p← {I};
15 m.C ← m.C ∪ {(p, c)};
16 end
17 else
18 l← mi that has lower variable order;
19 h← mj that has higher variable order;
20 m← (l.x, l.s, l.O, C := ∅);
21 foreach ((p, c) ∈ l.C) do
22 c′ ← ωca(c, h);
23 m.C ← m.C ∪ {p, c′};
24 end
25 p′ ← ({(−∞,+∞)} � l.P) ∪ {⊥};
26 m.C ← m.C ∪ {p′, h};
27 end
28 return m;
29 end

Algorithm 4.5: The algorithm for combining operators

4.6 Applications
Our main objective is to propose a high performance policy evaluation mechanism
that can be applied in our access control approach for cloud. We illustrate that
it can be solved by applying MIDD techniques in the next chapter. Beside that,
we also point out that our mechanism can be reused in other policy management
problems. At first, we define the following concept:

Given a policy P , let’s define |P |e is the set of requests that policy evaluation is
e with e ∈ VR: ∀X ∈ |P |e, P (X) = e.

Definition 4.9 (Policy subset). Given two policy-trees P1 and P2 using the same
attribute profile {a1, . . . an}, P1 is called the subset of P2, denoting as P1 ⊂ P2

when ∀e ∈ VR \N, |P1|e = |P2|e.

We can see that |P |e essentially is the set of traversed paths from the root of the
equivalent X-MIDD to the decision having value e.

Using the definition 4.9, we can point out following applications of the MIDD
mechanisms:

76 LOGICAL MODEL AND MECHANISMS FOR XACML

• Policy testing: An important task in authorization policy testing is to enu-
merate all permit/deny or any decision e ∈ VR requests that a given policy
can yield. It can be done by transforming this policy in to X-MIDD, then
enumerating all traverse paths from the X-MIDD’s root to a node containing
decision value.

• Policy comparison: We can compare if the policy P1 ⊂ P2 by transforming
them into X-MIDDs m1 and m2, enumerating all possible paths from m1’s
root to decisions then make sure these paths also exists in P2. The complexity
of this problem is the complexities of transforming two policies (which are
analyzed later) and the tree traversal problem.

• Reverse queries: the X-MIDD allows us to answer authorization queries in
reverse orders: given a partial request, return the missing attributes and
possible values that the policy can yield permit or deny decisions. A familiar
sample reverse query could be “which resources can the subject Alice access
during 9am-6pm?". Using X-MIDD the problem becomes enumerating all
possible paths reaching the permit decision for the partial request {‘Alice’,
‘read’, time ∈ [9, 18]}.

4.7 Conclusions
In this chapter, we analyze the logic behind XACML components and their evalua-
tions. While XACML language is convenient to compose and manage authorization
policies, there’s no efficient implementation mechanism used for policy evaluation
and analysis. For such purpose, we define a new data structure based on the
decision diagram concept, known as the MIDD, along with operations on interval
processing and combining MIDD algorithms. These mechanisms can be applied
to substantially improve evaluation performance of the PDP engine, which will be
shown in the next chapter.

Chapter 5

High Performance XACML Policy
Evaluation

This chapter is based on the following publications:

• C. Ngo, M. X. Makkes, Y. Demchenko, and C. de Laat, “Multi-data-types
interval decision diagrams for XACML evaluation engine," in Privacy, Security
and Trust (PST), 2013 Eleventh Annual International Conference on, 2013,
pp. 257–266 [47].

• C. Ngo, Y. Demchenko, and C. de Laat, “Decision Diagrams for XACML Policy
Evaluation and Management," In Computers & Security 49 (2015), pp. 1–16
[83].

5.1 Introduction
Access control systems for clouds should require high performance request through-
put. Motivated from requirements of our proposals using XACML [48, 49, 97]
and state-of-the-art of policy XACML engines and approaches [96, 98, 99], in
this chapter we design and implement a novel high performance XACML engine.
Compare to prior work, it is the most complete work on policy evaluation with
important XACML 3.0 features that are event absent from others before.

Formulated from the XACML logical analysis in Chapter 4, our engine distin-
guishes from prior work by the following contributions:

• Support complex comparison functions for continuous data-types: the MIDD
mechanism allows us to transform policies with inequality comparisons as in
Listing 4.1.

• Handle all logical expression forms in the policies.

• Preserve original evaluation semantics in XACML elements and combining al-
gorithms, not only in no-error scenarios but also in cases with “not-applicable"

77

78 HIGH PERFORMANCE XACML POLICY EVALUATION

and “indeterminate" values in XACML 3.0, which is also compatible for version
2.0.

• Support Condition elements processing.

• Allow to define critical and non-critical attributes by the “MustBePresent" flag
which is compliant with the XACML standard.

• Handle obligation and advice expressions in XACML elements.

Based on the refined analysis in section 4.3, our new algorithms are designed
to follow evaluation standard: given a policy to be evaluated, first we create a
MIDD for the target element; X-MIDDs of children rules are combined using the
Algorithm 4.5; after that we join the target’s MIDD with the combined X-MIDD
using the Algorithm 4.4.

At first, we present the transformation process from regular XACML policies into
decision diagram X-MIDDs in Section 5.2, and after that is the evaluation process
in Section 5.3. We analyze the complexities of our approach in Section 5.4, then an
implementation and experiments in Section 5.5. Finally, we conclude the chapter
in section 5.6.

5.2 XACML Policy Transformations
In this section, by utilizing above defined operations, we solve the XACML eval-
uation problem by parsing and transforming XACML policies or policysets into
X-MIDDs having equivalent evaluation semantics.

Given a XACML policy tree, our approach to construct an equivalent X-MIDD is
as follows:

• Extract intervals and build MIDDs representing Target and Condition elements.

• Create the X-MIDD for each rule from its MIDDs following the mechanism in
section 4.5.3.

• For a policy or policyset, join X-MIDDs of its children by equivalent combining
operators to construct the final X-MIDD instance representing the root policy.

The final X-MIDD is then used for policy evaluation against incoming requests,
which can be illustrated in Figure 5.2.

5.2.1 Creating MIDD from the Target Element

As described in Section 4.3, a match expression m is a tuple of (f, v, x) with the
variable x containing a state s ∈ F, IN representing the "MustBePresent" setting. It
can be represented by a MIDD with two nodes: the internal node (x, s, C := {I, c}),
in which the interval I = {i|f(v, i)→ true}; c is the external T-leaf-node.

In the algorithm 5.1, the MIDD of an AllOf element having a list of Match can
be composed quickly by aggregating intervals of Match MIDDs having the same

XACML POLICY TRANSFORMATIONS 79

variable xi using function I ′ = restrict(I, f, v) := {i|i ∈ I, f(v, i) → true}. For
example, if I = (−5, 8), then restrict(I,≥, 3)→ [3, 8).

From list of intervals il having exactly an interval per variable, we build a MIDD
that has only a path from the root to a T-leaf-node. Each node n in the path has a
variable x, joined state sl[x] and an out-going edge having an interval il[x].

Input: List of Match elements: m = {m1,m2..,mk}
Output: Result MIDD: m1 ∧m2 · · · ∧mk

1 begin
2 il← ∅; sl← ∅;
3 foreach (mi ∈ m) do
4 I ← (il[mi.x] = null) ? (−∞,+∞) : il[mi.x];
5 s← (sl[mi.x] = null) ? F : sl[mi.x];
6 il[mi.x]← restrict(I,mi.f,mi.v);
7 sl[mi.x]← s ∧mi.x.s;
8 end
9 root← null; tail← null;

10 foreach (attribute x ∈ sort(il.keys)) do
11 n← (x, sl[x], C := (il[x], null));
12 if (root = null) then
13 root← n; tail← root;
14 else
15 tail.addChild(n); tail← n;
16 end
17 end
18 tail.addChild(T-leaf-node);
19 return root;
20 end

Algorithm 5.1: The parseAllOf function

The algorithm 5.2 creates the MIDD for a Target element using conjunctive and
disjunctive join MIDD operators.

Input: List of AnyOf expressions: A = {a1, a2, ..ak}
Output: A MIDD t = a1 ∧ a2 · · · ∧ ak

1 begin
2 t← T-leaf-node;
3 foreach (AnyOf element a ∈ A) do
4 d← T-leaf-node;
5 foreach (AllOf element b ∈ a) do
6 d′ ← parseAllOf(b);
7 d← d ∨ d′;
8 end
9 t← t ∧ d;

10 end
11 return t;
12 end

Algorithm 5.2: The parseTarget function

Using this algorithm, the MIDDs of Target elements in rules R1 and R2 in the
Listing 4.1 are shown in Figure 4.3.

80 HIGH PERFORMANCE XACML POLICY EVALUATION

5.2.2 Creating MIDD from a Condition Element

Given a requestX and a Condition element κ(X) in Eq. (4.5), we create a temporary
variable c := κ(X). In this case, the Condition element is similar to a Match element
with the signature (=, T, c) and can be represented by the MIDD having an internal
node (c, s, C := {([T], e)}) connecting to the T-leaf-node e. The state s receives
IN value whenever there’s a critical attribute in the expression, otherwise it is F
value. We denote parseCondition(cond) as the function to create the MIDD from a
Condition element. It will be used in the process creating X-MIDD representing the
rule evaluation.

5.2.3 Creating X-MIDD for a XACML Policy Tree

XACML policies are organized as a tree in which a node can be a rule, policy or
policyset. Given a XACML policy node, the algorithm 5.3 is used to create its
equivalent X-MIDD as follows:

• If this is a rule, we create MIDDs for Target and Condition, then transform the
result into the rule’s X-MIDD following the Section 4.5.3 using transform
function.

• If the node is either a policy or a policyset, based on the policy evaluation
in Section 4.3.3.2, we parse its children recursively to obtain X-MIDDs and
combine them using ωca in algorithm 4.5. The combination is then joined
to the node’s Target MIDD using algorithm 4.4. The result is the X-MIDD
representing the policy node.

Input: A policy node in the policy tree: n
Output: X-MIDD representing the subtree: m

1 begin
2 dt ← parseTarget(n.t);
3 if (n is a rule) then
4 dc ← parseCondition(n.C);
5 d← dt ∧ dc;
6 m← transform(d, n.e, n.O);
7 else
8 ψ ← null;
9 foreach (ni ∈ n.children) do

10 d← parsePolicyNode(ni);
11 ψ ← ωca(ψ, d, n.O);
12 end
13 m← dt Z ψ;
14 end
15 return m;
16 end

Algorithm 5.3: The parsePolicyNode function

From MIDDs in Figure 4.3, using transform function we have equivalent X-
MIDDs in Figure 5.1.

XACML POLICY TRANSFORMATIONS 81

time
(N)

price
(N)

[100, 150]

[6,9][12,17]

P, O1

[3,4]

price
(N)

[300, 500]

[1,2]

vol
(N)

(a) X-MIDD of the R1

time
(N)

[100]

time
(N)

[150, 300]

[17] [9]

time
(N)

[500]

[12]

D, O2

vol
(N)

(b) X-MIDD of the R2

Figure 5.1: X-MIDDs of rules R1 and R2

time
(N)

[100]

[17]

[3,4]

price
(N)

[12, 17)

[3,4]

price
(N)

[6, 9]

[1,2]

time
(N)

[150]

[6, 9)

price
(D, O2)

[9]

[1,2]

[12, 17]

time
(N)

[300]

[9]

{(-∞,9) U
(9, +∞)U(⊥)}

time
(N)

[500]

[12]

{(-∞,12)U
(12, +∞)U(⊥)}

{(-∞,1)U
(2, +∞)U(⊥)}

{(-∞,3)U
(4, +∞)U(⊥)}

time
(N)

(100, 150)

[6, 9]

[12, 17)

(300, 500)
time
(N)

(150, 300)

[9]

vol
(N)

price
(D, O2)

P, O1 D, O2

Figure 5.2: X-MIDD represents the sample policy P0

Using the algorithm 5.3 starting from the root, we can create a X-MIDD repre-
senting the policy tree. For the sample in Listing 4.1, we have the X-MIDD in Figure
5.2.

82 HIGH PERFORMANCE XACML POLICY EVALUATION

5.3 XACML Policy Evaluations

5.3.1 Single-valued Request Evaluation

According to in XACML 3.0 standard [36], the evaluation process at the PDP is to
find and combine decisions of applicable rules and policies in a policy tree for a
given authorization request. Our transformation process in Section 5.3 allows to
construct an X-MIDD structure having equivalent evaluation semantics with the
policy tree. The evaluation process of a single-valued request X = {x1, x2..., xn}
against the X-MIDD m is as follows:

• The traverse is from the root of m to a leaf-node, or when no attribute value
is found.

• At an internal node mi, if the value of the attribute mi.x exists in the X, find
a matched out-going edge (p, c) ∈ mi.C from mi and continue the traverse
from the child node c.

• If either no matched out-going edge found, or X does not contain value of
mi.x, the evaluation return the node’s state mi.s.

• If the current traverse node c is a leaf-node, returns its decision (s,O).

A single-valued request X is defined as a list of attribute values, exactly one
value per attribute, X = {x1, x2..., xn}. Evaluating X against policies is to find
the matching path in the equivalent X-MIDD. At a node, finding the matching
edge can be done either using sequential or binary searches, since out-going edges
of an internal nodes having ordered interval partitions. We currently support
single-valued requests.

If the matching path found, the engine reaches the leaf node. Here, if the
condition C is "true", the result is the decision value and equivalent objects (i.e.,
obligations, advices). Otherwise, it returns N . If the matching path is not found
due to missing attributes or no applicable edge at the node n, the evaluation return
n.s ∈ VR, the default returned-decision.

5.3.2 Multi-valued Request Evaluation

XACML allows multi-valued attribute requests, where an attribute can store a list of
values (e.g., a person can have several roles: employees, managers, etc). However,
current XACML behavior on multi-valued requests processing has some concerns.
With policy in Listing 4.1, given a request X = {150, {10, 19}, 4} with the time
attribute can either 10am (10) or 7pm (19), the evaluation following XACML
standards [36, 38] such as SunXACML [82] claims that R1 is the applicable rule. It
has such result because each value in the bag of time attribute {10, 19} is checked
with each match expressions: the value 10 passes the condition time < 17, and
value 19 passed the condition time > 12. While in practical, we expect R1 is not
applicable when it requires a time value passes both conditions, not two separate
values.

ANALYSIS 83

[98] and [99] decomposed multi-valued requests in set of single-valued requests
to evaluate and combine all of applicable rules. As illustrated in the above example,
this processing differs from original standards.

For multi-valued policies supports in approaches of [98, 99], we argue that
they only used in XACML condition expressions, not in target expressions due to
the value v in mk := (x, f, v) can only receive a literal value [36, 38]. Because
they only deal with target expressions, their supports are redundant. Our solution
replaces condition expressions as variables, so it is possible to handle multi-valued
attributes in policies.

5.4 Analysis

5.4.1 Features Comparison

Based on logical analysis in Section 4.3, our proposed mechanism covers most of
missing XACML features from prior works (e.g in [98] and [99]):

• We have succeeded to fully support XACML logical expressions analyzed in
Section 4.3 with multiple data-types and comparison operators.

• Preserving original combining algorithms semantic in handling indeterminate
and not-applicable states: prior work could handle simple Permit or Deny
decisions, but incorrectly for others.

• Critical attribute setting: to the best of our knowledge, we are the first work
to support this feature with high performance evaluation.

5.4.2 Complexities

5.4.2.1 Space complexity

We suppose that a policy-tree uses n attributes {a1, a2.., an}, ai ∈ Pi. Assuming
that the domain Pi has ki different values appearing in the policies, so Pi can be
separated into at most 2ki+1 intervals or partitions, including open and degenerate
intervals. The X-MIDD representing the policy tree has at most 2ki + 1 out-going
edges from any node at level li.

With n + 1 levels, the largest number of nodes at level li of the X-MIDD is
i∏

j=1

(2kj + 1). Therefore, the worst-case space complexity is O(
n∑

i=1

i∏
j=1

(2kj + 1)).

It shows that the space complexity in the worst case does not depend on neither
the policies size, height of policy tree, nor the complexity of logical formulas in
their target expressions. It only depends on the number of attributes and number of
distinct attribute values in the policy tree. Similar to the BDD approach, the size of
the MIDD is affected heavily by the attribute ordering [114]. The implementation
shows that our algorithms have efficient performance with reasonable graph size.

84 HIGH PERFORMANCE XACML POLICY EVALUATION

5.4.2.2 Evaluation time complexity

The policy evaluation process in our X-MIDD is the traversal from the root to a leaf
node or an internal node where it cannot find any applicable out-going edges. At
the level li of the X-MIDD, it has to find an applicable item among at most 2ki + 1
out-going edges. Using the sequential search, the evaluation time complexity is

O(
n∑

i=1

(2ki + 1)). For binary search it is O(
n∑

i=1

blog2(2ki + 1) + 1c).

Similar to the space complexity, it is shown that the evaluation time complexity
only depends on number of attributes n and number of appearing attribute values
ki|i=1..n. It is the advantage of the proposed approach to evaluate a large number
of policies containing complex logical expressions. However, the drawback is the
memory cost with policies having a large number of n and ki values.

Our approach has the time complexity does not depend on number of policies,
but may not handle well on systems with high number of attributes. Actually,
numbers of attributes in authorization systems are often quite limited, could be
up to about 10 attributes. However, the number of policies usually expands in
proportion to the organization and system scale. Therefore, the proposed approach
is still useful in practical.

5.5 Implementation and Evaluation
In our experiments, we compare our implementation with the standard SunXACML
engine [82].

We do not make direct experiments to compare with prior work [98, 99]. The
work in [98] has better performance in datasets using only equality operators
due to numerical comparisons are faster. In other cases, it does not support
datasets with inequality operators. The approach in [99] does not publish neither
its implementation nor datasets. However, we see that our X-MIDD structure
has similar time complexity to their matching-tree (MT) in the worst case. But
after MT evaluation, they need to evaluate the combining-tree (CT), that the time
complexity relies on height of policy tree. So ours has somewhat better evaluation
performance.

5.5.1 Environment and Datasets

We implement our SNE-XACML engine [85] in JRE 1.7. Experiments are carried
out on a Linux x64 system with Intel i5 core 2.67 GHz and 4GB RAM. The datasets
are XACML 3.0 policies.

Due to lacking of XACML 3.0 implementations, we can only compare our
work with the popular XACML 2.0 engine, SunXACML. It means that sophisticate
indeterminate decisions in v3.0 in our work cannot compare to decisions from
SunXACML. This evaluation needs to be improved by conformance tests of XACML
3.0 in the future. Currently, such tests do not present in the XACML community.

In our experiments, we convert policies 3.0 back to version 2.0 in order to be
compatible with the referenced SunXACML. All indeterminate values in version 3.0

IMPLEMENTATION AND EVALUATION 85

are mapped to an indeterminate value in version 2.0.
We use three datasets in Table 5.1. The first one is a real-life policy taken from

GEYSERS project [10] with some obligations and a critical attribute marked as
“MustBePresent=true". The continue-a policy is taken and converted from [100].
And the synthetic-360 is our randomly generated policy using 80% equality operator
and 20% inequality operators. We also select random mixture of all combining
algorithms.

We see that most target expressions in continue-a policy are trivial with either
empty or a few match expressions in a level. The synthetic-360 policy is more
complex: each Target, AnyOf and AllOf elements contain from 0 to 4 children. It
is the reason why the X-MIDD generated from the synthetic-360 is more complex
than from continue-a.

In our testbed, we generate requests randomly following uniform distribution
for each datasets. They are then evaluated by two engines.

Table 5.1: Sample Policy Datasets

Datasets Policy #Policy #Policies #Rules Attri- Operators
levels sets butes

GEYSERS [10] 3 6 7 33 3 =
Continue-a [100] 6 111 266 298 14 =

Synthetic-360 [47] 4 31 72 360 10 =(80%), co-
mplex(20%)

5.5.2 Validation

Our empirical validation is as follows:

• Experiments are performed on the three given datasets in Table 5.1, being a
public policy in related work [100], our synthetic policy [47] and a project
policy [10].

• For each dataset, 1000 random requests are generated uniformly distributed
over attribute value ranges.

• Generated requests are evaluated by two engines: the standard, popular
XACML engine [82] and our XACML engine [85]. Outputs of two engines are
expected to be the same.

• We run experiments multiple times.

Results of these empirical experiments confirm the correctness of our approach
and implementation.

5.5.3 Performance Analysis

We run the testbed ten times, each evaluates a million requests by the SNE-XACML
and a thousand ones by the SunXACML. The average response times of two engines

86 HIGH PERFORMANCE XACML POLICY EVALUATION

GEYSERS Synthetic-360 Continue-a
1.0

10.0

100.0

1000.0

10000.0

100000.0

SunXACML

SNEXACML

Dataset

Ti
m

e
 (

µ
s)

Figure 5.3: Average evaluation response times

GEYSERS Synthetic-360 Continue-a
1

10

100

1000

10000

100000

SunXACML

SNEXACML

Dataset

Ti
m

e
 (

µ
s)

Figure 5.4: Standard deviation of evaluation response times

are shown in Figure.5.3. We observe that our engine is about three orders of
magnitude faster than the SunXACML. Its response times are almost the same in
three datasets, while the basic engine’s performance is heavily dependent on the
complexity of policies’ logical expressions. Figure. 5.4 shows the standard deviation
of evaluation response time. With all datasets, SunXACML has greater variation in
response times than ours. This illustrates our analysis of evaluation time complexity,
which is linear in attribute sizes and logarithmic complexity in attribute values.

Figure. 5.5 shows our micro-benchmark results. The pre-processing time and
X-MIDD size are highly dependent on policy complexity, which is the number of
attribute n and number of attribute values k. The X-MIDD of continue-a policy
with 14 attributes has less nodes than the diagram of synthetic-360 policy with 10
attributes. Because the later is randomly generated, therefore it contains higher
{ki} values.

The request evaluation time is composed from three parts: time to extract
attribute values from XACML requests, time to evaluate these values on the X-MIDD
representing the policy and time to create XACML response messages. These time
fractions are shown in Figure. 5.6. We can see that the response conversion
time fraction is negligible, while the request conversion time is quite remarkable
compared to the X-MIDD evaluation time. In most cases, response messages only
contain decisions, thus their sizes are usually small. However, sizes of request
messages in the XML format depend on the number of attributes and attribute
values. Therefore, request messages are much larger than response messages. The
experiment shows that the request conversion times increase proportionally to the

CONCLUSIONS 87

GEYSERS

Continue-a

Synthetic-360

0 200 400 600 800 1000 1200

94

480

1043

Time (ms)

D
a

ta
se

t

(a) Pre-processing times

GEYSERS

Continue-a

Synthetic-360

1 100 10000 1000000

55

3258

104675

Nodes

D
a
ta

se
t

(b) Number of nodes in X-MIDD

Figure 5.5: SNE-XACML micro-benchmarks

number of attributes in three datasets.
Figure. 5.6 also illustrates that the X-MIDD evaluation fraction times are re-

markable in the total response time when the number of attributes is small, e.g.,
in GEYSERS’s dataset. For datasets with more attributes, the X-MIDD evaluation
fraction times are in the range about 50%-60%. We can conclude that the con-
version overhead is the bottleneck in ours due to the inefficient of XML parsing
compared to the optimized policy evaluation. Note that the conversion overheads
in SNE-XACML and other engines are quite similar because they often use popular
XML processing mechanisms such as JAXB.

5.6 Conclusions
In this chapter, we applied our analysis results in Chapter 4 to design and develop
a high performance XACML policy evaluation engine. It not only boosts the system
performance, but also preserves original evaluation semantics, which is missed in
prior work. The proposed solution could handle the complicated logical expressions
defined in policies’ predicates, correctness of combining algorithms semantics,
critical attribute setting, obligations and advices handling. The evaluation and
analysis show that the presented approach has the efficient performance in time
complexity while having the reasonable space complexity. Experiments prove that
our solution implemented in the open sourced SNE-XACML engine [85] has both

88 HIGH PERFORMANCE XACML POLICY EVALUATION

GEYSERS Continue-a Synthetic-360
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

X-MIDD eval. time

Resp. conversion time

Req. conversion time

Dataset

Ti
m

e
 (

µ
s

)

Figure 5.6: SNE-XACML evaluation time fractions

the significant performance compared to the referenced SunXACML engine [82]
and validated evaluation results.

Chapter 6

Conclusion

In this chapter, we revisit questions in Chapter 1 and use research presented in
Chapters 2, 3, 4 and 5 to answer them.

6.1 Answers to Research Questions
1. How do we design a flexible and scalable access control model supporting the

on-demand provisioned self-service of cloud infrastructure services?

Chapter 2 answers this question. It introduced MT-ABAC, an ABAC model
with multi-tenant properties integrating with the INDL cloud information model
[79]. Inheriting the flexibility of ABAC, the proposed model can use attributes of
subjects and resources in authorization policies. To support on-demand provisioned
self-service, the model extended INDL by attaching policy templates binding with
resource descriptions. Upon provisioning and rescaling, policies therefore can be
generated and updated. Our prototype was implemented by an INDL extension for
policy template descriptions. These templates were retrieved by SPARQL queries to
compile into policies using a subset of the XACML language.

2. How does the proposed access control model adapt the virtualized resource
sharing for multiple customers, who can manage their own resources not only
in a single domain but also in multiple distributed domains?

Our proposed approach MT-ABAC in Chapter 2 extended the generic ABAC
model to support multi-tenancy scenarios of the cloud systems. It distinguished
general subjects into separated types, including providers, tenants and users. The
capabilities and constraints of these subject types were defined to support the
multi-tenancy features. This model therefore can manage virtualized resources
pooling consumed by multiple customers at a cloud provider, where each of them
could control authorization policies for their own subscribed resources.

To apply the MT-ABAC model for inter-provider scenarios, in Chapter 3 we
provided token exchange approaches to solve distributed authorization and inter-
domain security context management problems. In these cases, cloud resources can

89

90 CONCLUSION

interconnect between multiple providers. Our approach contained grant-tokens to
relay decisions from the tenant’s domain to the provider’s domain via end-users.
Upon validating grant-tokens, the system issued access-tokens for each provider’s
domain, which then can be used by users to access resources. In this way, our
approach allowed users to establish dynamic trust relationships with the chain of
indirect providers for a specific authorization context.

3. How do we implement a high performance authorization policy evaluation
engine, which should be required in access control solutions for cloud providers?

By applying XACML as the de-facto access control policy standard in our model,
we provided the flexibility and expressiveness of the language in policy composition
and management. However, to optimize XACML in high performance systems
for cloud providers, our work in Chapter 4 analyzed the complex logic behind
XACML components and evaluation processes. We then proposed the MIDD, a
decision diagram-based mechanism with interval partition operations and MIDD
operators. Our data structures and algorithms demonstrated in Chapter 5 to parse
XACML policy tree into decision diagrams which substantially improve evaluation
performance of the policy engine and the access control system. The proposed
mechanism is reusable when it is able to apply not only for the policy evaluation,
but also in various policy management problems.

6.2 Discussion
In this thesis, we identified challenges, models and mechanisms in building access
control systems for cloud resource management at providers. Our solution special-
ized to use the ABAC model into multi-tenancy scenarios, with necessary constraints
and capabilities for policy management. For practical implementations, we chose
the de-facto attribute-based policy language XACML to apply in our model. Using
XACML would make the approach having better compatibility and re-usability
for different systems, not only in our project testbeds GEYSERS for cloud IaaS
management, but also other cloud services systems.

The main drawback of XACML in applying for cloud system managements is
performance issues for large-scale multi-tenant environments. Due to complex logic
behind policies and algorithms, existing approaches cannot adapt high throughput
requirements of cloud systems with thousands of customers. We solved this problem
by analyzing XACML logic to propose data structures and algorithms for a high
performance XACML policy evaluation engine. The implementation proved that our
solution while still maintained policy semantics, can handle request throughputs
with magnitudes faster than the standard implementation. Applied in the MT-ABAC
for cloud infrastructure services of the DACI system, the testbed showed that the
throughput can reach about 1400 requests/s for a scenario with 1000 customers,
each having a separated, non-trivial virtual infrastructure. It is possible to not only
scale-up the authorization systems with more robust computing powers, but also
horizontally scale-out to increase overall system throughput because the policy
evaluation mechanisms in our systems are stateless.

FUTURE RESEARCH 91

Our testbed was implemented and integrated successfully to the cloud infras-
tructure services in the GEYSERS project [10] for single and multiple providers
scenarios. The design abstractions between cloud resource managements at the
composition layers (a.k.a LICL layers in the GEYSERS project) and the virtual
resource managements allow our approach to be able to integrate with different
IaaS cloud stacks, not only the OpenNebula [84] in GEYSERS, but also others such
as OpenStack or Eucalyptus. However, integrating with such stacks needs further
real deployments and experiments. In other aspects, even though we tried to design
MT-ABAC in the DACI system independent with cloud service models, our work
contained primarily the testbed for IaaS model as in GEYSERS, while did not have
validation work for PaaS and SaaS. Therefore, we have spaces to investigate and
improve for other cloud services, which could be done in our future work.

6.3 Future Research
We propose two directions in the future research. The first line is to research on
integrations and compatibilities of the MT-ABAC with other cloud service models
and legacy systems. The second line is to analyze and compose access control
policies using our techniques in Chapters 4 and 5.

Regarding integrating MT-ABAC to cloud systems providing other service models,
resource description models managing cloud resources should be capable of on-
demand provisioning and rescaling. Provider policies should be then generated and
synchronized according to cloud provisioning and rescaling. Depending on desired
scenarios between providers, tenants and end-users, related policies constraints
should be defined and enforced at policy managements. In case of multi-domains
scenarios, our token exchanges approach can be extended to establish, manage
and validate trust and delegation management.

There are also open research on how to integrate and interoperate legacy access
control systems at tenants’ sides with the MT-ABAC. Authorization rules at legacy
systems while can be composed by various policy languages should be validated
and verified by defined constraints in MT-ABAC. The research should investigate on
transforming legacy rules into the XACML, which facilitate for constraint verification
and validation.

In other aspects, the MIDD data structures and algorithms used to solve the
XACML evaluation performance problem can be applied to solve policy analysis
and verification problems [100, 102]. Approaches in [100, 102] limited only to
a subset of XACML language, while ours provide the most comprehensive policy
semantic features. Other problems mentioned in section 4.6 such as policy testings,
policy comparison, reverse authorization queries are also in our future researches
on policy managements. Another section is to actively develop our open source
XACML policy evaluation engine with enhanced features and profiles.

The development of cloud systems are becoming more popular. As a result,
access control management for such systems should be aware to research further.
Our work in this thesis regarding models, mechanisms and testbeds for access
control are small but prospective contributions not only for Cloud Computing but

92 CONCLUSION

also for general access control research.

Acronyms

AA Attribute Authority.

ABAC Attribute-based Access Control.

ABE Attribute-based Encryption.

ADF Access Control Decision Function.

AEF Access Control Enforcement Function.

AWS Amazon Web Services.

BDD Binary Decision Diagram.

CIM Common Information Model.

CT Combining Tree.

DAC Discretionary Access Control.

DACI Dynamic Access Control Infrastructure.

DAG directed acyclic graph.

FIA Fine-grained Integration Algebra.

IaaS Infrastructure as a Service.

IAM Identity and Access Management.

IDD Interval Decision Diagram.

INDL Infrastructure and Network Description Language.

LDAP Lightweight Directory Access Protocol.

LICL Logical Infrastructure Composition Layer.

MAC Mandatory Access Control.

93

94 Acronyms

MIDD Multi-datatype Interval Decision Diagram.

MT Matching Tree.

MT-ABAC Multi-tenant Attribute-based Access Control.

MT-RBAC Multi-tenant Role-based Access Control.

MTBDD Multi-Terminal Binary Decision Diagram.

MTIDD Multi-Terminal Interval Decision Diagram.

NIST US. National Institute of Standards and Technology.

PaaS Platform as a Service.

PDP Policy Decision Point.

PEP Policy Enforcement Point.

PERMIS PrivilEge and Role Management Infrastructure Standards.

PIP Physical Infrastructure Provider.

RBAC Role-based Access Control.

RDF Resource Description Framework.

SaaS Software as a Service.

SAML Security Assertion Markup Language.

SLA Service Level Agreement.

SWRL Semantic Web Rule Language.

VI Virtual Infrastructure.

VIO Virtual Infrastructure Operator.

VIP Virtual Infrastructure Provider.

VM Virtual Machine.

VR Virtual Resource.

X-MIDD Multi-datatype Interval Decision Diagram for XACML.

XACML eXtensible Access Control Markup Language.

XSD XML Schema Definition.

Bibliography

[1] Ian Foster et al. “Cloud computing and grid computing 360-degree com-
pared”. In: Grid Computing Environments Workshop, 2008. GCE’08. Ieee.
2008, pp. 1–10.

[2] Armando Fox et al. “Above the clouds: A Berkeley view of cloud comput-
ing”. In: Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009), p. 13.

[3] Tharam Dillon, Chen Wu, and Elizabeth Chang. “Cloud computing: issues
and challenges”. In: Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on. Ieee. 2010, pp. 27–33.

[4] CN Höfer and G Karagiannis. “Cloud computing services: taxonomy and
comparison”. In: Journal of Internet Services and Applications 2.2 (2011),
pp. 81–94.

[5] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Definition of
Cloud Computing. Tech. rep. Gaithersburg, MD, United States, 2011.

[6] M. D Hogan et al. Cloud Computing Standards Roadmap. Tech. rep. SP 500-
291. NIST, 2011. URL: http://www.nist.gov/manuscript-publication-
search.cfm?pub_id=909024.

[7] Amazon. AWS Web Servicess (AWS). http://aws.amazon.com. 2013.

[8] Luis M Vaquero et al. “A break in the clouds: towards a cloud definition”. In:
ACM SIGCOMM Computer Communication Review 39.1 (2008), pp. 50–55.

[9] Fang Liu et al. NIST Cloud Computing Reference Architecture. Tech. rep. SP
500-292. NIST, 2011.

[10] GEYSERS - Generalised Architecture for Dynamic Infrastructure Services. Tech.
rep. The GEYSERS Project (FP7-ICT-248657), 2010. URL: http://www.
geysers.eu/.

[11] Amazon. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
2006.

[12] Microsoft. Microsoft Azure. http : / / azure . microsoft . com / en - us /
services/. 2010.

[13] Google. Google Compute Engine. https://cloud.google.com/compute/.
2012.

95

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909024
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909024
http://aws.amazon.com
http://www.geysers.eu/
http://www.geysers.eu/
http://aws.amazon.com/ec2/
http://azure.microsoft.com/en-us/services/
http://azure.microsoft.com/en-us/services/
https://cloud.google.com/compute/

96 BIBLIOGRAPHY

[14] Rackspace. The Rackspace Managed Cloud. http://www.rackspace.com/
cloud. 2010.

[15] Google. Google App Engine. https://cloud.google.com/products/app-
engine/. 2013.

[16] Salesforce. Heroku. http://heroku.com/. 2007.

[17] Google. Google Apps for Work. https://www.google.com/work/apps/
business/. 2006.

[18] Apple. iCloud. https://www.icloud.com/. 2013.

[19] Microsoft. Microsoft Office 365. http://office.microsoft.com/. 2011.

[20] D1.4 - Initial Set and Technical Specification of System Requirements. Tech.
rep. The GEYSERS Project (FP7-ICT-248657), 2010. URL: http://www.
geysers.eu/.

[21] D1.1 - Identification, Description and Evaluation of the Use Case Portfolio
and Potential Business Models. Tech. rep. The GEYSERS Project (FP7-ICT-
248657), 2010. URL: http://www.geysers.eu/.

[22] Security Frameworks for Open Systems: Access Control Framework. 1996.
URL: http://pubs.opengroup.org/onlinepubs/009609199/chap3.htm#
tagcjh_04_02_02.

[23] J. Vollbrecht et al. RFC 2904 - AAA Authorization Framework. Tech. rep.
RFC 2094. Aug. 2000. URL: http://tools.ietf.org/html/rfc2904.

[24] Butler W Lampson. “Protection”. In: ACM SIGOPS Operating Systems Review
8.1 (1974), pp. 18–24.

[25] Carl E. Landwehr. “Formal models for computer security”. In: ACM Com-
puting Surveys 13 (1981), pp. 247–278.

[26] David FC Brewer and Michael J Nash. “The chinese wall security policy”.
In: Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on. IEEE.
1989, pp. 206–214.

[27] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathemati-
cal foundations. Tech. rep. DTIC Document, 1973.

[28] R.S. Sandhu et al. “Role-Based Access Control Models”. In: IEEE computer
29.2 (1996), pp. 38–47. DOI: 10.1109/2.485845.

[29] David F Ferraiolo et al. “Proposed NIST standard for role-based access
control”. In: ACM Transactions on Information and System Security (TISSEC)
4.3 (2001), pp. 224–274.

[30] American national standard for information technology – role based access
control. Tech. rep. ANSI INCITS 359-2004. ANSI, 2004.

[31] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. “Adding attributes
to role-based access control”. In: IEEE Computer 43.6 (2010), pp. 79–81.

[32] V.N.L. Franqueira and R.J. Wieringa. “Role-Based Access Control in Retro-
spect”. In: Computer 45.6 (June 2012), pp. 81–88. ISSN: 0018-9162. DOI:
10.1109/MC.2012.38.

http://www.rackspace.com/cloud
http://www.rackspace.com/cloud
https://cloud.google.com/products/app-engine/
https://cloud.google.com/products/app-engine/
http://heroku.com/
https://www.google.com/work/apps/business/
https://www.google.com/work/apps/business/
https://www.icloud.com/
http://office.microsoft.com/
http://www.geysers.eu/
http://www.geysers.eu/
http://www.geysers.eu/
http://pubs.opengroup.org/onlinepubs/009609199/chap3.htm#tagcjh_04_ 02_02
http://pubs.opengroup.org/onlinepubs/009609199/chap3.htm#tagcjh_04_ 02_02
http://tools.ietf.org/html/rfc2904
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/MC.2012.38

BIBLIOGRAPHY 97

[33] Jose M Alcaraz Calero et al. “Toward a multi-tenancy authorization system
for cloud services”. In: Security & Privacy, IEEE 8.6 (2010), pp. 48–55.

[34] Jorge Bernal Bernabe et al. “Semantic-aware multi-tenancy authorization
system for cloud architectures”. In: Future Generation Computer Systems
(2012).

[35] Bo Tang, Qi Li, and Ravi Sandhu. “A multi-tenant RBAC model for collabo-
rative cloud services”. In: Privacy, Security and Trust (PST), 2013 Eleventh
Annual International Conference on. IEEE. 2013, pp. 229–238.

[36] OASIS. XACML v3.0: Core Specification. Jan. 2013. URL: http://docs.
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf.

[37] Amazon. AWS Identity and Access Management (IAM). http://aws.amazon.
com/iam/. 2013.

[38] OASIS. eXtensible Access Control Markup Language XACML Version 2.0.
2005. URL: http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf.

[39] Nicodemos Damianou et al. “The ponder policy specification language”. In:
Policies for Distributed Systems and Networks. Springer, 2001, pp. 18–38.

[40] Ponder: A Policy Language for Distributed Systems Management. URL: http:
//www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml.

[41] David W Chadwick and Alexander Otenko. “The PERMIS X. 509 role based
privilege management infrastructure”. In: Future Generation Computer
Systems 19.2 (2003), pp. 277–289.

[42] X.509|ISO/IEC 9594-8, The Directory: Authentication Framework. 2000.

[43] Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML) v2.0, OASIS Standard. SAML. OASIS, Mar. 2005. URL: http://
docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[44] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-Tenant Data
Architecture. http://msdn2.microsoft.com/en-us/library/aa479086.
aspx. Microsoft, June 2006.

[45] Yuri Demchenko et al. “On-demand provisioning of cloud and grid based
infrastructure services for collaborative projects and groups”. In: Collabo-
ration Technologies and Systems (CTS), 2011 International Conference on.
IEEE. 2011, pp. 134–142.

[46] Eduard Escalona et al. “GEYSERS: a novel architecture for virtualization
and co-provisioning of dynamic optical networks and IT services”. In: Future
Network & Mobile Summit (FutureNetw), 2011. IEEE. 2011, pp. 1–8.

[47] Canh Ngo et al. “Multi-data-types interval decision diagrams for XACML
evaluation engine”. In: Privacy, Security and Trust (PST), 2013 Eleventh
Annual International Conference on. IEEE. 2013, pp. 257–266.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://aws.amazon.com/iam/
http://aws.amazon.com/iam/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://msdn2.microsoft.com/en-us/library/aa479086.aspx
http://msdn2.microsoft.com/en-us/library/aa479086.aspx

98 BIBLIOGRAPHY

[48] Canh Ngo et al. “Security Framework for Virtualised Infrastructure Services
Provisioned On-demand”. In: Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. 2011, pp. 698–
704. DOI: 10.1109/CloudCom.2011.108.

[49] Canh Ngo et al. “Policy and context management in dynamically provi-
sioned access control service for virtualized Cloud infrastructures”. In:
Availability, Reliability and Security (ARES), 2012 Seventh International
Conference on. IEEE. 2012, pp. 343–349.

[50] Canh Ngo, Yuri Demchenko, and Cees de Laat. “Multi-tenant Attribute-
based Access Control for Cloud Infrastructure Services”. In: Journal of
Information Security and Applications (Accepted 2015).

[51] OGF ISOD-RG. OGF Infrastructure Service On-demand Provisioning Research
Group. URL: http://www.ogf.org/gf/group_info/view.php?group=
ISOD-RG.

[52] OASIS IDCloud TC. OASIS Identity in the Cloud. URL: http://wiki.oasis-
open.org/id-cloud/.

[53] Shankar Babu Chebrolu, Vinay Bansal, and Pankaj Telang. “Top 10 cloud
risks that will keep you awake at night”. In: CSICO, available at: https:
//www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf ().

[54] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. “Security and Privacy
Challenges in Cloud Computing Environments.” In: IEEE Security & Privacy
8.6 (2010), pp. 24–31.

[55] D. Catteddu and G. Hogben. Cloud Computing Risk Assessment. Tech. rep.
ENISA, 2009. URL: http://www.enisa.europa.eu/activities/risk-
management/files/deliverables/cloud-computing-risk-assessment.

[56] GEANT project. 2010. URL: http://www.geant.net/.

[57] Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission. World Wide Web Consortium, 2004.
URL: http://www.w3.org/Submission/SWRL.

[58] Xin Jin, Ram Krishnan, and Ravi Sandhu. “Role and attribute based col-
laborative administration of intra-tenant cloud IaaS”. In: Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom),
2014 International Conference on. IEEE. 2014, pp. 261–274.

[59] Xin Jin, Ram Krishnan, and Ravi S Sandhu. “A Unified Attribute-Based
Access Control Model Covering DAC, MAC and RBAC.” In: DBSec 12 (2012),
pp. 41–55.

[60] Amit Sahai and Brent Waters. “Fuzzy identity-based encryption”. In: Ad-
vances in Cryptology–EUROCRYPT 2005. Springer, 2005, pp. 457–473.

[61] Vipul Goyal et al. “Attribute-based encryption for fine-grained access control
of encrypted data”. In: Proceedings of the 13th ACM conference on Computer
and communications security. ACM. 2006, pp. 89–98.

http://dx.doi.org/10.1109/CloudCom.2011.108
http://www.ogf.org/gf/group_info/view.php?group=ISOD-RG
http://www.ogf.org/gf/group_info/view.php?group=ISOD-RG
http://wiki.oasis-open.org/id-cloud/
http://wiki.oasis-open.org/id-cloud/
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
https://www.owasp.org/images/4/47/Cloud-Top10-Security-Risks.pdf
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment
http://www.geant.net/
http://www.w3.org/Submission/SWRL

BIBLIOGRAPHY 99

[62] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-policy attribute-
based encryption”. In: Security and Privacy, 2007. SP’07. IEEE Symposium
on. IEEE. 2007, pp. 321–334.

[63] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic encryption
with relatively small key and ciphertext sizes”. In: Public Key Cryptography–
PKC 2010. Springer, 2010, pp. 420–443.

[64] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient fully homomorphic
encryption from (standard) LWE”. In: Foundations of Computer Science
(FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE. 2011, pp. 97–106.

[65] Shucheng Yu et al. “Achieving secure, scalable, and fine-grained data access
control in cloud computing”. In: INFOCOM, 2010 Proceedings IEEE. Ieee.
2010, pp. 1–9.

[66] Ming Li et al. “Scalable and secure sharing of personal health records
in cloud computing using attribute-based encryption”. In: Parallel and
Distributed Systems, IEEE Transactions on 24.1 (2013), pp. 131–143.

[67] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. “Can homo-
morphic encryption be practical?” In: Proceedings of the 3rd ACM workshop
on Cloud computing security workshop. ACM. 2011, pp. 113–124.

[68] Quan Pham et al. “On a taxonomy of delegation”. In: Computers & Security
29.5 (2010), pp. 565–579.

[69] Jason Crampton and Hemanth Khambhammettu. “Delegation in role-based
access control”. In: Computer Security - ESORICS 2006. Springer, 2006,
pp. 174–191. ISBN: 978-3-540-44601-9.

[70] Tuan-Anh Nguyen et al. “Flexible and manageable delegation of authority
in rbac”. In: null. IEEE. 2007, pp. 453–458.

[71] David W Chadwick, Sassa Otenko, and Tuan Anh Nguyen. “Adding support
to XACML for multi-domain user to user dynamic delegation of authority”.
In: International Journal of Information Security 8.2 (2009), pp. 137–152.

[72] Dave Cooper. “Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile”. In: (2008).

[73] Scott Cantor et al. “Assertions and protocols for the oasis security assertion
markup language”. In: OASIS Standard (March 2005) (2005).

[74] Ed. D. Hardt and D. Recordon. The OAuth 2.0 Authorization Framework,
draft-ietf-oauth-v2-30. Tech. rep. July 2012. URL: http://tools.ietf.org/
html/draft-ietf-oauth-v2.

[75] Chang Jie Guo et al. “A framework for native multi-tenancy application
development and management”. In: E-Commerce Technology and the 4th
IEEE International Conference on Enterprise Computing, E-Commerce, and
E-Services, 2007. CEC/EEE 2007. The 9th IEEE International Conference on.
IEEE. 2007, pp. 551–558.

http://tools.ietf.org/html/draft-ietf-oauth-v2
http://tools.ietf.org/html/draft-ietf-oauth-v2

100 BIBLIOGRAPHY

[76] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. “The ARBAC97
model for role-based administration of roles”. In: ACM Transactions on
Information and System Security (TISSEC) 2.1 (1999), pp. 105–135.

[77] Eric Yuan and Jin Tong. “Attributed based access control (ABAC) for web
services”. In: Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Inter-
national Conference on. IEEE. 2005.

[78] Vincent C Hu et al. Guide to Attribute Based Access Control (ABAC) Definition
and Considerations. Tech. rep. 2014, p. 162. URL: http://nvlpubs.nist.
gov/nistpubs/specialpublications/NIST.sp.800-162.pdf.

[79] Mattijs Ghijsen et al. “Towards an infrastructure description language for
modeling computing infrastructures”. In: Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on. IEEE.
2012, pp. 207–214.

[80] Joan A Garcia-Espin et al. “A multi-tenancy model based on resource
capabilities and ownership for infrastructure management”. In: Cloud Com-
puting Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. IEEE. 2012, pp. 682–686.

[81] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. “Securecloud: To-
wards a comprehensive security framework for cloud computing envi-
ronments”. In: Computer Software and Applications Conference Workshops
(COMPSACW), 2010 IEEE 34th Annual. IEEE. 2010, pp. 393–398.

[82] Sun’s XACML Implementation. URL: http://sunxacml.sourceforge.net/.

[83] Canh Ngo, Yuri Demchenko, and Cees de Laat. “Decision Diagrams for
XACML Policy Evaluation and Management”. In: Computers & Security 49
(2015), pp. 1–16.

[84] OpenNebula. OpenNebula Toolkit. 2013. URL: http://opennebula.org/.

[85] SNE-XACML Project, LGPL v3. URL: https://github.com/canhnt/sne-
xacml.

[86] Apache ServiceMix v4.5.3. http://servicemix.apache.org/. 2013.

[87] Redis key-value data store. 2013. URL: http://redis.io/.

[88] Jena Semantic Web Framework, v2.11.0. 2013. URL: http://jena.apache.
org/.

[89] Canh Ngo, Y. Demchenko, and C. de Laat. “Toward a Dynamic Trust Estab-
lishment approach for multi-provider Intercloud environment”. In: Cloud
Computing Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. 2012, pp. 532–538. DOI: 10.1109/CloudCom.2012.6427548.

[90] Yuri Demchenko et al. “Intercloud Architecture for interoperability and
integration”. In: Cloud Computing Technology and Science (CloudCom), 2012
IEEE 4th International Conference on. IEEE. 2012, pp. 666–674.

[91] Chin Guok et al. On-Demand Infrastructure Services Provisioning Best Prac-
tices. Tech. rep. OGF ISOD-RG, 2012.

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://sunxacml.sourceforge.net/
http://opennebula.org/
https://github.com/canhnt/sne-xacml
https://github.com/canhnt/sne-xacml
http://servicemix.apache.org/
http://redis.io/
http://jena.apache.org/
http://jena.apache.org/
http://dx.doi.org/10.1109/CloudCom.2012.6427548

BIBLIOGRAPHY 101

[92] XML Signature Syntax and Processing, 2nd. Ed. 2008. URL: http://www.w3.
org/TR/xmldsig-core/.

[93] Apache Santuario project: XML Signature and Encryption Processing. 2013.
URL: http://santuario.apache.org/.

[94] RFC3447: Public-Key Cryptography Standards (PKCS1): RSA Cryptography
Specs v2.1. 2003. URL: http://tools.ietf.org/html/rfc3447.

[95] Bouncy Castle Java Crypto APIs v1.49. http://bouncycastle.org/java.
html. 2013.

[96] Fatih Turkmen and Bruno Crispo. “Performance evaluation of XACML PDP
implementations”. In: Proceedings of the 2008 ACM workshop on Secure web
services. ACM. 2008, pp. 37–44.

[97] Yuri Demchenko, Canh Ngo, and Cees de Laat. “Access control infrastruc-
ture for on-demand provisioned virtualised infrastructure services”. In:
Collaboration Technologies and Systems (CTS), 2011 International Confer-
ence on. IEEE. 2011, pp. 466–475.

[98] Alex X Liu et al. “Designing fast and scalable xacml policy evaluation
engines”. In: Computers, IEEE Transactions on 60.12 (2011), pp. 1802–
1817.

[99] Santiago Pina Ros, Mario Lischka, and Félix Gómez Mármol. “Graph-based
XACML evaluation”. In: Proceedings of the 17th ACM symposium on Access
Control Models and Technologies. SACMAT ’12. Newark, New Jersey, USA:
ACM, 2012, pp. 83–92. ISBN: 978-1-4503-1295-0.

[100] Kathi Fisler et al. “Verification and change-impact analysis of access-control
policies”. In: Proceedings of the 27th international conference on Software
engineering. ICSE ’05. St. Louis, MO, USA: ACM, 2005, pp. 196–205. ISBN:
1-58113-963-2.

[101] Ninghui Li and Mahesh V Tripunitara. “Security analysis in role-based
access control”. In: ACM Transactions on Information and System Security
(TISSEC) 9.4 (2006), pp. 391–420.

[102] Vladimir Kolovski, James Hendler, and Bijan Parsia. “Analyzing web access
control policies”. In: Proceedings of the 16th international conference on
World Wide Web. WWW ’07. Banff, Alberta, Canada: ACM, 2007, pp. 677–
686. ISBN: 978-1-59593-654-7.

[103] Hongxin Hu and GailJoon Ahn. “Enabling verification and conformance
testing for access control model”. In: Proceedings of the 13th ACM symposium
on Access control models and technologies. ACM. 2008, pp. 195–204.

[104] Masahiro Fujita, Patrick C. McGeer, and JC-Y Yang. “Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation”.
In: Formal methods in system design 10.2-3 (1997), pp. 149–169.

[105] Massimiliano Masi, Rosario Pugliese, and Francesco Tiezzi. “Formalisa-
tion and implementation of the XACML access control mechanism”. In:
Engineering Secure Software and Systems. Springer, 2012, pp. 60–74.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://santuario.apache.org/
http://tools.ietf.org/html/rfc3447
http://bouncycastle.org/java.html
http://bouncycastle.org/java.html

102 BIBLIOGRAPHY

[106] Piero Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati.
“An algebra for composing access control policies”. In: ACM Transactions
on Information and System Security (TISSEC) 5.1 (2002), pp. 1–35.

[107] P. Mazzoleni et al. “XACML policy integration algorithms: not to be con-
fused with XACML policy combination algorithms!” In: Proceedings of the
eleventh ACM symposium on Access control models and technologies. SAC-
MAT ’06. Lake Tahoe, California, USA: ACM, 2006, pp. 219–227. ISBN:
1-59593-353-0.

[108] Glenn Bruns, Daniel S Dantas, and Michael Huth. “A simple and expressive
semantic framework for policy composition in access control”. In: Proceed-
ings of the 2007 ACM workshop on Formal methods in security engineering.
ACM. 2007, pp. 12–21.

[109] Qun Ni, Elisa Bertino, and Jorge Lobo. “D-algebra for composing access
control policy decisions”. In: Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security. ACM. 2009,
pp. 298–309.

[110] Prathima Rao et al. “An algebra for fine-grained integration of XACML
policies”. In: Proceedings of the 14th ACM symposium on Access control
models and technologies. ACM. 2009, pp. 63–72.

[111] Alex X Liu et al. “Xengine: a fast and scalable XACML policy evaluation
engine”. In: ACM SIGMETRICS Performance Evaluation Review. Vol. 36. ACM.
2008, pp. 265–276.

[112] Said Marouf et al. “Adaptive reordering and clustering-based framework
for efficient XACML policy evaluation”. In: Services Computing, IEEE Trans-
actions on 4.4 (2011), pp. 300–313.

[113] Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and Flemming
Nielson. “The logic of XACML”. In: Science of Computer Programming
(2014), pp. 80 –105. ISSN: 0167-6423. DOI: 10.1016/j.scico.2013.
05.003.

[114] Randal E Bryant. “Graph-based algorithms for boolean function manipula-
tion”. In: Computers, IEEE Transactions on 100.8 (1986), pp. 677–691.

[115] Karsten Strehl and Lothar Thiele. “Interval diagrams for efficient symbolic
verification of process networks”. In: Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 19.8 (2000), pp. 939–956.

[116] Mikkel Christiansen and Emmanuel Fleury. “An MTIDD Based Firewall”.
English. In: Telecommunication Systems 27.2-4 (2004), pp. 297–319. ISSN:
1018-4864. DOI: 10.1023/B:TELS.0000041013.23205.0f.

http://dx.doi.org/10.1016/j.scico.2013.05.003
http://dx.doi.org/10.1016/j.scico.2013.05.003
http://dx.doi.org/10.1023/B:TELS.0000041013.23205.0f

Publications

Publications in peer-reviewed journals

1. C. Ngo, Y. Demchenko, and C. de Laat, “Decision Diagrams for XACML Policy
Evaluation and Management," In Computers & Security 49 (2015), pp. 1–16

2. C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant Attribute-based Access
Control for Cloud Infrastructure Services," in Journal of Information Security
and Applications (accepted 2015).

Publications in peer-reviewed conference proceedings

1. C. Ngo, M. X. Makkes, Y. Demchenko, and C. de Laat, “Multi-data-types
interval decision diagrams for XACML evaluation engine," in Privacy, Security
and Trust (PST), 2013 Eleventh Annual International Conference on, 2013,
pp. 257–266.

2. C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Policy and context
management in dynamically provisioned access control service for virtualized
Cloud infrastructures," in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, 2012, pp. 343–349.

3. C. Ngo, Y. Demchenko, and C. de Laat, “Toward a Dynamic Trust Establish-
ment Approach for Multi-provider Intercloud Environment," Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International Conference
on. IEEE, 2012.

4. C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Security framework for
virtualised infrastructure services provisioned on-demand," in Cloud Com-
puting Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, 2011, pp. 698–704.

5. Y. Demchenko, C. Ngo, C. de Laat, D. R. Lopez, A. Morales, and J. A. Garcia-
Espin, “Security Infrastructure for Dynamically Provisioned Cloud Infrastruc-
ture Services," in Privacy and Security for Cloud Computing, Springer London,
2013, pp. 167–210.

6. P. Membrey, K. C. Chan, C. Ngo, Y. Demchenko, and C. de Laat, “Trusted
Virtual Infrastructure Bootstrapping for On Demand Services," in Availability,

103

104 PUBLICATIONS

Reliability and Security (ARES), 2012 Seventh International Conference on,
2012, pp. 350–357.

7. Y. Demchenko, C. Ngo, P. Martinez-Julia, E. Torroglosa, M. Grammatikou,
J. Jofre, S. Gheorghiu, J. A. Garcia-Espin, A. D. Perez-Morales, and C. de
Laat, “GEMBus based services composition platform for cloud Paas," in Service-
Oriented and Cloud Computing, Springer Berlin Heidelberg, 2012, pp. 32–47.

8. Y. Demchenko, C. Ngo, C. de Laat, T. W. Wlodarczyk, C. Rong, and W. Ziegler,
“Security infrastructure for on-demand provisioned cloud infrastructure ser-
vices," in Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, 2011, pp. 255–263.

9. Y. Demchenko, C. Ngo, and C. de Laat, “Access control infrastructure for
on-demand provisioned virtualised infrastructure services," in Collaboration
Technologies and Systems (CTS), 2011 International Conference on, 2011,
pp. 466–475.

Publication Authorship

Author contributions to the publications used in this thesis.

Chapter 2

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Security framework for
virtualised infrastructure services provisioned on-demand," in Cloud Com-
puting Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, 2011, pp. 698–704 [48].

C.N. designed, implemented and performed the experiments. P.M. con-
tributed the secure bootstrapping protocol section. Y.D. consulted the study
and publication. C.d.L supervised the work.

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Policy and context
management in dynamically provisioned access control service for virtualized
Cloud infrastructures," in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, 2012, pp. 343–349 [49].

C.N. designed, implemented and performed the experiments. P.M. con-
tributed the bootstrapping trust management section. Y.D. consulted the
study and publication. C.d.L supervised the work.

• C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant Attribute-based Access
Control for Cloud Infrastructure Services," in Journal of Information Security
and Applications [50].

C.N. designed, implemented and performed the experiments. Y.D. and C.d.L
supervised the work.

Chapter 3

• C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat, “Policy and context
management in dynamically provisioned access control service for virtualized
Cloud infrastructures," in Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, 2012, pp. 343–349 [49].

C.N. designed, implemented and performed the experiments. P.M. con-
tributed the bootstrapping trust management section. Y.D. consulted the
study and publication. C.d.L supervised the work.

105

106 PUBLICATION AUTHORSHIP

• C. Ngo, Y. Demchenko, and C. de Laat, “Toward a Dynamic Trust Establish-
ment Approach for Multi-provider Intercloud Environment," Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International Conference
on. IEEE, 2012 [89].

C.N. designed, implemented and performed the experiments. Y.D. consulted
the study and publication. C.d.L supervised the work.

• C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant Attribute-based Access
Control for Cloud Infrastructure Services," in Journal of Information Security
and Applications [50].

C.N. designed, implemented and performed the experiments. Y.D. and C.d.L
supervised the work.

Chapters 4 and 5

• C. Ngo, M. X. Makkes, Y. Demchenko, and C. de Laat, “Multi-data-types
interval decision diagrams for XACML evaluation engine," in Privacy, Security
and Trust (PST), 2013 Eleventh Annual International Conference on, 2013,
pp. 257–266 [47].

C.N. designed, implemented and performed the experiments. M.X.M con-
sulted the study and publication. Y.D. and C.d.L supervised the work.

• C. Ngo, Y. Demchenko, and C. de Laat, “Decision Diagrams for XACML Policy
Evaluation and Management," In Computers & Security 49 (2015), pp. 1–16
[83].

C.N. designed, implemented and performed the experiments. Y.D. and C.d.L
supervised the work.

List of Figures

1.1 The NIST Cloud Computing conceptual reference model [9] 2
1.2 Scope of controls between provider and consumer in NIST cloud

services [9] . 3
1.3 GEYSERS reference model . 5
1.4 ISO 10181-3 access control framework [22] 7
1.5 XACML 3.0 policy model [36] . 11

2.1 Overview of information model for cloud infrastructure resources . 22
2.2 Multi-tenant access control model for cloud infrastructure resources 24
2.3 An example of context relationships 29
2.4 Attribute-based policy model integration with INDL 34
2.5 Defining policy template sample . 35
2.6 A sample Boole-Shannon decision diagram 37
2.7 X-MIDD representing authorization statements 38
2.8 Dynamic Access Control Infrastructure using MT-ABAC model . . . 41
2.9 Single cloud provider performance evaluation 44

3.1 An Intercloud scenario . 48
3.2 Exchanging tokens in Intercloud: grant token and access token . . 50

4.1 An example of the function decomposition 67
4.2 A decision diagram sample for the function decomposition 68
4.3 Sample MIDDs of the Target elements 69
4.4 MIDDs of the R0 target expression 74

5.1 X-MIDDs of rules R1 and R2 . 81
5.2 X-MIDD represents the sample policy P0 81
5.3 Average evaluation response times 86
5.4 Standard deviation of evaluation response times 86
5.5 SNE-XACML micro-benchmarks . 87
5.6 SNE-XACML evaluation time fractions 88

107

108 LIST OF FIGURES

List of Tables

1.1 Access control models comparisons 8

2.1 Administrative commands for MT-ABAC system 32
2.2 DACI integration APIs . 41
2.3 Tenant policy administration APIs 42
2.4 VI Datasets . 43

4.1 XACML abstract syntax . 60
4.2 XACML combining algorithms . 61
4.3 XACML evaluation values for elements: Match, AllOf, AnyOf, Target

and Condition . 61
4.4 XACML decision values for Rule, Policy and Policyset elements . . . 61
4.5 XACML rule evaluation specification 63
4.6 XACML Policy/Policyset evaluation specification 63

5.1 Sample Policy Datasets . 85

109

110 LIST OF TABLES

Summary

Access control is an important part of information security. It aims to preserve the
confidentiality, integrity and availability by restricting access to protected resources
and information via authorization. Depending on specific designs of computer
systems, different access control models and mechanisms have been introduced.

The evolution of Cloud Computing brings advantages to both customers and
service providers to utilize and manage computing and network resources more
efficiently with virtualization, service-oriented architecture technologies, and auto-
mated on-demand resource provisioning. However, these advantages come with
challenges on how to securely and efficiently protect customer resources in cloud
environments. Service providers need to provide elastic and flexible cloud re-
sources to their large numbers of customers based on the multi-tenancy model
while ensuring reliable isolation on shared infrastructures. Therefore, designing
and integrating access control mechanisms into cloud resource management is
not trivial. Although many approaches have been proposed, they still suffer some
drawbacks. First, they lack flexibility and interoperability with information models
from management systems of on-demand provisioned cloud resources. Second,
their policies and access control mechanisms are either coarse-grained, or do not
have sufficient performance for large-scale cloud deployments.

This thesis contributes to the mentioned research field by investigating require-
ments of the access control for cloud infrastructure systems composed of compute
and networking components. Based on these findings we propose a flexible and
efficient access control approach that not only protects distributed cloud resources
but also takes into account cloud infrastructure topology and characteristics.

Our work contains the following contributions:
We introduce a multi-tenant access control system with fine-grained authoriza-

tion for cloud service management. It supports integration with the information
model of cloud infrastructure management for providers. The proposed solution
allows customers to dynamically create access control service instances together
with policy definitions constrained in a SLA (Service Level Agreement) while de-
ploying provisioned clouds. The approach supports on-demand provisioning and
rescaling of cloud resources. It can regenerates policies to reflect changes in re-
source model descriptions. For Intercloud scenarios with clouds across multiple
providers, we propose the authorization token exchange approach to solve dis-
tributed, inter-domain authorization and security context management problems.
It allows users to established dynamic, fine-grained trust relationships with the

111

112 SUMMARY

chain of involved providers who may not have direct trust relations. The proposed
solutions are implemented as a part of the GEYSERS project prototype and testbed.
It demonstrates that our approach is flexible in supporting elastic resource scaling
and re-planning scenarios. Experiments also prove that the performance of our
prototype is acceptable for cloud providers with thousands of customers.

Moreover, to solve the bottleneck problems when using the XACML policy
language in high performance authorization systems, we propose and implement a
novel approach that includes modeling, analyzing and optimizing XACML policy
elements. The proposed approach decomposes policies, aggregates and reduces
the scattering of complex attribute criteria using interval processing mechanisms.
It then constructs custom decision diagrams for XACML that increase efficiency
of policy evaluation. We demonstrate our approach in our open source high
performance policy evaluation engine developed for the XACML 3.0 standard. It
not only achieves magnitudes of throughputs improvement comparing to previous
work but also retains original XACML policy semantics and expressiveness.

Samenvatting

Toegangscontrole is een belangrijk onderdeel van de informatiebeveiliging. Het
doel is om de vertrouwelijkheid, integriteit en beschikbaarheid te behouden door
het authoriseren van toegang tot beveiligde bronnen en informatie. Afhankelijk van
specifieke eigenschappen van computersystemen zijn in het verleden verschillende
toegangscontrole modellen en authorisatie mechanismen geïntroduceerd.

De evolutie van Cloud Computing brengt efficientie voordelen voor zowel
klanten en dienstverleners door het toepassen van virtualisatie, service-oriented
architectuur technologieën en automatische op afroep beschikbaar maken van
computer- en netwerk faciliteiten. Echter, deze voordelen komen met uitdagin-
gen over hoe de data van de klant veilig en efficiënt te beschermen op cloud-
omgevingen. Dienstverleners bieden elastische en flexibele cloud faciliteiten aan
grote aantallen klanten en moeten daarom zorgen voor betrouwbare onderlinge
isolatie op de onderliggende gemeenschappelijke infrastructuren. In het jargon
heet dat: multi-tenancy. Het is niet triviaal om in zulke systemen toegangscontrole
te ontwerpen en implementeren. Hoewel vele benaderingen zijn voorgesteld, lijden
deze toch aan een aantal nadelen. Ten eerste hebben deze benaderingen niet de
flexibiliteit en interoperabiliteit om met de informatie modellen van on-demand
geleverde cloud resources management systemen om te gaan. Ten tweede zijn de
policy beschrijvingen en toegangscontrole mechanismen niet voldoende fijnmazig
of hebben niet voldoende capaciteit voor grote cloud-implementaties.

In deze dissertatie dragen we aan het genoemde gebied bij door onderzoek aan
de eisen van de toegangscontrole voor cloud-infrastructuur. Wij stellen een flexi-
bele en efficiënte toegangscontrole benadering voor dat niet alleen gedistribueerde
cloud resources beschermt maar ook rekening houdt met cloud topologie en eigen-
schappen van de infrastructuur.

Ons werk bestaat uit de volgende bijdragen:
We introduceren een multi-provider toegangs controle systeem met fijnmazige

authorisatie voor cloud service management. Dit systeem maakt integratie met het
informatie model voor cloud beheer door aanbieders mogelijk. De voorgestelde
oplossing stelt klanten in staat om controle op de toegang tot infrastructuur in-
stanties dynamisch te creëren inclusief de policy definities gelimiteerd door de
afgesproken SLA (Service Level Agreement) op het moment dat de cloud instantie
actief gemaakt wordt. De aanpak ondersteunt het instant beschikbaar maken
en herschalen van cloud instanties door regeneratie van policies als gevolg van
veranderingen in de resource-model beschrijvingen. Voor Intercloud scenario’s met

113

114 SAMENVATTING

clouds over meerdere aanbieders verspreid, stellen wij de token gebaseerde au-
torisatie uitwisseling voor om gedistribueerde inter-domein autorisatie en veilighei-
dscontext problematiek op te lossen. Het stelt gebruikers in staat om dynamische,
fijnkorrelige vertrouwensrelaties op te zetten met de keten van betrokken providers,
die wellicht geen onderlinge vertrouwensrelaties hebben. De voorgestelde oplossin-
gen zijn geïmplementeerd als een onderdeel van het GEYSERS project prototype en
testbed. Hierbij is aangetoond dat onze aanpak flexibel is in de ondersteuning van
elastische cloud aanbiedingen en herplanning scenario’s. Experimenten toonden
ook aan dat de prestaties van onze prototype acceptabel werkt voor cloud providers
met duizenden klanten.

Daarenboven, om knelpunten op te lossen bij het gebruik van de XACML policy-
taal in hoge aantal transactie systemen, introduceren en implementeren wij een
nieuwe benadering die het modelleren, analyseren en optimaliseren van XACML
elementen omvat. De voorgestelde aanpak ontleedt policies, neemt aggregaties
en vermindert de verstrooiing van complexe XACML attribute criteria door ge-
bruikmaking van interval verwerking mechanismen. Via deze aanpak komen we
dan met voor de actuele situatie specifieke beslissing diagrammen voor XACML
die de efficiëntie van de policy evaluatie enorm verhogen. We presenteren een
implementatie van onze open source policy evaluator gebaseerd op de XACML
3.0-standaard. We tonen aan dat onze aanpak in een high performance policy
evaluatie module niet alleen enige orden van grootte performance verbetering geeft
vergeleken met eerder werk, maar ook de originele XACML policy semantiek en
expressiviteit behoudt.

Acknowledgements

Pursuing the PhD is a long journey in my life. When writing these lines, I am please
that my PhD is almost accomplished. Actually, it would not be possible without
help of many people that encourage, help and guide me along the way.

I would like to thank my promoter, Prof. Cees de Laat, for accepting me as a
PhD student into the System and Network Engineering group and the GEYSERS
research project. I would like to express my deepest gratitude for your endless
guidance, support and valuable insights into my research directions.

I am truly thankful for my supervisor, Dr. Yuri Demchenko, for his support,
continuous guidance and encouragements throught out my PhD. You patiently
guide me into the research field, created opportunities to participate and work with
people in the field. Without you I cannot accomplish this journey.

A special thanks to Prof. Pieter Adriaans for your critical questions and con-
structive advice in the field of mathematical logic to improve my thesis. I cannot
finish my thesis without your kind support.

I thank all my colleagues in our research group for their intellectual dicussions
and comments on my work: Paola, Cosmin, Mattijs, Marc, Ralph, Wibi, Daniel,
Zhiming, Jeroen, Peter, Hao, Karel, Naod, Chariklis, Rudolf, Guido, Arie, Adam,
Mikolaj, Reggie, Spiros, Fahime, Merijn, Ana Maria, Ana Lucia, Miroslav, Souley
and Gerben. It was my pleasure to work, drink, hang out and play sports with
you during four years at UvA. I also thank for people helping me on my teaching
assistant work: Jaap, Niels and Toto.

I also thank for people in the GEYSERS project that I work with: Joan A., Jordi,
Ester and Sergi at i2CAT, Spain; Shuping and Eduard at Essex, UK; Florian and
Philip at SAP, Switzerland; Giada and Nicola at Nextworks, Italy; Jens at IBBT,
Belgium; Damian, Krzysztof, Lukasz and Artur at PSNC, Poland and many others in
the project. I have a chance to work with you in an international setting, where I
can learn many useful things.

A special thanks to my colleagues at Hippo for your flexibility and support when
I need to take some time off for my thesis completion. I also thank Arthur for
helping me translate the summary to Dutch language.

I am grateful for all of my Vietnamese friends in the Netherlands for their
friendship and for the great time we had in the last five years, from playing football,
photography, catan, hanging around, travels, etc. All of them make my PhD life
balanced and colorful.

Above all, I would like to thank my family: my parents, my brother and my

115

116 ACKNOWLEDGEMENTS

sister-in-law for their love and constant support. Huge thanks, love and apprecia-
tion go to my wife Van who was always there with grace and generosity. Thank our
little son Kien who makes my life full of emotions and joys.

Canh Ngo
Amsterdam, January 2016.

	Contents
	Introduction
	Cloud Computing Characteristics
	Convergence of Cloud Infrastructures and Optical Network Virtualization
	Access Control Requirements for Clouds Service Providers
	Related Work
	Preliminaries on Access Control Models
	Access Control Policy Languages

	Research Questions
	Contributions

	Multi-tenant Access Control for Single Cloud Providers
	Introduction
	Related Work
	Problem Statement
	Preliminaries
	Multi-tenant Systems and Resource Ownerships
	Information Model for Virtual Cloud Infrastructure
	Attribute-based Access Control

	Proposed Model
	Multi-tenant Attribute-based Access Control Model
	Delegations in MT-ABAC
	Multi-tenancy Constraints
	MT-ABAC Operations

	Analysis
	Integration MT-ABAC with INDL
	Attribute-based Policy Semantic Model
	Policy Generation from Cloud Infrastructure Descriptions

	Mechanism to Manage Contexts in MT-ABAC
	Decision Diagrams
	Context Structure
	Operations
	Complexities

	System Design
	DACI Architecture and Integration
	High Performance PDP for Tenant Policies
	Context Resolution and Token Exchange
	Tenant Policy Administration

	Implementation and Evaluation
	Implementation Overview
	Evaluation Results

	Conclusions

	Multi-tenant Access Control for Intercloud
	Introduction
	Problem Statement
	Extended Model for Multiple Providers
	Constraints in Distributed Authorizations
	Token Exchange in Intercloud

	Implementation and Evaluation
	Implementation Overview
	Evaluation Results

	Conclusions

	Logical Model and Mechanisms for XACML
	Introduction
	Related Work
	Semantics of XACML Policy Components
	Abstraction
	Predicate Elements
	Rules and Policies
	Combining Algorithms

	Multi-data-types Interval Decision Diagrams
	Introduction
	Logical Function Decomposition
	Multi-data-type Interval Decision Diagrams

	Interval Processing and Decision Diagram Operations
	Interval Partition Operations
	MIDD Operations
	MIDD to X-MIDD Transformation
	X-MIDD Operations

	Applications
	Conclusions

	High Performance XACML Policy Evaluation
	Introduction
	XACML Policy Transformations
	Creating MIDD from the Target Element
	Creating MIDD from a Condition Element
	Creating X-MIDD for a XACML Policy Tree

	XACML Policy Evaluations
	Single-valued Request Evaluation
	Multi-valued Request Evaluation

	Analysis
	Features Comparison
	Complexities

	Implementation and Evaluation
	Environment and Datasets
	Validation
	Performance Analysis

	Conclusions

	Conclusion
	Answers to Research Questions
	Discussion
	Future Research

	Acronyms
	Bibliography
	Publications
	Publication Authorship
	List of Figures
	List of Tables
	Summary
	Samenvatting
	Acknowledgements

