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CHAPTER 1
Introduction

Embedded systems, a kind of computing systems designed for special purposes,
greatly improve the quality of our lives. They span all aspects of modern life

and can be found nearly everywhere like consumer electronics, common household
devices, medical equipments, vehicles and so on. Different with traditional embed-
ded systems that can perform only limited functions, modern embedded systems
are increasingly powerful and versatile especially in the products of consumer elec-
tronics. However, with more and more features integrated in these systems, the
constraints concerning size, performance, power consumption and so on are also
increasing. Also the run-time behaviour of the embedded systems are becoming
more and more complex and dynamic. These system constraints and the complex
run-time behaviour make the design of such embedded systems a challenging ef-
fort. The designers not only need to carefully trade off various design objectives
by means of software and hardware co-design approaches at the early stage of
system design, but also should provide a proper adaptivity support on the target
system to handle the dynamic run-time behaviour. The design of the latter part
is a totally new topic in the domain of embedded systems which has drawn quite
a lot of attention from researchers in recent years.

1.1 Motivation

In the embedded computer system domain, two trends are clearly visible. First,
for the implementation of modern embedded system, such as those for consumer
electronics like smart-phones, digital televisions, set-top boxes and so on, there has
been an important move towards Multi-Processor System-on-Chip (MPSoC) archi-
tectures [137] to satisfy the non-functional requirements of embedded applications.
These MPSoCs are often heterogeneous systems, containing programmable proces-
sor cores for flexible application support as well as dedicated processing elements
for achieving power and performance goals. Taking the mobile SoC products such

1



2 Chapter 1. Introduction

as Snapdragon from Qualcomm 1, Exynos from Samsung 2, Tegra from Nvidia 3

and so on as an example, these processors are often integrated with multiple CPU
(Central Processing Unit) cores, a number of application-specific accelerators tar-
geted at the mobile market such as a Graphics Processing Unit (GPU), Digital
Signal Processor (DSP), video and audio encoder/decoder, image signal processor,
etc.. The number of processing elements in these MPSoCs also steadily increases.
Whereas current MPSoCs still contain a limited number of processing elements,
future MPSoCs will feature tens up to hundreds of (heterogeneous) processing
elements that are all integrated on a single chip to handle the next generation of
embedded applications like real-time physics, artificial intelligence, 3D rendering
effects and so on [68].

A second trend is the increasing need for system adaptivity [70]. Future em-
bedded systems will need to continuously customize their underlying system at
run time according to the application workload at hand and the state of the sys-
tem itself. There are multiple driving forces for this technology shift towards
adaptive systems. First, today’s MPSoC systems often require supporting a grow-
ing number of applications and standards, where multiple applications can run
simultaneously. For each single application, there may also be different execu-
tion modes (or program phases) with different computational and communication
requirements. For example, in Software Defined Radio appliances a radio may
change its behaviour according to resource availability, such as the Long Term
Evolution (LTE) standard which uses adaptive modulation and coding to dy-
namically adjust modulation schemes and transport block sizes based on channel
conditions. As a consequence, the behaviour of application workloads executing
on embedded systems can change dramatically over time. Second, for a large
variety of embedded systems, dynamic Quality of Service management, in which
different system qualities like performance, precision and power consumption can
be dynamically traded off, becomes more and more important. Take for example
a video decoder that dynamically lowers its bit rate (and thus image quality) to
reduce its computational demands to save battery power. Third, reliability also
becomes an important driver for adaptive systems, as the advances in chip technol-
ogy have reached a level where our circuits are no longer fully reliable, increasing
the chances of transient and permanent faults [109].

The combination of the above trends in embedded systems motivates the re-
search of this thesis where the main goal is to increase the adaptivity of MP-

SoC systems to efficiently deal with the complex and dynamic behaviour

of embedded applications.

1.2 Current Techniques for Adaptive Systems

In recent years, a number of techniques have emerged to increase the adaptivity of
MPSoC systems. These techniques are mainly based on run-time system reconfig-
uration which can be simply divided into two categories: software reconfiguration
and hardware reconfiguration.

1https://www.qualcomm.com/products/snapdragon
2https://www.samsung.com/exynos
3http://www.nvidia.com/object/tegra
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For adaptive MPSoC systems with software reconfiguration, a commonly used
technique is the dynamic remapping of application tasks (both computing and
communicating tasks) onto the underlying hardware resources at run time [21, 14,
70]. In this kind of solutions, a middleware support layer like a run-time system
manager (or multiple system managers in case of distributed resource manage-
ment) which could be either integrated in the Operating System (OS) or imple-
mented on top of the OS should be provided on the target system to achieve
dynamic software reconfiguration. And the problem of how the application tasks
should be remapped to improve the system performance and/or energy consump-
tion is solved by a task mapping mechanism implemented in the above-mentioned
middleware layer which is also the main research issue in these solutions. Besides
the task mapping based approaches, another research direction for improving sys-
tem adaptivity by software reconfiguration focuses on the programming model of
MPSoCs. [118] gives a typical example for this kind of solutions where the idea
of resource-aware programming is introduced into the programming model. Un-
der such a novel programming model, a program gets the ability to explore and
dynamically spread its computations to processors.

With regard to MPSoC systems where the adaptivity is achieved by hardware
reconfiguration, the hardware components in these systems can be dynamically re-
configured according to the workload and the execution environment/state. These
solutions are totally different from the solutions using software reconfiguration. For
the purpose of dynamic hardware reconfiguration, at least two techniques can be
found. One of them is the technique of dynamically changing system parameters
such as done in dynamic frequency and voltage scaling. And another technique
is dynamically reconfiguring processing components for accelerating application
tasks (e.g., [32, 131, 3, 13]) or network components to customize the network to a
specific application workload (e.g. [130, 114]).

Among the currently emerged techniques in adaptive MPSoC systems, the so-
lutions using hardware reconfiguration often have a better performance compared
with the ones using software reconfiguration. However, this benefit comes at the
cost of more hardware resources. Considering the two kinds of solutions that use
software reconfiguration, the ones that focus on the programming model involve
higher design complexity not only for application designers but also for system
designers to provide the support for a new programming model. However, the
solutions using application task remapping provide a good trade off between the
hardware overhead and design complexity. Consequently, in the research of this
thesis, we focus on the techniques for dynamic application task remapping

to achieve our research goal.

1.3 Task Mapping Methodologies for MPSoCs

1.3.1 Traditional Solutions

The problem of optimally mapping application tasks onto a given set of het-
erogeneous processors with the aim of optimising goal(s) like maximal through-
put (performance) and/or minimal overall energy consumption has been known,
in general, to be NP-complete. This problem is exacerbated when mapping
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Figure 1.1: State-of-the-art task mapping methodologies.

multiple applications (i.e., bigger task sets) onto the target platform. Tradi-
tionally, the mapping of applications onto the underlying architectural compo-
nents of MPSoC systems has always been done in a static fashion at design
time [88, 63, 26, 69, 53, 102, 104, 15, 120, 25, 23]. These methods typically use
computationally intensive search methods to find the optimal mapping or near
optimal mapping for all applications that may run on the system. Evidently, the
drawback of such static mapping techniques is that they cannot cope with dynamic
application behaviour in which different combinations of applications are concur-
rently executing over time and contending for system resources. To overcome this
drawback of static mapping techniques, dynamic (on-the-fly) task mapping tech-
niques [46, 110, 79, 119, 132, 83, 34] for MPSoC systems have been widely studied
by researchers. Different to the static task mapping techniques, the dynamic op-
ponents cannot be computationally intensive as they have to efficiently make task
mapping decisions at run time. Therefore, these techniques typically use heuristics
to find good task mappings. However, the static task mapping techniques usually
obtain mappings of higher quality compared to those derived from dynamic algo-
rithms as the former allow for exploring a larger design space for the underlying
architecture. This, of course, at the cost of consuming more time.

1.3.2 State-of-the-art Solutions

In the above mentioned two mapping methodologies, each has its own advan-
tages but also drawbacks. To address the issues and incorporate the advantages
of pure static and dynamic mapping strategies, hybrid (semi-static) mapping ap-
proaches [80, 4, 57, 64, 140, 7, 136, 91, 128, 60, 82, 61, 106] have been proposed
recently.

These hybrid strategies combine the design-time static task mapping with the
run-time management in order to select mapping configurations that are best
suited to the current workload execution scenario on the target system [115]. A
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simple workflow of hybrid task mapping techniques is illustrated in Figure 1.1. As
can be seen from this figure, this type of methods can be divided into two stages.
The first stage is the design-time preparation which determines one or multiple
system configurations for each possible workload scenario that may appear on
the target system. For example, these configurations could be different task-to-
resource mappings (derived by static mapping techniques) optimizing the system
for e.g. performance and/or energy consumption. The second stage is the run-time
stage in which a light-weight run-time resource manager chooses the appropriate
system configuration from the pre-optimized configurations based on the current
system execution scenario and system status.

1.3.3 Advantages of State-of-the-art Solutions

In hybrid task mapping methodologies, the compute intensive analysis is per-
formed at design-time which greatly reduces the computational overhead of run-
time mapping optimisation and consequently facilitates efficient task remapping.
They take advantage from both design-time static task mapping techniques (high
mapping quality) and run-time dynamic task mapping heuristics (low computa-
tion overhead and support for application dynamism). However, there are some
drawbacks for this kind of solutions as well, which will be explained in detail as
our research issues in the following section.

1.4 Problem Statement

In our research, the overall research problem is how to improve the adaptivity of
MPSoC systems with dynamic and complex application behaviour using dynamic
application task remapping. As mentioned in Section 1.1, today’s MPSoC sys-
tems often require to supporting an increasing number of applications where each
application may also have different execution modes (or program phases) with
different requirements. As a consequence, the behaviour of application workloads
executing on MPSoCs can change dramatically over time. Here, one can distin-
guish two forms of dynamic application behaviour: inter-application dynamism
and intra-application dynamism. These forms of dynamism are often captured
using scenarios [93, 42, 43, 127]. This means that there are two different kinds of
scenarios: inter-application scenarios to describe the simultaneously running ap-
plications in the system, and intra-application scenarios that define the different
execution modes for each application. The combination of these inter- and intra-
application scenarios are called workload scenarios [128, 125], and specify the
application workload in terms of the different applications that are concurrently
executing and the mode of each application as shown in Figure 1.2. For a target
MPSoC system for which n target applications need to be supported where each
application has m execution modes, the total number of possible workload scenar-
ios on the system is (m + 1)n � 1. Evidently, when the parameters n and m are
relatively small, the previously discussed hybrid task mapping techniques could
perfectly improve the efficiency of the target MPSoC system. On the contrary,
with the scaling of these two parameters which might happen in the near future of
MPSoCs, several problems will occur in these state-of-the-art techniques, as will
be elaborated on below.
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Figure 1.2: Definition of a workload scenario.

Following the process of hybrid task mapping methodologies shown in Fig-
ure 1.1, the first step is to explore one or multiple task mappings for each work-
load scenario. In this process, the static task mapping problem is usually solved
by computational intensive algorithms like Simulated Annealing [87] or Genetic
Algorithms [6] to generate optimal or near optimal mapping solutions under the
target optimisation goal(s). For each single task mapping problem, its complexity4

depends on the number of target application tasks and the number of heteroge-
neous processing elements in the target MPSoC system. With the number of the
target application tasks increasing, the mapping solution space will explode expo-
nentially. Consequently, in our research where the number of target application
tasks for each separate design-time task mapping problem is usually very large,
these computational intensive algorithms will suffer from the problem of unac-
ceptable Design Space Exploration (DSE) time. This problem leads to the first
concrete research question of this thesis:

• How to improve the efficiency of static task mapping exploration?

Even though the exploration time for each single task mapping problem can
be reduced, the total time of mapping exploration for a large number of possible
workload scenarios as mentioned in the first paragraph of this section is also a
serious problem which will greatly influence the success of a modern embedded
system with a stringent time-to-market requirement such as mobile phones. Con-
sidering, e.g., 10 applications with 5 execution modes for each application, there
will be 60 million different workload scenarios. If each scenario takes only one
second for task mapping exploration at design time, then one would need nearly
two years to obtain all the mappings. Moreover, storing all these optimised map-
pings such that they can be used at run time by the system manager would also

4The number of possible mappings of a mapping problem where i application tasks need to
be mapped onto j heterogeneous processing elements is ji.
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be unrealistic as this would take up too much memory storage. Therefore, the
scalability of hybrid task mapping methodologies with regard to the number of
workload scenarios is also a serious issue. Besides that, the flexibility is another
issue for this type of methods at design time. This because all potential applica-
tions on the target platforms must be known at design time. Therefore, when the
application set changes, design-time analysis needs to be redone entirely. These
two issues of the above discussed hybrid task mapping methodologies bring out
our second research question:

• How to achieve scalability with regard to the number of workload scenarios
as well as flexibility in hybrid task mapping techniques?

Focusing on the run-time management of these hybrid task mapping tech-
niques, the system manager typically always tries to reconfigure the system re-
sources when a new workload scenario has been detected and, doing so, the recon-
figuration costs are not explicitly taken into account. These reconfiguration costs
may be substantial as they include the overhead of application tasks that may
need to be migrated between different processors in the MPSoC. Especially in the
case of fine-grained workload scenarios – which are workload scenarios that are
only active for a short duration 5 – such overheads may easily eliminate the ben-
efits of reconfiguring the system: the reconfiguration itself may take longer than
the performance gain that is obtained after reconfiguration. Consequently, in the
case of fine grained workload scenarios on the target MPSoC system, these hybrid
task mapping solutions may actually degrade the system performance, especially
on heterogeneous MPSoC systems. In our research, we refer to this problem as
blind adaptivity. With regard to this problem, our third research question is:

• How to deal with blind adaptivity at run time for an adaptive MPSoC system?

In the second problem statement, we considered the mapping scalability prob-
lem related to the number of target application tasks. However, as mentioned in
the second problem statement, it is also related to the target hardware platform
(the number of heterogeneous processing elements in the system). With the tech-
nological advancement, the number of processing elements in a MPSoC system
will increase to hundreds or even more. The future large-scale MPSoC systems
impose a big challenge to manage their resources at run-time in a scalable manner.
Therefore, we define a fourth research question:

• Are hybrid task mapping techniques still applicable on future large-scale MP-
SoCs?

1.5 Contribution and Thesis Overview

1.5.1 Main Contributions

The work presented in this thesis has been performed in the context of the Sesame
system-level simulation framework [95, 124] which provides the ability for effi-
ciently evaluating non-functional behaviour like performance and energy consump-
tion of an embedded system at a high level of abstraction. Based on this simulation

5Different workload scenarios rapidly succeed one another at run time.
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framework, we strive to solve the research questions discussed in Section 1.4 for our
scenario-based adaptive MPSoC systems. The main contributions of this thesis
are:

• A novel bias-elitist genetic algorithm (GA) that is guided by domain-specific
heuristics to improve the efficiency of static task mapping exploration. For
our task mapping problem, when the target mapping solution space is very
large, it is impossible to explore each solution at design time. Consequently,
in order to reduce the search time, a new GA-based mapping DSE algorithm
is proposed to allow for effectively pruning the search space.

• An extension of the Sesame simulator with a run-time resource schedul-
ing framework to support dynamic scenario execution and task remapping.
As the original Sesame framework only supports the simulation of target
applications and architectures under a static mapping, a run-time system
management framework is provided. In order to be able to simulate the
dynamic run-time application behaviour in Sesame.

• A scenario clustering based task mapping approach to solve the scalability
problem of hybrid task mapping techniques with regard to the number of
workload scenarios. In this proposed approach, by using the scenario clus-
tering method, the number of task mappings and consequently the time cost
for mapping exploration at design time and the memory storage for storing
the pre-optimised mappings at run time can be greatly reduced. In addition,
a run-time on-the-fly heuristic is presented for dynamic Quality-of-Service
(QoS) management with regard to application performance requirements.

• A novel hybrid task mapping approach to solve both the scalability and flex-
ibility problem of general hybrid task mapping techniques as mentioned in
the second research question. In normal hybrid task mapping techniques as
discussed in Section 1.3.2, the design time mapping exploration is done at
workload scenario level, which is the reason why these two problems actually
occur. To solve these problems, we use a divide-and-conquer method where
the scenario-level task mapping problem is broken down into application-
level task mapping problems at design time, and the application-level map-
ping solutions are then dynamically combined and further optimised to give
a complete solution for a workload scenario at run time.

• A further extension of the Sesame simulator with run-time system recon-
figuration cost evaluation. When considering the blind adaptivity problem
discussed in the third problem statement, the system reconfiguration cost
should be carefully considered for dynamic task remapping at run time. For
this purpose, we have extended the system-level simulation framework based
on the Sesame simulator with dynamic run-time resource management sup-
port as mentioned above. It has been extended to also support a flexible
and efficient modeling, simulation and exploration of different system recon-
figuration mechanisms and policies in MPSoCs.

• A run-time self-adaptive scheduler/manager for handling the blind adaptiv-
ity problem. The smart system scheduler tries to predict whether or not
reconfiguration of the system actually is beneficial based on the active work-
load scenario and the status of the hardware platform. According to this
prediction, the system will either be reconfigured or not. By using this
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method, which is referred to adaptivity throttling in this thesis, unneces-
sary system reconfigurations can be avoided, and consequently the system
efficiency can be improved.

• A hierarchical resource management mechanism which includes a hierarchi-
cal hybrid task mapping approach and a hierarchical adaptivity throttling
method is implemented for a large-scale MPSoC system. Traditionally, run-
time managers are either centralized or distributed. However, as a cen-
tralized approach comes with a performance bottleneck and a distributed
approach leads to a high complexity, both approaches do not fulfill the re-
quirements of embedded systems. To overcome this problem, a hierarchical
resource management mechanism is presented for our target large-scale MP-
SoC system where the above mentioned novel hybrid task mapping approach
is still applicable.

1.5.2 Thesis Overview

The content of this thesis is organised as follows. Firstly, the introduction chapter
provides a general background of our research which mainly includes the motiva-
tion, the goal and the research questions. Secondly, the main part of this thesis
from Chapter 2 to Chapter 5, is organised according to the research questions
discussed in Section 1.4.

Chapter 2 gives the preliminary information and work that will be used in the
subsequent chapters. It includes a description of the basic Sesame system-level
modeling and simulation environment. Next, the formalisation of overall concepts
is provided for our work. After that, the GA-based mapping DSE algorithm for ef-
fective design-time task mapping exploration is presented. It is foundational work
for the research of this thesis which is applicable whenever a complex mapping
performance optimisation DSE problem is presented.

Chapter 3 contains four parts. In the first part, the Sesame simulator extended
with a run-time resource scheduling framework is presented. This extended sim-
ulator will be used for evaluating the techniques proposed in the remaining parts
of this chapter. The second part introduces our scenario clustering based task
mapping approach which is proposed to solve the scalability problem of hybrid
task mapping techniques with regard to the number of workload scenarios. And
the third part of this chapter gives the details of our novel hybrid task mapping
approach targeting to handle both the scalability and flexibility problem of gen-
eral hybrid task mapping techniques. After that, in the last part, the previously
proposed two techniques are combined together to further improve the efficiency
of MPSoC systems where the novel hybrid task mapping technique is applied
for workload scenario mapping initialisation and the run-time on-the-fly heuristic
of the scenario clustering based technique is used for dynamic QoS management
during scenario execution.

The content of Chapter 4 focuses on how to solve the blind adaptivity prob-
lem as discussed in the third problem statement of Section 1.4. For this purpose,
the system reconfiguration cost should be carefully considered for dynamic task
remapping at run time. Consequently, this chapter firstly introduces our extended
Sesame simulator that supports a flexible and efficient modeling, simulation and
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exploration of different system reconfiguration mechanisms and policies in MP-
SoCs. After introducing this extended simulator, our proposed technique of adap-
tivity throttling on MPSoCs is presented in the second part of this chapter. In the
last part, this technique combined with the novel hybrid task mapping approach
from Chapter 3 is used to further improve the efficiency of MPSoCs.

Chapter 5 demonstrates our initial research on large-scale MPSoC systems. In
this chapter, a tiled MPSoC architecture is firstly presented as our target large-
scale heterogeneous MPSoC systems. After that, for this target MPSoC system, a
hierarchical resource management mechanism based on our hybrid task mapping
approach and adaptivity throttling technique are proposed to show that how our
previously proposed techniques can be applied/scaled to a large-scale MPSoC
system.

Finally, in Chapter 6, we first look back and summarize what we have achieved,
and then look ahead to outline what can be accomplished next.



CHAPTER 2
Simulation-based Static Task Mapping

Exploration

S tatic task mapping exploration plays an important role in our research for
improving the adaptivity on a target MPSoC system. Such static task map-

ping exploration is normally solved by computational intensive algorithms. How-
ever, with the scaling of application tasks and architecture components, this static
optimisation problem is becoming computational intractable by using these algo-
rithms. To solve this problem, in this chapter, we propose a novel bias-elitist
genetic algorithm that is guided by domain-specific heuristics to improve the ef-
ficiency of the static task mapping exploration. To evaluate the fitness of each
mapping solution, a system-level MPSoC simulator, Sesame, has been adopted.
This simulator is also a basic evaluation tool used in our work and will be in-
troduced as a prerequisite of this thesis in the first section of this chapter. In
the second section, the formalisation of overall concepts is provided for our work.
After that, the GA-based mapping DSE algorithm for effective design-time task
mapping exploration is presented as a foundational work of this thesis. Finally, a
short summary is given for this chapter.

2.1 A System-level MPSoC Simulation Framework

Sesame [95, 124], an abbreviation for "Simulation of Embedded Systems Archi-
tectures for Multi-level Exploration", is a system-level modeling and simulation
environment which aims at efficient design space exploration of embedded systems.
Different with most related system simulation environments like Metropolis [11],

This chapter is based on:
• W. Quan and A. Pimentel, “Towards exploring vast mpsoc mapping design spaces
using a bias-elitist evolutionary approach,” in Digital System Design (DSD), 2014 17th
Euromicro Conference on, Aug. 2014, pp. 655–658.
• W. Quan and A. D. Pimentel, “Exploring task mappings on heterogeneous mpsocs
using a bias-elitist genetic algorithm,” CoRR, vol. abs/1406.7539, 2014.

11
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Figure 2.1: Sesame framework.

Milan [78], ARTS [66], etc., Sesame tries to push the separation of modeling ap-
plication behaviour and modeling architectural constraints at the system level to
even greater extents by individually considering the modeling of applications, ar-
chitectures and application-to-architecture mappings. Sesame, as illustrated in
Figure 2.1, recognizes separate application and architecture models, where an ap-
plication model describes the functional behaviour (both computation and com-
munication) of an application and the architecture model defines architecture re-
sources and captures their performance/energy constraints. After explicitly map-
ping an application model onto an architecture model, they are co-simulated via
trace-driven simulation. This allows for flexible evaluation of different applica-
tions, different underlying architectures, and different application-to-architecture
mappings.

2.1.1 Application Modeling

Sesame uses Kahn Process Networks (KPNs) [56] as the Model of Computation
(MoC) to specify the functional behaviour of an application. The choice of using
KPNs is motivated by the target application domain of Sesame. Currently, it is
mainly focused on the streaming application domain like multimedia and signal-
processing applications. KPNs fit well to the streaming behaviour of this type
of applications with a data-flow processing style 1. A KPN of an application
is defined as a network of concurrently running Kahn processes. The only way
of communication between the processes is by blocking reading and non-blocking
writing operations through Kahn channels, which are one-directional FIFO buffers
of unbounded capacity between Kahn processes. According to the semantics of

1A stream of data passes though a series of actors and each actor processes the data and
passes it on to the next actor.
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Figure 2.2: KPN for MJPEG decoder application.

KPNs, a process will not examine its input channel(s) for the presence of data
and it suspends its execution whenever it tries to read from an empty channel.
Unlike reads, writing to channels is always successful as the channels are defined
to be infinite in size. The result of the above semantics is that the KPN MoC
is deterministic: the order of the tokens sent over the channels does not depend
on the order the Kahn processes are scheduled by the simulation. As a result,
Sesame will produce the same output regardless of the scheduling of the processes
or the architectural characteristics. This provides a lot of scheduling freedom when
mapping KPN processes onto architecture models for quantitative analysis.

Figure 2.2 shows a KPN of a Motion-JPEG (MJPEG) decoder application. In-
ternally, the Kahn processes may be implemented in any high level programming
language, as long as the Kahn semantics are observed. The code of each Kahn pro-
cesses is annotated with events that can be supported in the architecture model.
By executing the Kahn model, these annotations cause the Kahn processes to
generate traces of application events which subsequently drive the underlying ar-
chitecture model. In Sesame, three basic events are supported: the communication
events READ and WRITE, and the computational event EXECUTE. Each event
has a set of arguments to describe what is done. The argument of EXECUTE
describes which operation is performed. For instance, the execution of a Dis-
crete Cosine Transform (DCT) in Figure 2.2 is expressed as EXECUTE(DCT).
For READ and WRITE events, the Kahn channel is specified and the amount
of data that is communicated as, depending on the application, reading/writing
may involve different communication units like a pixel or a complete video frame.
The units defined for communication events could be used for controlling the
granularity of events that will be simulated on the architecture model. Besides
these basic events, Sesame can also be extended with other events to support a
more flexible description of application behaviours. For example, the events of
STARTSCENARIO and ENDSCENARIO are examples of extensions to Sesame
for describing the scenario behaviour of applications when multiple applications
are simulated simultaneously on the architecture model [124]. This extension is
also used in our research.

2.1.2 Architecture Modeling

The architecture model of Sesame describes the hardware components of the sys-
tem. It is responsible for modeling non-functional properties, like latencies and
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Figure 2.3: A simple parameterized architecture model of Sesame.

power consumption [124, 96], associated with the components of the system. This
is possible because the functional behaviour is already captured in the application
models, which subsequently drive the architecture simulation. Hardware compo-
nents are described using the Pearl language [135] which is a C-based discrete
event simulation language. Pearl provides easy construction of the models and
fast simulation [94] by its two main features: 1) an object oriented approach for
defining model components and 2) integrated primitives for communication and
synchronization between model components.

The architecture models implemented in Pearl are highly parameterized black
box models, which can simulate different characteristics of the components in the
architecture model by changing the corresponding parameters. For example, the
timing consequences of application events are simulated by parameterizing each
architecture model component with an event table containing operation latencies.
The table entries can include, for example, the latency of an execute event, or
the latency of a memory access (READ/WRITE event) in the case of a memory
component. When simulating the architecture model, the timing characteristics
of application events on each component and the whole system will be derived.
According to the timing consequences and the power consumption parameters
(static and dynamic) of each component, the energy characteristics of the system
can also be derived [126, 99]. Figure 2.3 gives an example of a simple parameterized
architecture model in Sesame.
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2.1.3 Mapping Layer

Sesame provides an additional layer, the mapping layer, between the application
model and architecture model layers to realize the trace-driven co-simulation of
individual models. The main functions of this layer include: firstly, it controls the
mapping of Kahn processes onto architecture model components by dispatching
application events to the correct architecture model component, and secondly, it
makes sure that no communication deadlocks occur when multiple Kahn processes
are mapped onto a single architecture model component. The mapping layer com-
prises of virtual processors (VP) and virtual FIFO buffers (VB) for communication
between the virtual processors. For this reason, the mapping layer is also called
the virtual layer. Between the application layer and the mapping layer, there is
a one-to-one relationship between the components in these two layers as shown
in Figure 2.4. It means that each the Kahn process in the application model is
connected to a virtual processor in the mapping layer. This is also true for the
Kahn channels and the virtual FIFO buffers in the mapping layer, except for the
fact that the latter are limited in size. Their size is parameterized and dependent
on the modeled architecture. Connecting the application layer to the virtual layer
can be done implicitly in Sesame as the structure of the mapping layer is equiva-
lent to the structure of the application model under investigation. For connecting
the mapping layer to the architecture layer, however, an explicit connection is
required. There is a many-to-one relation between the mapping layer and the
architectural layer. A virtual element may only be connected to one architectural
component, but an architectural component may be connected to multiple virtual
elements. In Figure 2.4, for example, two VPs are mapped onto the same processor
Proc.1 and, similarly, the two VBs are mapped onto the same memory.

Under the connection definitions between the application model and the ar-
chitecture model, a virtual processor in the mapping layer reads in an application
trace from a Kahn process via a trace event queue or a trace file [124] generated
from the application model and dispatches the events to a processing component in
the architecture model. The mechanism used to dispatch application events from
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a virtual processor to an architecture model component guarantees deadlock-free
scheduling of the application events from different event traces [94]. In this mech-
anism, when a virtual processor receives a computation event, it is immediately
dispatched by the virtual processor to the architecture component on which it is
mapped as computation events do not cause any deadlocks. However, communi-
cation events cannot be directly dispatched to the underlying architecture model.
When a virtual processor receives a communication event, it needs to consult with
the corresponding FIFO buffer at the mapping layer to check whether or not the
communication is safe (i.e., for read events the data should be available and for
write events there should be room in the target buffer) to take place so that no
deadlock can occur. The communication event can be dispatched only if it is found
to be safe and otherwise the virtual processor blocks. In the architecture model,
the architecture components schedule incoming events according to a given pol-
icy such as First-Come-First-Serve (FCFS) and subsequently models their timing
and/or energy consequences.

2.1.4 Model Calibration

Under the above-described trace-driven simulation mechanism, Sesame is able to
provide a flexible trade off between the simulation efficiency and accuracy. This
trade off highly depends on the abstraction level of application events generated
from the application model. This means that, if the application behaviour is ab-
stracted by fine-grained application events (e.g. pixel block-level processing for
the MJPEG application), Sesame will take longer in terms of simulation time but
provides more accurate simulation results compared to the case where the applica-
tion behaviour is abstracted by coarse-grained application events (e.g. frame-level
processing for the MJPEG application). Sesame provides the ability of dynami-
cally adjusting the simulation efficiency or accuracy by offering a mixed-level co-
simulation technique [39, 122], called trace calibration, where parts of the system
that are of particular interest may be defined at a more detailed level of abstraction
than the rest of the model. By using this technique, coarse-grained application
events can be refined as more detailed events and accurate values derived from
low-level simulators (e.g. an Instruction Set Simulator) or even measurements on
real systems can be provided to the parameter tables of each component in the
architecture model. Consequently, the accuracy of the simulation could be greatly
improved at the cost of consuming more simulation time. In the research of this
thesis, we also use this model calibration technique to improve the simulation accu-
racy for our target applications where the values of events in the parameter tables
of architecture components have been derived from FPGA prototyping [124, 96].

2.2 Formalisation of Basic Concepts

To facilitate the problem description for the remaining parts of this thesis, this
section provides a general formalisation for some basic concepts.

2.2.1 Workload Scenario Formalisation

In the Sesame simulation framework, the applications are modeled by KPNs. Con-
sequently, an application can be formalised as a directed graph KPN = (P, F )
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where P is a set of processes p
i

in the application and f
ij

2 F represents the FIFO
channel between two processes p

i

and p
j

. As introduced in Section 1.4, to capture
the application dynamism in a MPSoC system, we use the concept of workload
scenarios which specifies the application workload in terms of the different appli-
cations that are concurrently executing and the mode of each application. We
denote S as the set of all possible workload scenarios for the target applications.
For a number of n target applications where each application has m execution
modes, the total number of possible workload scenarios in S is (m+1)n�1. Each
workload scenario s

i

2 S is described as a set of KPN graphs, s
i

= (...,KPNk

j

, ...)

where KPNk

j

is the graph of appk
j

(application j, mode k) that is active in sce-
nario s

i

. Combining the KPN graphs in a workload scenario, the graph of a whole
workload scenario can be expressed as s

i

= (T
i

, C
i

) where T
i

is the set of tasks (i.e.
processes in KPNs) in the scenario s

i

and C
i

represents the set of communication
channels between communicating tasks. Each element in T

i

and C
i

, noted as tkm
i

and ckn
i

respectively, represents the m � th task and the n � th communication
channel in application app

k

which is active in workload scenario s
i

.

2.2.2 Hardware Architecture Formalisation

For the architecture formalisation, a MPSoC system can also be described as a
graph MPSoC = (PE,M), where PE is the set of processing elements used
in the architecture and M is a multiset of pairs m

ij

= (pe
i

, pe
j

) 2 PE ⇥ PE
representing a buffered communication medium, composed of a network channel
(like a Bus, NoC, etc.) and a buffer located in system memory, between processors
pe

i

and pe
j

. This general formalisation can be applied to different architectures
of MPSoC systems. For example, by providing the processor type information to
each element in PE, both homogeneous and heterogeneous MPSoC systems can
be described under the above definition.

2.2.3 Task Mapping Formalisation

The task mapping 2 defines the allocating and binding of the underlying architec-
ture resources to the components in a workload scenario (including the processes
and the communication channels). Given a workload scenario and a target MP-
SoC, a correct mapping is a pair of unique assignments (µ : T ! PE, ⌘ : C ! M)
such that it satisfies 8c 2 C, src(⌘(c)) = µ(src(c)) ^ dst(⌘(c)) = µ(dst(c)). For
each workload scenario s

i

2 S, the possible task mappings are denoted as TM
i

with each single mapping tmj

i

2 TM
i

complying with the mapping constraint.
Under these definitions, the computation cost of task tkm

i

2 T
i

and the communi-
cation cost of channel ckn

i

2 C
i

in workload scenario s
i

under the task mapping of
tmj

i

is represented as etkm
ij

and eckn
ij

respectively.
2Note that, in this thesis, we refer the term of "task" as both the computational process and

the communication between processes for "task mapping".
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2.3 A Novel Static Task Mapping Exploration Approach

Given a set of applications, system designers can determine a hardware platform3

by applying different DSE approaches for architecture exploration [39, 122] under
different target design constraints (performance, power consumption, cost of hard-
ware resources and so on). On the derived hardware platform, the task mapping
problem – consisting of assigning a set of application tasks to processors and bind-
ing communications between tasks to communication channels or memories in the
system – plays a crucial role in achieving the application execution objective(s)
such as maximising throughput and/or minimising energy consumption.

Traditionally, the mapping of applications onto the underlying architectural
components of MPSoC systems has always been done in a static fashion at design
time. These methods typically use computationally intensive search methods to
find the optimal mapping or near optimal mapping for all applications that may
run on the system. However, as workload scenarios can change dynamically at
run time, such a static mapping optimised for all target applications (the most
complex workload scenario) might not perform well for other workload scenarios
because the hardware system is typically over dimensioned based on the worst
case workload scenario. When the number of target workload scenarios is rela-
tively small, one solution for this issue is exploring a task mapping under the target
optimisation objective for each workload scenario, and then dynamically applying
these pre-optimised mappings on the target system according to the change of
workload scenarios. For solving each static task mapping problem, many heuristic
algorithms have been proposed, which can roughly be divided into two categories:
the ones that assign one task at a time like Minimum Execution Time (MET)
or Minimum Completion Time (MCT) [16] and the algorithms that map all the
tasks at once like Simulated Annealing [87] or Genetic Algorithms [6]. Compar-
ing these two classes of algorithms, the former category of algorithms usually has
lower algorithmic complexity, which means a shorter computing time, but they
also produce poorer results. For the second category of task mapping algorithms,
several investigations [16, 26, 90, 40] have shown that Genetic Algorithms (GA)
can consistently generate efficient mapping solutions, also in comparison to al-
ternative heuristic search methods like Simulated Annealing (SA), in a relatively
short time period. However, for large problem sizes (i.e., search spaces) which
are quite normal on modern MPSoCs where multiple applications should be sup-
ported, GAs will typically suffer from large computational costs as a significant
number of solution evaluations are needed to find good solutions [115]. Therefore,
it is essential to develop effective pruning techniques that can optimize the search
process, allowing the design space exploration (DSE) algorithms to explore larger
design spaces. To address this problem, this section presents a novel bias-elitist
genetic algorithm that is guided by domain-specific heuristics to speed up the evo-
lution process targeting maximising the mapping performance in terms of system
throughput (or minimising the system execution time per unit of workload).

3The platform is usually optimised under the worst case execution of applications (i.e. all
applications are active) to guarantee that all the target applications can be supported on the
system.
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Figure 2.5: KPN for MP3 decoder application.

2.3.1 Motivation Examples

As a motivational example, we present a task mapping problem for which finding
a good solution using a standard GA is difficult. Considering a MP3 decoder ap-
plication with 27 tasks as shown in Figure 2.5, we want to find the task mapping
with maximal throughput on a heterogeneous MPSoC system containing 5 pro-
cessors with different computational characteristics. To solve this task mapping
problem, the GA-based mapping algorithms from [36] and [6] are used first. The
fitness function in [36] heuristically evaluates a mapping by analytically predicting
the makespan considering both the computation and communication cost of tasks.
In [6], on the other hand, the fitness function heuristically evaluates a mapping
based on a makespan prediction and the processor workload difference considering
only the computation cost of tasks.

Figure 2.6 shows the relationship between the fitness value (as evaluated by
the fitness functions from [36, 6]) and the real mapping quality (derived from the
Sesame simulator) of the final mappings as obtained by these two algorithms in
10 different executions. As we can see from Figure 2.6, the fitness functions used
in these two GA-based mapping algorithms are not good enough to evaluate the
fitness of individuals in our problem where both communication and computation
cost of tasks on the heterogeneous MPSoC are considered. This means that a
more accurate method is needed to evaluate the fitness of each mapping solution.
To this end, a simulation-based approach can be considered to evaluate the fitness
value of individuals. However, the simulation-based approaches usually suffer from
the problem of longer evaluation times. To illustrate this, we have performed
a second experiment with respect to the previous task mapping problem. In
this experiment, we have used an elitist GA with random initial population, a
simple one-point crossover operator and a random mutation operator to explore
the possible mappings. For the fitness evaluation of the mapping solutions, the
Sesame framework has now been used to obtain performance predictions of the
evaluated mappings (the evaluation of a single mapping takes only in the order
of a few seconds). For this particular problem, it took several tens of hours on a
modern PC (2.93GHz Intel Core i7 CPU) to obtain a good mapping solution.
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(a) The fitness value and real performance of mappings gener-
ated by the algorithm in [36]
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(b) The fitness value and real performance of mappings gener-
ated by the algorithm in [6]

Figure 2.6: The fitness value and real performance of final mappings.

But, as we will show in the later part of this section, the total evaluation
time can be reduced by efficient pruning of the search space. To this end, our
approach aims at optimizing the genetic operators in the GA that take care of
deriving new individuals – representing design points – from the old individuals
during search iterations. If the operators can be optimized such that they only
generate a small set of chromosomes that has a high probability of containing
the optimal or near optimal solutions, then the search time for a good result can
be greatly reduced. In this work, we hypothesize that such an optimization of
the genetic operators is possible through the exploitation of domain knowledge
as captured by means of heuristics. To motivate this, please consider the follow-
ing experiment in which we have exhaustively explored the mapping space of a
Motion-JPEG decoder application (see Figure 2.2) for the same MPSoC system
used in the previous experiments. Figure 2.7 shows the relationship between the
mapping performance as evaluated by Sesame and two (analytical) performance
heuristics of the same mapping solution, namely the makespan of the mapping
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(a) Makespan versus real performance of the mappings in the
mapping space of MJPEG

(b) Processor workload difference versus real performance of
mappings with a small makespan value (y-value under 1.5 in
the graph of (a)) of MJPEG

Figure 2.7: Relating real mapping performance to heuristic performance metrics
for MJPEG.

and the processor workload imbalance. Although Figure 2.7a indicates that the
makespan heuristic cannot predict the mapping performance with high accuracy
(i.e., Figure 2.7a does not show a narrow linear line), it clearly shows a linear re-
lationship, and thus a correlation, between mapping performance and makespan.
Looking more deeply into the mappings with a smaller makespan, we can see from
Figure 2.7b that the mappings with a smaller processor workload imbalance have
a higher probability to be a good mapping solution. That means that good results
for our mapping problem have some common properties such as a small makespan
and a workload that is well balanced over processors.

Based on this observation, we propose a novel bias-elitist genetic algorithm
in which the genetic operators have been optimized using application domain
knowledge as captured by means of heuristics. We will show that this algorithm
is able to find high-quality mapping solutions for applications that contain a large
number of tasks, and it will do so in much shorter time frames as compared to a
range of other well-known algorithms.
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Algorithm 1 Bias-elitist genetic algorithm
Input:Application KPN
Output:Mapping solution
1: Normalize the target application;
2: Mapping encoding and the initial population generation;
3: Get the fitness of each initial chromosome using Sesame;
4: repeat:
5: Selection;
6: Crossover;
7: Mutation;
8: Evaluation;
9: until stopping conditions are met;
10: return the best solution;

2.3.2 Bias-elitist Genetic Algorithm

Our bias-elitist genetic algorithm, which is outlined in Algorithm 1, combines a
form of elitism as found in classic elitist genetic algorithms with the concept of
a domain knowledge guided genetic algorithm such as from [6]. It tries to find
a task mapping for the target application(s) on a heterogeneous MPSoC system
with the objective to maximize throughput. As the communication between tasks
is considered in our mapping problem, the application KPN is normalized before
evolution, as shown in line 1 of Algorithm 1. The application normalization pro-
cess is used to merge the adjacent tasks that are involved in a communication
cycle in the application KPN. When two adjacent tasks have a communication
cycle, it means that these two tasks have a heavy communication dependence and
consequently can not be explored for task parallelization. In this case, these two
tasks should better be mapped onto the same processor to reduce the communi-
cation overhead. If such communication cycles exist in the target application, by
applying the application normalisation, the mapping solution space can be greatly
reduced. After the application has been normalized, our algorithm will be applied
to explore the solution space. The details of our domain knowledge guided genetic
algorithm will be explained in the following subsections.

2.3.2.1 Encoding and Initial Population

In this research, each mapping solution on a MPSoC system for the target ap-
plication(s) is encoded as a string of integers. The tasks (including processes
and FIFO channels) of the target application(s) are arranged in the chromosome
according to the topological order in the application KPN. Each gene in the chro-
mosome represents a unique identifier of the component in the MPSoC system
(i.e., denoting the processor the task is mapped on). To simplify the chromosome
of each mapping solution, in our approach, only the mappings of computational
tasks (KPN processes) in the application(s) are explicitly encoded in the chromo-
some of a mapping solution. The mapping of FIFO channels in the application
KPN(s) is implicitly encoded according to the mapping of the corresponding com-
municating tasks by our mapping encoder. The mapping encoder always maps
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Figure 2.8: Mapping encoding.

a FIFO channel in a KPN onto the fastest communication media in the system
that is available for communicating tasks. Figure 2.8 illustrates a simple example
of mapping encoding. In this example, as T1 and T2 are mapped onto the same
processor P1, the FIFO channel between these two tasks (C1) is mapped onto
the internal local memory of P1 automatically to reduce the communication cost.
However, C2 is automatically mapped onto the shared memory in the target sys-
tem as T2 and T3 are found to different processors. Consequently, we do not need
to explicitly encode the mapping of the FIFO channels in a chromosome which
greatly simplifies the mapping problem but without loss of generality serves our
purpose of showing the effectivity of our GA. However, we do want to stress that
our GA can easily be extended to include explicit channel mappings, such as e.g.
in [40].

In our GA, the chromosomes in the initial population are randomly generated.
Moreover, we limit the size of the initial population as well as the size of the set
of generated individuals during each evolution generation of the GA to reduce the
simulation time.

2.3.2.2 Fitness Function

The fitness function is defined for measuring the quality of solutions. It comes from
the evolutionary principle of ’survival of the fittest’, where the organisms with the
best characteristics for their environment have a better chance of surviving to the
next generation than weaker organisms, which are less adapted to their environ-
ment [90]. The fitness function is always problem dependent. In some problems,
it is hard or even impossible to define the fitness expression. In our task mapping
problem, we not only need to optimize the makespan of application tasks like in
a general task mapping problem (mapping independent tasks) but also the com-
munication between tasks. Here, the resource contention and task communication
should be carefully considered in the exploration. As analytical fitness evaluation
approaches typically are not capable of accurately capturing such aspects (see
Section 2.3.1), we deploy our Sesame system-level MPSoC simulator to accurately
evaluate the fitness of each chromosome, i.e., mapping, in the population.
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2.3.2.3 Selection

During each successive generation of the GA, a proportion of the existing popula-
tion is selected to breed a new generation. Individual solutions are selected through
a fitness-based selection process, where fitter solutions are typically more likely to
be selected. Our algorithm uses a roulette wheel selection method [85] in which
the best chromosomes are more likely to be selected but the poorer chromosomes
also have a small chance to be picked. We should note that in this chapter we only
consider a single-objective optimization problem. For multi-objective optimization
problems (e.g., simultaneously optimizing performance and power consumption),
the well-known selection approaches from the NSGA-II [35] or SPEA-II GAs [141]
would be good options.

To control the population size in each generation, we use a strategy in which
the best chromosome from the current population and n�1 chromosomes from the
newly generated population are selected as the n survived individuals to breed the
next new generation. The rationale behind this is that we aim at increasing the
diversity of chromosomes in the mapping space that will be searched by keeping
as few as possible old individuals in the new population. Therefore, in contrast
to a general elitist GA, where the elitists in each generation will survive in the
next generation, our GA only preserves the best individual in each generation. It
is an extreme instance of an elitist GA. The fact that we refer to our GA as a
bias-elitist GA will be explained in the next section.

2.3.2.4 Genetic Operators

To generate a new generation from the selected chromosomes, two genetic opera-
tors – crossover and mutation – are applied. In our algorithm, we have improved
the mutation operator so that the algorithm can more quickly find better solu-
tions. For the crossover operator, which produces a new pair of chromosomes from
a selected pair of chromosomes, we apply a standard one-point crossover. We have
chosen this operator because it is simple and produces similar results compared
with other crossover operators like two-point crossover, uniform crossover, cycle
crossover and so on [86].

The mutation operator is an essential part of our GA. It allows the GA to
search new areas in the solution space. There are various methods of implement-
ing the mutation operator, and the easiest one is the random mutation where a
random task is re-assigned to a random processor. In our algorithm, we deploy
a heuristic guided mutation operator that optimizes the mappings using domain
knowledge. More specifically, the mutation operator considers the affinity of tasks
with respect to processors, the communication cost between tasks, and the differ-
ences of processor workloads. The details of our mutation operator are outlined
in Algorithm 2. By applying the mutation operation, a new chromosome will
be derived through one of the following three approaches: task migration (lines
1-12), processor switching (lines 15-22) or a Minimum Completion Time (MCT)
algorithm (lines 24-25).

At the beginning of the mutation, the task migration method will be used to
find a new chromosome based on the input chromosome. In this process, the usage
of each processor U

k

under a given task mapping is calculated by Equation 2.1 in
the function at line 1.
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Algorithm 2 Heuristic guided mutation
Input:C (old chromosome)
Output:C⇤ (new chromosome)
1: PU = usage(C);
2: x = index of processor with max(PU);
3: for task p

i

mapped onto processor pe
x

:
4: for processor pe

y

different with pe
x

:
5: C 0 = migrate p

i

from processor pe
x

to pe
y

;
6: PU 0 = pusage(C 0);
7: if max(PU 0) <= max(PU):
8: MBF.append(Bxy

i

);
9: if array MBF is not empty:
10: p

k

, pe
k

= task and target processor with maximal migration benefit
(max(MBF ));

11: C⇤ = migrate p
k

from processor pe
x

to pe
k

;
12: goto step 1, start with the new mapping C⇤;
13: else:
14: if no new mapping found in the previous steps:
15: for processor pe

y

different than pe
x

;
16: C 0 = switch the tasks mapped onto pe

x

and pe
y

;
17: PU 0 = pusage(C 0);
18: if max(PU 0) <= max(PU):
19: SBF.append(max(PU 0));
20: if array SBF is not empty:
21: pe

k

= processor with min(SBF );
22: C⇤ = switch the tasks mapped onto pe

x

and pe
k

;
23: else:
24: shuffle the order of tasks in chromosome;
25: C⇤ = generate new mapping using the MCT algorithm based

on the shuffled task order;
26: return C⇤;

U
k

=
X

t

i

k

2T

k

eti
k

+
X

c

j

k

2C

k

ecj
k

(2.1)

where T
k

is the set of tasks mapped on processor pe
k

, C
k

is the set of task com-
munication channels connected with the tasks in T

k

. The symbols of et and
ec represent the cost of the corresponding computation task and communication
channel under the target task mapping as defined in Section 2.2.3.

Bxy
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where C
i

is the set of communication channels connected with task t
i

. The symbol
a 7! b means a mapped onto b.
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Lines 3-8 of Algorithm 2 try to find a task (among the tasks mapped onto the
most heavily loaded processor) that has a maximal "migration benefit" under the
condition of line 7. This task migration benefit, with regard to task t

i

migrated
from processor pe

x

to pe
y

, is labeled as Bxy

i

. It is calculated by Equation 2.2
where Mx

i

and My

i

represent the cost of t
i

on pe
x

and pe
y

respectively. Here,
the cost not only considers the task computation time but also the accumulated
communication costs of the task in question.

If a task can be found for migration after the steps in lines 3-8, lines 10-
11 in Algorithm 2 will generate a new mapping by migrating this task to the
corresponding target processor. Subsequently, the above process is repeated –
using the new mapping as input – until no new mapping can be found anymore.

However, if the above task migration approach cannot find a new chromosome,
then the processor switching method will be applied to the input chromosome. As
shown in lines 15-22 in Algorithm 2, the new chromosome will be generated by
exchanging the tasks mapped onto the heaviest loaded processor with the tasks
mapped onto the processor which satisfies the conditions on line 18 and line 21
(the processor that will maximally reduce the value of max(PU) by processor
switching).

In the case that no new mapping can be found by using any of the two previous
approaches, a heuristic-based random mutation operator will be applied. A totally
new chromosome, which means that all the genes in the chromosome are different
from the ones in the input chromosome, might be generated in this approach.
The heuristic used for generating a new chromosome is the Minimum Completion
Time (MCT) algorithm. The MCT algorithm assigns each task, in arbitrary order,
to the processor with the minimum expected completion time for that task [8].
Different task assignment orders will produce different mapping results. Therefore,
each time before generating a new chromosome using MCT, the task order in the
chromosome is shuffled. Consequently, different well-balanced chromosomes will
be added to the new population of our GA. This helps our GA to explore the
mapping space with more gene diversity and prevents our GA from getting stuck
in a local minimum.

A new chromosome generated by our mutation operator has a bias towards de-
sign points that are makespan optimized and/or workload balanced. This explains
the name bias-elitist GA. The task migration approach can optimize both the
makespan and the processor workload variation. However, the processor switch-
ing approach is supplementary to the task migration approach for optimizing the
mapping makespan in situations such as illustrated in Figure 2.9. When a chromo-
some is selected for mutation, Algorithm 2 will first try to optimize the mapping
makespan and the processor workload balance using the task migration method.
However, if this does not succeed (e.g., when the input chromosome already repre-
sents a well-balanced system workload), then the processor switching method will
be applied to the input chromosome to further improve the mapping makespan.
If no improved mapping can be derived from the input chromosome using either
method, then the MCT algorithm will be used to generate a new well-balanced
mapping. By applying this domain knowledge guided mutation operator, the
search space of our GA will be pruned to only those mappings with a high likeli-
hood of being high-quality mappings. As we will show in the experimental section,



2.3. A Novel Static Task Mapping Exploration Approach 27

P1 (220)

P2 (240)

100

120

T1 T2 T3 T4TASK:

Task cost on P1
Task cost on P2

100 120 140 50
80 100 180 60

180

60

P1 (360) P2 (60)

100

120
140 60

P1 (270) P2 (180)

100

120

18050

New mapping by task migration

P2 (180)

P1 (190)

80

100

140

50

Input mappingNew mapping by processor switching

Yes

No

No

Figure 2.9: A simple example of improving the mapping makespan using processor
switching.

this results in a much more efficient and effective search algorithm that allows for
producing good mapping solutions in relatively short evolution times.

2.3.2.5 Termination

With respect to the stopping conditions for our GA, two conditions are used: (1) if
the best solution has not changed after a pre-defined number of generations, then
our GA will terminate automatically and (2) a maximum number of generations
is adopted to guarantee that the evolution process will stop. Our bias-elitist
GA aims at reducing the required (maximum) number of iterations as much as
possible while still yielding good solutions. The above termination conditions are
also applied to the other GAs that are studied in our experiments in the next
section.

2.3.3 Experiments

2.3.3.1 Experimental Setup

For our experiments, we have selected a real multi-media application to investigate
various aspects of our GA: a MP3 decoder consisting of 27 application processes
(tasks). The target architecture considered in our experiments consists of 5 het-
erogeneous processors and 1 IO processor (for IO tasks). These processors are
connected via a bus to a shared memory. In the MP3 task mapping problem, the
total number of possible mapping solutions is 2.98⇤1017. Our Bias-Elitist Genetic
algorithm (BEG) and several other algorithms will be used to explore this vast
solution space to find the (near) optimal mapping with the objective to maximize
the throughput. As our BEG algorithm is not limited to only solving the mapping
problem for single applications, a multi-application mapping case – considering
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Table 2.1: Parameters of genetic algorithms

Parameter Experiment 1 Experiment 2 Experiment 3

EG/GA3SM BEG all GAs all GAs
Initial pop. size 128 8 8 128

Generation pop. size 128 8 8 128
Crossover prob. 0.7 0.7 0.7 0.7
Mutation prob. 0.8 0.8 0.8 0.8

Max. # of generations 2048 128 128 128

a Motion-JPEG encoder and Sobel filter for edge detection in addition to the
MP3 decoder – is studied as well. There, we consider the maximization of sys-
tem throughput when multiple applications are active simultaneously. The total
number of possible mapping solutions in this multi-application mapping problem
is 2.91 ⇤ 1024.

2.3.3.2 Single-application Task Mapping

For the purpose of comparison, three other mapping algorithms are studied as
well: a general Elitist Genetic (EG) algorithm [36], a Genetic Algorithm with a
3-Step Mutation (GA3SM) [6] and Output-Rate Balancing (ORB) [22] which aims
at balancing the computation and communication load of each processor. For the
genetic algorithms (BEG, EG and GA3SM), the parameters in the experiments of
single-application task mapping are listed in Table 2.1. The parameters of each
GA are optimized for each experiment. Notice that the parameter of mutation
probability used in our experiments is a chromosome-level concept4. It differs
from the mutation probability used in typical GAs which is considered at the gene
level5 and is usually small (< 0.1). In our experiments, the gene-level mutation
probability only exists in the EG algorithm and its value is 0.05. For the purpose
of a fair comparison, the same randomly generated initial population is provided
to the EG and BEG algorithms. For the GA3SM algorithm, the initial population
is derived by replacing the worst individual in the randomly generated initial
population with the result of the Min-Min heuristic. This is according to the
original GA3SM algorithm. The results of all experiments have been averaged
over 10 execution runs to deal with the stochastic behaviour of the GAs. For all
experiments, we have used a PC with a 2.93GHz Intel Core i7 CPU.

In the first experiment, the original EG and GA3SM algorithms are compared
with our BEG algorithm. This means that EG and GA3SM use their own analyti-
cal fitness functions to evaluate the fitness value of each chromosome. However, for
our BEG algorithm, the fitness value of each chromosome is evaluated using the
Sesame simulator. For our BEG algorithm, we have deliberately chosen a small
population and generation size to keep the computational costs of the search as low

4Chromosome-level mutation probability: the likelihood of mutating a particular chromo-
some.

5Gene-level mutation probability: the likelihood of mutating each gene (bit) of a chromosome
in mutation.
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Figure 2.10: The quality of final mapping and search performance for different
algorithms in the single-application task mapping problem of MP3.

as possible. Figure 2.10 shows the quality (frame execution time6) of the produced
mapping solution and the average execution cost for each algorithm (averaged over
10 runs). Here, the ORB algorithm is only executed once as it does not have any
stochastic behaviour like the GAs. From this figure, we can clearly see that the
EG and GA3SM algorithms cannot generate final mappings as good as the BEG
algorithm. Moreover, on average, the EG and GA3SM algorithms also spend more
time on finding their final solution. Apparently, the heuristic ORB method takes
the least time to get a final mapping solution which is negligible compared with
the execution times of the other algorithms. However, the final mapping derived
by ORB is much worse than the ones generated by the GAs.

As the analytic fitness functions used in the original EG and GA3SM algo-
rithms are less accurate than the Sesame-based evaluations in our BEG algorithm,
we have also adapted the EG and GA3SM algorithms to use Sesame to evaluate
the fitness of chromosomes. These Sesame-based EG and GA3SM algorithms are
used in the remainder of the experiments. In the second experiment, we compare
our BEG algorithm to the (Sesame-based) EG and GA3SM algorithms on three
aspects: (1) the quality (frame execution time) of the final mapping solution, (2)
the algorithm execution time and (3) the convergence behaviour of an algorithm.

Table 2.2 shows the quality of the final mappings derived from the different
algorithms as well as the algorithm execution cost of the search algorithms. From
Table 2.2, we can see that our BEG algorithm can produce much better solutions
than the other GAs. Our BEG algorithm also takes less time to find the final
mapping solution as compared to the other two algorithms. The reason for this
is that our BEG algorithm can converge much faster than the other two GAs,
as shown in Figure 2.11. This graph shows the convergence behaviour of the
execution run for each algorithm that produced the best final solution out of 10

6Here, as only a single application is considered, the frame execution time is defined as the
execution time of the target application for processing a single frame/unit of workload.
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Table 2.2: Comparison of final mapping quality in Frame Execution Time (cycles,
the smaller the better) and algorithm execution cost (seconds) of GAs with small
population size.

EG GA3SM BEG

Max. FET 2342502 2218522 1979684
Min. FET 2022538 1911142 1784318

Average FET 2197809 2064753 1885810

Max. cost 4897 3074 2160
Min. cost 2145 1637 875

Average cost 3217 2245 1567
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Figure 2.11: The convergence behaviour of each GA with a small population size.

runs. Considering all 10 runs, our BEG algorithm generated the final mapping
solution between the 8th search generation (corresponding to minimal time cost
in Table 2.2) and the 35th generation (corresponding to the maximal time cost
in Table 2.2). For the EG and GA3SM algorithms, however, the final mapping
solutions were found between the 9th – 95th and 12th – 82th search iterations
respectively.

In the third experiment, we studied the behaviour of each GA using a larger
search space by increasing the population size. The results are shown in Table 2.3
and Figure 2.12. As shown in Table 2.3, our BEG algorithm again outperforms
the other algorithms with respect to the quality of the final mapping solution.
Compared with the second experiment, each algorithm produces better mapping
results. More specifically, the EG, GA3SM and BEG algorithms improve the
mapping quality in frame execution time of the best mapping solution (Min. FET
in Table 2.2 and Table 2.3) by 7.9%, 7.4% and 1.2%, respectively. However, these
mapping solution improvements come at the expense of a much higher exploration
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Figure 2.12: The convergence behaviour of each GA with a large population size.

time. The corresponding search times of EG, GA3SM and BEG increase by 7.1,
15.4 and 45.8 times, respectively. To provide more insight in the large increase
of search time for our BEG algorithm, Figure 2.12 again shows the convergence
behaviour. It shows that the BEG algorithm already produces a mapping solution
after only 16 generations that is close to the final mapping solution in terms of
quality. However, it takes nearly 40 more generations to derive a slightly better
final result. Considering this and the previous experiment together, we can see
that our BEG algorithm always yields the best solutions, and on top of this, it
can already find a good mapping result in a relatively short time by reducing
the population size. The EG and GA3SM algorithms, on the other hand, require
algorithm execution times that are about an order of magnitude higher to find
similar good mapping results as our algorithm.

Table 2.3: Comparison of final mapping quality in Frame Execution Time (cycles)
and algorithm execution cost (seconds) of GAs with large population size.

EG GA3SM BEG

Max. FET 2030686 1953746 1821842
Min. FET 1862988 1768808 1762048

Average FET 1943892 1847738 1779620

Max. cost 42729 55002 47824
Min. cost 21342 27814 29778

Average cost 33381 43274 39496
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Table 2.4: Comparison of final mapping quality in Total Execution Time (cycles)
and algorithm execution cost (seconds) of GAs for solving the multi-application
mapping problem.

EG GA3SM BEG

Max. TET 13200633 11857216 11288893
Min. TET 10831581 10705250 9193485

Average TET 11804280 11209070 10120488

Max. cost 7965 6174 3331
Min. cost 3844 2203 1499

Average cost 6314 4236 2499

Table 2.5: Parameters of genetic algorithms

Parameter Experiment 5 Experiment 6
BEG BEG

Initial pop. size 8 8
Generation pop. size 8 8

Crossover prob. 0.7 0.7
Mutation prob. 0.8 0.1–1.0

Max. # of generations 128 128

2.3.3.3 Multi-application Task Mapping

In this experiment (the fourth experiment), we investigate our BEG algorithm
by solving a multi-application task mapping problem in which the MP3 decoder
(27 application tasks), a Motion-JPEG encoder (8 application tasks) and a Sobel
filter for edge detection (6 application tasks) will be mapped onto our previously
described target platform. The quality of the final mapping (total execution time)
and the algorithm execution cost are compared again for the BEG, EG and GA3SM
algorithms. The parameters for each algorithm are the same as in the second
experiment from the previous section (see Table 2.1). The experimental results
are shown in Table 2.4. As can be seen from the results, our BEG algorithm again
produces better solutions in a much shorter time frame than the other two GAs.

2.3.3.4 Sensitivity to BEG implementation choices

To study how the other operators (beside the mutation operator) like the crossover
and selection method influence the behaviour of our algorithm, we have applied
different operator combinations to BEG. For this experiment (experiment 5), we
focus again on the MP3 decoder application, The GA parameters are shown in
Table 2.5. For the crossover operator, the one-point (1p), two-point (2p) and
uniform crossover (Uf) are used in this experiment. With regard to the selec-
tion approach, the roulette wheel (R), random (Rd) and tournament (T) selection
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(a) Performance of final mappings (10 executions) generated by
the BEG algorithm using different operators
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(b) Algorithm execution time cost (10 executions) of the BEG
algorithm with different operators

Figure 2.13: Comparison of final mapping performance and algorithm execution
time cost of the BEG algorithm with different operators.

methods have been studied. Figure 2.13 shows the results of the final mapping
quality and algorithm execution time cost for the different operator combinations.
In this figure, the x-axis contains the operator combinations. For example, 1pR
represents one-point crossover and roulette wheel selection. In Figure 2.13a, each
bar represents the average mapping performance of the final mapping over 10
executions. From Figure 2.13, we can see that the two-point crossover besides
the one-point crossover and the random selection besides the roulette wheel selec-
tion also work well for our BEG algorithm. However, the uniform crossover and
tournament selection show poorer results for our BEG algorithm. For the algo-
rithm execution cost shown in Figure 2.13b, a trend can be observed that shows
that higher quality final mappings generally need more time for our algorithm,
irrespective of what operators are used.

In the last experiment (experiment 6), the impact of the mutation probability
in our BEG algorithm is investigated. In a general GA, the probability of crossover
and mutation should be well-tuned to the problem at hand as it may greatly influ-
ence the convergence speed and the exploration time of the algorithm. However,
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(a) Performance of final mappings (10 executions) generated by
the BEG algorithm with different mutation probabilities
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(b) Algorithm execution time cost (10 executions) of the BEG
algorithm with different mutation probabilities

Figure 2.14: Comparison of final mapping performance and algorithm execution
time cost of the BEG algorithm with different mutation probabilities.

as the crossover operator is not the main focus of this research, we will not change
the crossover probability in this experiment. The mutation probability changes
from 0.1 to 1.0. The other parameters for the BEG algorithm can again be found
in Table 2.5. The results are shown in Figure 2.14 where Figure 2.14a shows the
final mapping quality derived for a specific mutation probability and Figure 2.14b
gives the corresponding algorithm execution time cost. In Figure 2.14a, we can
notice that when the mutation probability is small (below 0.4), the BEG algo-
rithm performs like a general genetic algorithm (EG) with respect to the final
mapping quality. However, the algorithm execution cost is less than a general GA
(EG takes 3,217 seconds on average) which can be seen in Figure 2.14b. On the
other hand, if the mutation probability is very high (higher than 0.8), our BEG
algorithm also yields less high-quality results even though the algorithm execution
cost is reduced (because of a faster convergence) compared with BEG with a lower
mutation probability. The reason might be that the algorithm will get stuck in the
mapping solution space that only contains the mappings with the best makespan
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and processor workload balance, and the algorithm may not have the chance to
explore mappings which are slightly worse in terms of makespan and workload
balance. For this particular MP3 task mapping problem, our algorithm can find
good results when the mutation probability is between 0.4 and 0.8. Notice that,
even though the mutation probability of our BEG algorithm is fixed in this re-
search, some adaptive probability adjusting strategies [121, 107] can be applied to
further optimize our algorithm.

2.3.4 Related Research

In recent years, much research has been performed in the area of task mapping
for embedded systems. [115] gives a nice survey of the existing mapping method-
ologies.

In the context of static mapping performance optimization, some classic algo-
rithms such as Simulated Annealing (SA) [88, 63], Genetic Algorithm (GA) [26,
6, 90], Tabu Search [69] and Integer Linear Programming (ILP) [53] have been
proposed. Among these algorithms, the GA is considered to be a good mapping
algorithm because it can obtain a good result in a relatively short time period [16].
There are different forms of GAs that can be used to obtain a better solution. For
instance, [133] proposes a heuristic-based hybrid genetic-variable neighborhood
search algorithm for guiding the search process and [90] uses eight heuristics to
initialize the GA population for getting better solutions. Alexandrescu et al. [6]
propose a GA with a 3-Step Mutation which aims at increasing the solution’s
convergence rate by using a combination of methods to mutate a chromosome. In
contrast to these GAs, our domain-knowledge guided GA is proposed to solve the
large scale task mapping problems on the heterogeneous MPSoC systems where
the computation and communication cost of tasks and resource contention in the
system are carefully considered in the evolution process.

In our approach, a simulator is used to evaluate the fitness of each chromosome
which greatly increases the total evolution time. Consequently, design space prun-
ing techniques need to be considered in our work. In this field, the most recently
related work is from [123] where the system-level design space is implicitly pruned
by exploiting domain knowledge in their GA-based DSE. In contrast to our work,
however, the work of [123] only deals with homogeneous systems and enriched their
GA with a "mapping distance" based crossover operator. Some other approaches,
for example [10, 72, 92], perform design space pruning via meta-model assisted op-
timization, which combines simple and approximate models with more expensive
simulation techniques. Another class of design space pruning is based on hierar-
chical DSE (e.g., [40, 58, 55, 54]). In these approaches, DSE is first performed
using analytical or symbolic models to quickly find the interesting parts in the
design space, after which simulation-based DSE is performed to more accurately
search for the optimal design points.

2.3.5 Conclusion

The large scale task mapping problem is hard to solve especially when the com-
munication between tasks also needs to be considered. Even though genetic al-
gorithms have a proven track record in solving such problems, these algorithms



36 Chapter 2. Simulation-based Static Task Mapping Exploration

still need to be carefully designed in order to obtain high-quality solutions in an
acceptable time. In this section, we have proposed a bias-elitist genetic (BEG)
algorithm where the mutation operator has been optimized for our task mapping
problem. More specifically, we have added domain-specific heuristics as well as a
Minimum Completion Time heuristic to the mutation operator. In addition, the
selection method in our genetic algorithm has also been tailored for the purpose
of finding a good mapping in a short time period. In various experiments, differ-
ent state-of-the-art algorithms have been compared to our BEG algorithm. These
experimental results clearly confirm the effectiveness of our algorithm.

2.4 Summary

In this chapter, we firstly introduced the basic modeling and simulation environ-
ment of Sesame which is a system-level MPSoC simulator. It has separate models
for applications, architectures and the mapping between them. That makes it
able to provide a flexible evaluation for MPSoCs. In the research of thesis, this
simulation framework is deployed and extended (in the following chapters) as an
evaluation tool for different MPSoC systems with different target applications and
application-to-architecture mappings. After that, a general formalisation of work-
load scenarios, hardware architecture and task mapping has been provided. The
problem definitions in the remaining part of this thesis are based on this formal-
isation. Next to this section, the GA-based mapping DSE algorithm for effective
design-time task mapping exploration has been presented. This algorithm has
been proposed to solve the large-scale task mapping problem under a single opti-
misation objective like performance. It provides a foundation for the research of
this thesis that is applicable whenever a complex mapping performance optimi-
sation DSE problem is presented. In the state-of-the-art task mapping solutions
as mentioned in Section 1.3.2, for a MPSoC system with a limited number of
workload scenarios, after applying such a static mapping exploration at design
time, these pre-optimised mappings could be applied at run-time according to the
change of workload scenarios. By using this kind of approaches, the system’s effi-
ciency could be greatly improved compared to a traditional MPSoC system that
solely uses a static task mapping approach.



CHAPTER 3
Novel Hybrid Task Mapping Approaches

In the previous chapter, we have presented a static exploration approach for the
complex design-time task mapping problem. In general hybrid task mapping

approaches, the design-time optimised mappings derived from such static DSE
will be applied at run-time according to the change of workload scenarios on a
MPSoC system. However, with the increase of the number of target workload
scenarios on the target MPSoC, the mappings that should be optimised and the
memory usage for storing these mappings will become intractable. It means that
there is a scalability problem with regard to the number of workload scenarios by
exploring and applying static mappings at scenario level. Besides that, as men-
tioned in Section 1.4, the flexibility with regard to supporting new applications is
another issue (design-time analysis needs to be redone entirely) in this kind of ap-
proaches. In this chapter, we will focus on solving these problems of most hybrid
task mapping solutions for MPSoC systems with coarse-grained workload scenar-
ios. Here, a coarse-grained workload scenario means that the execution duration
of a workload scenario is long enough to neutralise or even ignore the system re-
configuration overhead caused by task remapping. Therefore, in this chapter, the
actual run-time system reconfiguration cost (overhead of task migrations) during
task remapping is not explicitly considered but will be further studied in the next
chapter .

In this chapter, we will concentrate on the run-time optimisation of task map-
pings based on pre-optimised mappings derived at design time. For this purpose,

This chapter is based on:
• W. Quan and A. Pimentel, “A scenario-based run-time task mapping algorithm for
mpsocs,” in Proceedings of the 50th Annual Design Automation Conference (DAC ’13),
New York, NY, USA: ACM, 2013, pp. 131:1–131:6.
• W. Quan and A. D. Pimentel, “An iterative multi-application mapping algorithm for
heterogeneous mpsocs,” in Embedded Systems for Real- time Multimedia (ESTIMedia),
2013 IEEE 11th Symposium on, Oct. 2013, pp. 115–124.
• W. Quan and A. D. Pimentel, “A Hybrid Task Mapping Algorithm for Heterogeneous
MPSoCs,” in ACM Trans. Embedd. Comput. Syst., vol. 14, no. 1, Jan. 2015, pp. 14:1–
14:25.
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the basic Sesame simulator should be extended to support the simulation of dy-
namic application behaviour. In the first section of this chapter, we will introduce
the run-time support of the Sesame simulator, which has been extended with a
run-time resource scheduling framework. With the extended Sesame simulator,
we are able to study different mapping optimising techniques for MPSoC systems
with complex and dynamic workload behaviour.

In the second section, a scenario clustering based task mapping approach is
proposed to solve the scalability problem of hybrid task mapping techniques with
regard to the number of workload scenarios. In this approach, we firstly divide the
target workload scenarios into different scenario clusters and explore a mapping
under the optimisation goal for each scenario cluster. After that, based on the
cluster-level mapping information, the run-time system manager performs map-
ping customisation using a run-time on-the-fly heuristic to further optimise the
performance of applications on the target MPSoC system. The run-time mapping
customisation is triggered by the violation of application execution objectives. By
using the proposed approach, the number of task mappings and consequently the
time cost for mapping exploration at design time and the memory storage for stor-
ing the pre-optimised mappings at run time can be greatly reduced. In addition,
better QoS with regard to application performance requirements can be achieved
on the target MPSoC system.

To handle both the scalability and flexibility problem of general hybrid task
mapping techniques, a novel hybrid task mapping approach is presented in the
third section of this chapter. In this proposed approach, the scenario-level task
mapping problem is solved by a divide-and-conquer technique where the complex
scenario-level mapping problem is firstly broken down into small application-level
mapping problems at design time, and the application-level mapping solutions are
then dynamically combined and further optimised to give a complete solution for a
workload scenario at run time. Different with the approach proposed in the second
section where both the change of inter-application scenarios and the violation of
application-specific performance objectives trigger system reconfigurations at run
time, the system reconfiguration of this approach is triggered by the change of
workload scenarios (both inter- and intra-application scenarios). It optimises both
performance and/or energy consumption for newly detected workload scenarios
according the system execution mode of the target system.

In the fourth section, based on the techniques proposed in the previous two
sections, we combine these two approaches together to further improve the effi-
ciency of MPSoC systems where the novel hybrid task mapping technique from
the third section is applied for the mapping initialisation of a detected workload
scenario and the run-time on-the-fly heuristic from the second section is extended
for dynamic QoS management during the execution of a workload scenario on a
heterogeneous MPSoC system.

After that, the related research and a short summary for the work of this
chapter are presented.

3.1 Run-time Supports in Sesame

As discussed in section 2.1, Sesame provides the ability of modeling and simu-
lating different applications on different architectures under different mappings.
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Figure 3.1: Extended sesame framework.

However, before starting a simulation in the Sesame environment, the task map-
ping information should be explicitly provided to the mapping layer based on
the pre-defined target application and architecture model. And it can not be
changed dynamically during simulation. Therefore, the original Sesame is unable
to support the simulation of dynamic application behaviour and run-time mapping
optimisation/customisation. To enable this property, we have extended the basic
Sesame simulator with a run-time resource scheduling framework as illustrated in
Figure 3.1.

Our extensions to Sesame include a Scenario DataBase (SDB), a Run-time
System Monitor (RSM) and a Run-time Resource Scheduler (RRS). The SDB is
used to store the information that will be used for run-time resource management
on the target MPSoC system. The content of this SDB depends on the mechanism
for dynamic resource management. For example, if a general hybrid task mapping
approach is applied on the system, where the system resources are dynamically
allocated for each workload scenario according to statically optimised mappings
explored at design time, then the pre-optimised mapping for each workload sce-
nario will be stored in the SDB. Besides the pre-optimised mappings, some other
information such as the application and architecture details that are related to
dynamic mapping re-optimisation, as well as the application-specific information
like the performance objective and energy budget for dynamic QoS management
could be stored in the SDB for better run-time system resource management.

The RSM is a modularised component that can be integrated into the tar-
get architecture for the purpose of detecting and identifying the active workload
scenario, and also for collecting the statistics (e.g., performance of each applica-
tion, system execution information, etc.) from the underlying system during the
execution of a certain workload scenario. As introduced in Section 2.1.1, the ap-
plication behaviour is captured by event traces in Sesame. Benefiting from the
STARTSCENARIO and the ENDSCENARIO events as introduced in Section 2.1.1
that annotate the beginning and the end of each application respectively, we are
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Table 3.1: Standard interfaces in the RRS

Interface Parameters Function
getMapping m_id: mapping identification load pre-optimised mappings

from the SDB
getAppInfo a_id: application identifica-

tion, i_ty: information type
load application-specific infor-
mation from the SDB

getArchInfo i_ty: information type load architecture information
from the SDB

getStatistics i_ty: information type get system statistics from the
RSM

mappingOpt tg: trigger of system reconfig-
uration

generate new task mapping ac-
cording to the system reconfig-
uration trigger type detected
in the RSM and the strategy
implemented in this function

reMap n_m: new derived mapping generate new mapping scheme
for the mapping layer in
Sesame

able to distinguish different workload scenarios. The mechanism of detecting and
identifying a workload scenario works as follows. When a processing element in a
Seseme system model encounters a STARTSCENARIO event of an application, it
will register this application with its execution mode information in the RSM to
notify that a new application has started execution on the system. Similarly, for
an ENDSCENARIO event of an application, the processing element will unregister
the application in the RSM. According to the registered application information
in the RSM, the active workload scenario on the target system can be identified.
Note that, for the application-specific statistics like the execution time of an ap-
plication, it can be derived by adding the corresponding information such as the
start and the end time of the application into the above mentioned processes. By
monitoring the system run-time execution behaviour, the RSM is able to generate
different system reconfiguration triggers, like the change of workload scenarios and
the violation of certain application objectives, for the RRS to further optimise the
resource allocation on the system.

The RRS is the main component for run-time resource management on a target
system. It is in charge of deriving new resource allocation schemes (task mapping
in our case) based on the reconfiguration triggers generated by the RSM and the
mapping optimisation policy. We provide a standard interface for implementing
different task mapping strategies in the RRS component. Consequently, it en-
able us to find a good task mapping strategy for the target applications on the
target architecture. After a new mapping scheme is derived by the implemented
mapping optimisation strategy, the RRS will remap the application tasks onto the
target architecture and then continue the system execution under the new map-
ping scheme. Different with the RSM which is integrated into the architecture
model in Sesame, the RRS works on top of the architecture model like a plug-in
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Figure 3.2: Intra-application scenario performance of an MJPEG application.

component to Sesame by standard interfaces. Table 3.1 illustrates some important
interfaces for the RRS.

After extending Sesame with the above mentioned run-time resource schedul-
ing framework, we are able to simulate an MPSoC system with dynamic appli-
cation behaviour and investigate different run-time management mechanisms. In
the following sections, several task mapping techniques for dynamic resource man-
agement are subsequently proposed to improve the system adaptivity of different
MPSoC systems with complex and dynamic application behaviour.

3.2 Task Mapping with Scenario Clustering

Under general hybrid task mapping techniques, at design time of an embedded
system, a designer could aim at finding the optimal mapping of application tasks
to MPSoC processing resources for each workload scenario to maximally improve
the optimising objectives on the target system. However, when the number of
applications and application modes increase, the total number of workload sce-
narios will explode exponentially. Consequently, the time needed for exploring the
mappings at design time will be intractable. Moreover, storing all these optimal
mappings such that they can be used at run time by the system to remap tasks
when a new scenario is detected would also be unrealistic as this would take up
too much memory storage.

An approach to solve this problem is by clustering workload scenarios and
only storing a single mapping per cluster of workload scenarios to facilitate run-
time mapping [43]. Such clustering implies a significant time and space reduction
needed to explore and store the mappings. In the work of this section, we try to use
a scenario clustering based approach to improve the efficiency of a homogeneous
system with dynamic multimedia application behaviour.
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3.2.1 Motivation Example

As defined in Section 1.4, workload scenarios are the combination of inter-application
scenarios and intra-application scenarios of the target applications. In this sec-
tion, we consider a clustering method1 in which we find and store a single mapping
for each inter-application scenario that yields, on average, the best performance
for all possible intra-application scenarios within the inter-application scenario.
However, as we can see from Figure 3.2, using such a single mapping to represent
an entire inter-application scenario shows considerable performance variations for
the different intra-application scenarios that exist in this inter-application sce-
nario. In this particular example, the inter-application scenario contains three
simultaneously running multimedia applications: a Motion-JPEG (MJPEG) en-
coder, a MP3 decoder, and a Sobel filter for edge detection in images. The use
of cluster-level mappings (i.e., mappings found to be good for an entire cluster of
workload scenarios) can provide a run-time mapping system with enough infor-
mation to quickly find an adequate mapping for a detected workload scenario but
it will not immediately lead to finding the optimal system mapping for any iden-
tified workload scenario. Therefore, we propose a novel run-time Scenario-based
Task Mapping algorithm (STM) that uses the cluster-level mapping information
derived from design-time design space exploration (DSE) but, additionally, per-
forms run-time mapping optimization by continuously monitoring the system and
trying to perform (relatively small) mapping customisations to gradually further
improve the system performance.

3.2.2 Problem Definition

In the case of a multi-application workload, the possible workload scenarios can be
divided into inter- and intra-application scenarios. Let A = {app0, app1, ..., appm}
be the set of all applications that can run on the system, and M i = {mdi0, mdi1, ...,
mdi

n

} be the set of possible execution modes for app
i

2 A. Then, SE = {se0, se1,
..., se

n

inter

}, with se
i

= {app0 = 0/1, ..., app
m

= 0/1} and app
i

2 A, is the set of
all inter-application scenarios. And sai

j

= {app0 = md0
j0

, ..., app
m

= mdm
j

m

}, with
app

i

2 A ^ app
i

= 1 2 se
i

and mdi
j

x

2 M i, represents the j-th intra-application
scenario in inter-application scenario se

i

2 SE. The set of all workload scenarios
can then be defined as the disjoint union S = t

i2SE

SAi, with SAi = {sai1, sai2,
..., sai

n

i

intra

}.
As already explained in Section 3.2.1, we propose to perform the run-time

mapping of applications in two stages. In the first stage, which is performed
at design time, we cluster workload scenarios (similar to [43]) and perform DSE
for each of these scenario clusters to find a mapping that shows the best aver-
age performance for that particular cluster. More specifically, in this section, we
consider each se

i

2 SE as a different cluster of scenarios (i.e., we cluster all intra-
application scenarios of an inter-application scenario). The mappings derived from
design-time DSE are stored so they can be used by the run-time mapping algo-
rithm to re-map applications when a workload scenario is detected that belongs
to a different scenario cluster. Since these statically determined mappings may

1We note, however, that other clustering methods would also be possible and that our run-
time mapping algorithm is independent on the clustering method used.
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not be optimal for the current active intra-application scenario, the second stage
of the run-time mapping algorithm tries to perform (relatively small) mapping
customizations to gradually further improve the system performance. In our goal
to optimize mappings, we recognize two kinds of objectives: system-level objec-
tives and application-dependent objectives. System-level objectives, denoted as
O

↵

= {O
↵0, O↵1, ...}, define the system-wide metrics such as system energy con-

sumption, total system execution time, etc. Application-dependent objectives,
denoted as O

�

= {O
�0, O�1, ...}, are mainly used to define the performance re-

quirements of each separate application like throughput, latency, etc. As will be
explained in the next section, the first stage of our run-time mapping approach
uses system-level objectives to find mappings per scenario cluster. Here, we use
system energy consumption and total workload scenario execution time as met-
rics: E

s

i

, s
i

2 S represents the system energy consumption of workload scenario s
i

and X
s

i

, s
i

2 S is the execution time of scenario s
i

. For the second stage, during
which the mapping is gradually optimized, we apply application-specific objectives
– in our case throughput requirements for each application – for the optimization
process. However, to measure the results of the run-time optimization process, we
also use the system-level metrics E

s

i

and X
s

i

.
Under the above definition and given the KPN = (P, F ) for each application

and an MPSoC = (PE,M) as described in Section 2.2, our goal is to continuously
customize the mapping at run time such that the system-level (system performance
and energy consumption) and/or application-specific (application performance)
objectives under every workload scenario s

i

2 S are satisfied. In this section, our
target architecture is a homogeneous MPSoC system.

3.2.3 Static Multi-objective Task Mapping Optimisation

Different with the DSE approach proposed in Section 2.3 where only single opti-
mising objective is considered in the mapping exploration process, the static map-
ping optimisation problem of this chapter considers multiple optimising objectives
such as performance and energy consumption. To this end, we have deployed the
scenario-based DSE approach presented in [128], which is based on the well-known
NSGA-II genetic algorithm and allows for effectively pruning the design space by
only evaluating a representative subset of the target problem. As our target MP-
SoC platform is known, we can use a simplified version of the approach in [128].
The implementation of the NSGA-II genetic algorithm for our target mapping
problem is explained below. With regard to the chromosome representation of the
mapping problem, it uses the encoding approach introduced in Section 2.3.2.1.

3.2.3.1 Fitness Function

To find the mapping solutions optimised for both performance and energy con-
sumption for a single workload scenario s

i

in the mapping space in question, the
Pareto Front of mapping performance and mapping energy consumption is gen-
erated by solving the following multi-objective optimization problem according to
the problem definition of Section 3.2.2:

min[E
s

i

, X
s

i

]. (3.1)
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Figure 3.3: Pareto Front of a workload scenario

Evaluating the fitness value of each individual (i.e., design point) is performed
using our Sesame simulator similar to our BEG algorithm in the previous chapter
(see Section 2.3.2). After the GA-based DSE, a Pareto Front of solutions con-
sidering both the mapping performance and energy consumption is generated, as
illustrated in Figure 3.3. Looking at the Pareto Front, one can easily obtain the
mappings satisfying different objectives like mapping solutions with maximal per-
formance, minimal energy consumption and maximal performance under a certain
energy budget which will be introduced later in this chapter.

3.2.3.2 Operators for NSGA-II

To effectively search for global optimal mapping solutions, and escape possible
local ones, the crossover and mutation operators are important components of
a GA. With respect to the crossover operator, the most common methods are
one-point crossover, two-point crossover and uniform crossover. For our multi-
objective task mapping optimisation problem, the one-point crossover is used as it
is simple and yields more or less the same effect as the other approaches. Regarding
mutation, we use an operator that randomly selects an application task that is
subsequently moved to a randomly selected processor.

3.2.3.3 Parameters for NSGA-II

Another important step is to set appropriate parameters (problem dependent) for
the GA, such as population size, crossover and mutation probabilities, etc. The
parameters of the NSGA-II genetic algorithm we have used for design-time DSE
are listed in Table 3.2, which have been tuned for obtaining high-quality mappings
for each workload scenario in our benchmark set considered in this chapter.
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Table 3.2: Parameters of NSGA-II

parameter value
initial population size 256

generation size 256
generations 512

crossover probability 0.8
chromosome-level mutation probability 0.2

gene-level mutation probability 0.05

3.2.4 Scenario Clustering Based Task Mapping

Based on the scenario clustering approach, our run-time task mapping algorithm
(STM) uses the cluster-level mapping information and further optimises the map-
ping to satisfy the application-dependent optimising objectives.

The STM algorithm, which is outlined in Algorithm 3, can be divided into a
static part and a dynamic part. The static part is used to capture application dy-
namism at the granularity of inter-application scenarios. For each inter-application
scenario se

i

2 SE, we have determined – using above introduced design-time DSE
– a mapping that on average performs best for all intra-application scenarios SAi

of se
i

. That is, for each se
i

we search for a mapping by solving the following
multi-objective optimisation problem:

min[
X

sa

i

j

2SA

i

E
sa

i

j

,
X

sa

i

j

2SA

i

X
sa

i

j

]. (3.2)

The mappings derived from this design-time DSE are used by the STM algo-
rithm as shown in lines 1-3 of Algorithm 3. When the system detects the execution
of a different inter-application scenario, the static part of the STM algorithm will
choose the corresponding mapping as derived from the design-time DSE stage and
which has been stored in the previously mentioned Scenario DataBase. Because
this database stores mappings for entire scenario clusters, its size can be controlled
by choosing a proper granularity of scenario clusters (e.g., inter-application sce-
narios).

The dynamic part of our STM algorithm is active during the entire duration
of an inter-application scenario. As explained in the previous section, it uses
application-specific objectives, specified for each separate application, to contin-
uously optimize the mapping. When the algorithm detects that an objective is
unsatisfied, it will try to find a new task mapping for that particular application
that missed the performance goal. If multiple applications miss their performance
goal, then the STM algorithm will start optimizing the most problematic applica-
tion first. The main steps of the dynamic part of the STM algorithm are described
below.

3.2.4.1 Finding the Critical Task

The first step of the dynamic part of the STM algorithm is to find the so-called
critical task for the application that missed its objective, as shown in lines 10-
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Algorithm 3 STM algorithm
Input: KPN

app0,...,appm

, MPSoC, O
↵

, O
�

, µ, ⌘
Output: New(µ, ⌘)
list: TC, CIC, CIB, PU
pCIC = �

c

, pCIB = �
b

1: if detectScenario() == true : //new inter-application scenario
2: New(µ, ⌘) = getMapping();
3: return New(µ, ⌘);
4: else :
5: results[] = getStatistics();
6: if objectiveUnsatisfied(results, O

↵

, O
�

) != -1:
7: taskCost(KPN

app

i

, results, TC, CIC, CIB);
8: peUsage(results, PU);
9: while(1) :
10: if (apptype = getType(KPN

app

i

)) == DATA_PARALLEL :
11: critical = findDPCritical(KPN

app

i

, CIC, CIB, pCIB, pCIC);
12: else :
13: critical = findCritical(KPN

app

i

, CIC, CIB, pCIB, pCIC);
14: reason = findReason(critical, CIC, CIB, pCIB, pCIC);
15: if reason == POOR_LOCALITY :
16: MCC[] = minCircle(KPN

app

i

, results, critical);
17: if GetSubstitute(PU, µ, ⌘, MCC, apptype) == true :
18: return New(µ, ⌘);
19: else failed;
20: else if reason == LOAD_IMBALANCE :
21: if GetSubstitute(PU, µ, ⌘, apptype) == true :
22: return New(µ, ⌘);
23: else failed;
24: else :
25: pCIB += ";
26: pCIC -= ";

13 of Algorithm 3. The rationale behind this is that by remapping this critical
task and possibly its neighbouring tasks (forming a bottleneck in the application),
the resulting effect will be optimal. To find the critical task, the STM algorithm
maintains three lists for the current task mapping. The first list stores the task
costs (TC). For every application, it contains the cost of the application’s tasks,
where the cost is determined by the sum of the execution and communication times
of a task. These task costs are arranged in descending order in the list. The two
other lists concern the storing of two other metrics for each task: the proportion
of task cost in the total busy time of the PE (i.e., processor) onto which the task
is currently mapped (CIB), and the proportion of task communication time (read
and write transactions) in the task cost (CIC).

Using the TC list, the algorithm checks the task at the top of the list to find
the critical task, taking the following two conditions into account: 1) whether
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or not the task’s CIB proportion is lower than a specific threshold, defined by
pCIB. Here, the rationale is that a high-cost task receiving only a small fraction of
processor time may imply that the processor is overloaded. If the task satisfies this
condition, then this task is considered as the critical task and the process of finding
the critical task ends. Otherwise, the algorithm continues to check the other tasks
in the TC list with lower costs until it finds the critical task. If there is no task in
the application that satisfies the first condition, then the second condition will be
used: 2) Whether or not the CIC proportion is higher than the threshold pCIC.
The algorithm checks all the tasks using this second condition just like it did for
the first condition. If all the tasks do not satisfy these two conditions, then the
algorithm will, respectively, increase and decrease the pCIB and pCIC thresholds
by ", after which the above process is restarted again.

For data parallel applications2, the process of finding the critical task has one
additional test as compared to regular applications. This extra test (performed
in the function findDPCritical) involves the check whether or not all data-parallel
tasks are mapped onto different PEs. If there are data-parallel tasks that are
mapped onto the same processor, then those tasks with higher task costs will be
treated as critical tasks. Otherwise, the process of finding the critical task will be
the same as for regular applications.

3.2.4.2 Remapping the Critical Task

After the critical task has been found, the STM algorithm tries to analyze the
reason for missing the application’s performance goal. In this respect, we recognize
two different reasons: poor locality and load imbalance. Here, we use the process
of determining the critical task to also determine the reason for not meeting the
performance goal: If the CIC proportion of the critical task is higher than the value
of the current pCIC threshold, then the algorithm assumes that poor locality is
the reason. Otherwise it takes load imbalance as the reason for not meeting the
application demands. This means that poor locality has a higher priority than
load imbalance as a reason for not meeting the application demands, which is
helpful to reduce the energy consumption due to communications.

Subsequently, the function GetSubstitute in the STM algorithm can follow
different strategies to find a target PE to which the critical task will be remapped.
The selection of remapping strategy depends on the reason for not meeting the
application’s performance demands as well as on the type of application (data
parallel or not). The strategies that are used to find the substitute PE for data-
parallel applications are similar to the ones for regular applications except that
one additional condition is taken into account for finding the substitute PE: the
substitute PE should not be a PE onto which its parallel tasks are mapped.

Poor Locality In the case of poor locality, the STM algorithm will try to find
a better mapping for the application in question based on a minimal cost circle
(MCC) approach. A situation that has been identified as "poor locality" is mainly
due to the communication overhead between tasks. Evidently, if the communicat-
ing frequency between two tasks is very high or the communicating data size is

2Data parallel application: an application contains duplicate tasks that have the same func-
tional behaviour but process different input data.
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very large, then these two tasks should preferably be mapped onto the same PE
or onto two different PEs that contain a more efficient interconnect between each
other. The MCC strategy aims at redistributing the critical task and its neigh-
bouring tasks over PEs such that communication overhead is reduced while trying
to avoid creating new computational bottlenecks. To this end, it first finds the
minimal cost circle based on Equation 3.3 (to find the index m, n) for the critical
task p

i

2 P of the target application KPN = (P, F ):

min(Circle_Cost(p
i

)
mn

), with 0  n,m  |P |,m  i  n (3.3)

where:
Circle_Cost(p

i

)
mn

=
X

mkn

et
k

+
X

mkn

X

0j<|P |

ec
kj

(3.4)

where et
k

denotes the execution time of task k (the neighbours of task i) for the
PE onto which task k is currently mapped, and ec

kj

denotes the communication
overhead between tasks k and j under the current mapping. |P | represent the
total number of tasks in the target application.

This strategy is applicable for heterogeneous MPSoC architectures which will
be introduced in the later section of this chapter. However, in this section, our fo-
cus is on homogeneous architectures using a shared bus interconnect. This means
that each task will have a constant computational cost irrespective of the PE it
is mapped on, and that communication overhead only involves internal communi-
cation within a single PE (i.e., when the communicating tasks are mapped to the
same PE) or external communication between PEs via shared memory. Clearly,
internal communication costs are much lower than external communication costs.
Figure 3.4.a shows an example of an MCC (indicated by the dotted oval) that
contains two tasks, including the critical task (grey task), whereas Figure 3.4.b
illustrates an MCC that only contains the critical task itself.

After the MCC of the critical task has been determined, the function Get-
Substitute will choose a substitute PE for all the tasks included in the identified
MCC to achieve a new mapping. For this purpose, the PU list as shown in line
8 of Algorithm 3 is used, containing the processor utilisations for each PE. The
substitute PE is the PE with the lowest utilization in the PU list that is different
from the PE onto which the critical task is currently mapped. If the MCC solely
consists of the critical task itself, then the critical task will be mapped onto the
PE of a neighboring task that has the heaviest communication with the critical
task. This is, e.g., shown in Figure 3.4.b, where the critical task will be mapped
onto the same PE as the task with cost 70. Moreover, the substitute PE should
be different than the PE the critical task is currently mapped on. Otherwise, the
algorithm fails to find a new mapping. After the substitute PE has been found,
the FIFO channels between the tasks that need to be remapped are either mapped
as internal communication onto the new PE (if communicating tasks are mapped
onto this PE) or onto the system bus.

Load Imbalance In the case a load imbalance has been identified as the reason
for not meeting the application demands, a load balancing strategy is used to
remap the critical task. The substitute PE should satisfy the condition that it
is different from the current PE of the critical task and should have the lowest
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Figure 3.4: Examples of an MCC for a critical task (grey task).

processor utilization in the PU list. If such a substitute does not exist, then the
algorithm cannot find a better mapping.

3.2.5 Experiments

3.2.5.1 Experimental Framework

To evaluate the efficiency of our STM algorithm and the mappings found at run
time by this algorithm, we deploy the extended Sesame simulator as introduced in
Section 3.1. In this extended simulator, the SDB is used to store the mappings for
each inter-application scenario as derived from design-time DSE and also the ap-
plication specific information such as the performance objective, the computation
and communication cost of tasks on different hardware components. The RSM is
in charge of recording the running statistics for each active application as well as
monitoring system-wide statistics. The RRS uses the run-time task mapping al-
gorithm and the statistics provided by the RSM to dynamically remap application
tasks when needed.

3.2.5.2 Experimental Results

In this subsection, we present several experimental results in which we investigate
various aspects of our STM algorithm and compare it to three well-known mapping
algorithms: First-Fit Bin-Packing (FFBP) [31] which has been frequently adapted
to do task mapping by means of modeling it as a bin-packing problem, Output-
Rate Balancing (ORB) [22] and Recursive BiPartition and Refining (RBPR) [139].
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Figure 3.5: Performance and energy consumption of each inter-application sce-
nario.

We modified these algorithms to fit our mapping problem and extended them to
also allow for mapping data-parallel applications by constraining the data-parallel
tasks so that they have to be mapped onto different processing elements. For the
FFBP algorithm, the PE with the lowest utilization is taken as the first-fit bin
and the computational cost of each task in the target application is considered as
the object that needs to be packed into the bins.

For our experiments, we use the three typical multi-media applications that
were already introduced in Section 3.2.1: MJPEG, Sobel and MP3. The KPN
of the MJPEG application contains 8 processes and 18 FIFO channels, Sobel
contains 6 processes and 6 FIFO channels, and MP3 contains 27 processes and 52
FIFO channels. In the Sobel and MP3 applications, data parallelism is exploited.
Moreover, MJPEG has 11 intra-application scenarios, MP3 has 3 intra-application
scenarios, whereas Sobel only has 1 intra-application scenario. This results in a
total of 95 different workload scenarios. At design time, we have determined the
on-average best mapping for each possible inter-application scenario as explained
in Section 3.2.4. It means that only 8 mappings in total need to be explored
and stored in the system memory. With respect to the target architecture, we
modeled a homogeneous MPSoC containing 5 processors, connected to a shared
bus and memory. The model also includes the required components for our run-
time scheduling framework.

As there are just three applications and each application contains a limited
number of intra-application scenarios, we are able to exhaustively evaluate all
workload scenarios. For each workload scenario, we have simulated the system
using two methods: one is deploying only the static part of our STM algorithm
to deal with the dynamism at the level of different inter-application scenarios,
whereas the other one is running all the workload scenarios under a single, fixed



3.2. Task Mapping with Scenario Clustering 51

mapping: the on-average best mapping found for the inter-application scenario in
which all three applications are concurrently executing. The results of this exper-
iment are shown in Figure 3.5. From this figure, we can see that the static part
of our STM algorithm already yields both performance improvements and energy
savings by dynamically adjusting the mapping based on the variation in inter-
application scenarios. For this specific test case, the performance improvements
for the different inter-application scenarios range from 1.69% to 29.49% and the
energy savings range from 1.09% to 24.51%. Overall, for the execution of all 95
workload scenarios, the improvements in terms of performance and energy saving
are 7.4% and 9.4%, respectively.

Figures 3.6a and 3.6b show the intra-application scenario execution times and
energy consumption for the FFBP, ORB, RBPR and STM run-time mapping
algorithms for a single inter-application scenario in which all three applications
are concurrently executing. Moreover, these two graphs also contain the results
when using optimal mappings (OPT) for each intra-application scenario (we de-
rived these mappings in a design-time DSE experiment). The results in these
two graphs have been ordered in a monotonically increasing fashion based on the
results from the OPT mappings. Figure 3.7 shows the overall (for the entire inter-
application scenario) performance, energy consumption and overhead. Here, the
overhead includes the run-time calculation of new mappings when a mapping opti-
misation is triggered by the violation of performance objectives of the target three
applications as well as the migration of tasks3 in the case of the optimised map-
ping is different with the previous mapping. In this experiment, the target system
is initialised under the pre-optimised mapping of the target inter-application sce-
nario. We have enforced the system to enter a mapping optimisation process for
each intra-application scenario in the target inter-application scenario by adjust-
ing the performance objectives of the target applications. From Figure 3.6 and
Figure 3.7, we can see that our STM clearly performs better than the other algo-
rithms in terms of the execution time of scenarios. For several intra-application
scenarios, the STM algorithm even approaches the OPT results. With respect
to energy consumption and overhead, the STM algorithm also performs well: it
ranks second closely behind the ORB algorithm. The reason for a low overhead of
ORB is that it only needs to migrate a few tasks in our experiment which means
a very low task migration cost.

In our last experiment, we used the full STM algorithm, including the static
and dynamic parts and thus combining the dynamism of inter-application as well
as intra-application scenarios, to test all the 95 workload scenarios of our three
applications. Our algorithm could achieve a 11.3% performance improvement
and an energy saving of 13.9% compared to an approach in which we run the
applications using the (static) on-average best mapping for the inter-application
scenario in which all three applications are active. Comparing these results to
those when only using the static part of our STM algorithm (improvements of
7.4% and 9.4%, respectively; see above), this means that the dynamic part of the
STM algorithm is capable of significantly further improving the mappings.

3Here, the task migration overhead is estimated by a simple analytic model that takes the
task size and memory access speed into account. More accurate task migration overhead during
task remapping will be studied in the next chapter.
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Figure 3.6: Comparing different run-time mapping algorithms under different
intra-application scenarios.

3.2.6 Conclusion

In this section, we have proposed a run-time mapping algorithm for MPSoC-based
embedded systems to improve their performance and energy consumption by cap-
turing the dynamism of the application workloads executing on the system. This
algorithm is based on the idea of application scenarios and consists of a design-time
and run-time phase. The design-time phase produces mappings for clusters of ap-
plication scenarios after which the run-time phase aims to optimize these mappings
by continuously monitoring the system and trying to perform (relatively small)
mapping customizations to gradually further improve the system performance. In
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Figure 3.7: Comparing different run-time mapping algorithms under an entire
inter-application scenario.

various experiments, we have evaluated our algorithm and compared it with three
other algorithms. The results show that our algorithm can yield considerable im-
provements as compared to just using a static mapping strategy. Comparing our
algorithm with three other, well-known run-time mapping algorithms, it shows a
better trade-off between the quality and the cost of the mappings found at run
time.
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Figure 3.8: The workflow of the proposed hybrid task mapping approach.

3.3 A Novel Hybrid Task Mapping Approach

As discussed at the start of this chapter, besides the scalability with regard to
the number workload scenarios, the flexibility of supporting new applications is
another major issue in general hybrid task mapping approaches. The method in
the previous section solves the scalability problem but does not solve the flexibility
problem. Therefore, this section presents an approach that tries to address both
issues.

For this purpose, we propose an Energy-aware Iterative multi-application Map-
ping (EIM) algorithm that operates at run time. Based on design-time statically
derived optimal (or near optimal) mappings for each separate application, this al-
gorithm will quickly find a near optimal mapping under the objectives of high per-
formance and low energy consumption for the simultaneously running applications
on heterogeneous platforms. By using our proposed approach, the scenario-level
task mapping problem is solved by a divide-and-conquer technique as illustrated
in Figure 3.8 where the complex task mapping problem is broken down into small
task mapping problems at design time, and the small mapping solutions are then
dynamically combined and further optimised to give a complete solution for the
complex mapping problem at run time. It is achieved by splitting the handling
of intra-application scenarios and inter-application scenarios according to the two
stages mentioned above. The design-time phase takes charge of exploring three
optimal mappings for each intra-application scenario of each application with re-
spect to three different objectives: maximising the throughput, minimising the
energy and maximising the throughput under a predefined energy budget. The
run-time phase subsequently finds a mapping for the workload scenario that has
emerged in the system by considering the active inter-application scenario at run
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time. By using this method, the number of mappings that need to be determined
at design time will be greatly reduced. Considering the previously mentioned
example (see Section 1.4) of 10 applications with 5 execution modes for each ap-
plication (over 60 million workload scenarios in total), only 150 mappings need to
be found (and stored) at design time for the approach presented in the section for
the optimisation objective of both performance and energy consumption4, which
is even smaller compared with using the approach proposed in the previous sec-
tion where at least 1023 mappings should be explored and stored (one mapping
for each inter-application scenario).

3.3.1 Problem Definition

As mentioned above, in our novel hybrid task mapping approach, we propose to
perform the task mapping of applications in two stages. In the first stage, which is
performed at design time, we perform DSE for each intra-application scenario of
each application (denoted by scenario s

i

in the whole workload scenario space S)
to find three mappings that show the maximal throughput, minimal energy con-
sumption and maximal throughput under a certain energy budget b

i

respectively.
Here, b

i

is a user defined energy budget for workload scenario s
i

. The mappings
derived from design-time DSE are stored so they can be used by the second stage
to get a final mapping – by directly using the stored mappings or by deriving
a new one from the stored mappings – for the current system objective when a
new workload scenario is detected. Here, we can distinguish two system objec-
tives: maximal throughput and minimal energy consumption for each workload
scenario, denoted as O

t

and O
e

respectively. These two objectives will be used for
run-time mapping optimization. For the convenience of exploring the pareto front
of objectives at design time, we change the objective of maximal throughput into
a minimal objective O

p

= 1/O
t

, namely the scenario execution time. With regard
to the run-time behaviour, we assume that our hardware platform can run in two
modes: an energy-aware high performance mode (using a certain energy budget)
and an energy saving mode. Consequently, the run-time system objectives for
each workload scenario are O

pb

, which means minimal scenario execution time (or
maximal throughput) under the given energy budget, and O

e

. Users can choose
the running mode of the system, or the system itself can adaptively adjust the
mode based on e.g. the battery usage.

Under these definitions and the definition of application model and architecture
model provided in Section 2.2, our goal of this section is to find the optimal or
near optimal mapping at run time for each detected workload scenario s

i

2 S with
the objective to minimize O

pb

or O
e

(according to the system execution mode) on
the target heterogeneous platform MPSoC = (PE,M).

3.3.2 Iterative Multi-Application Mapping Optimisation

3.3.2.1 Design-time Mapping Exploration

Similar to the static mapping exploration problem discussed in Section 3.2, the
design time mapping exploration of this section also considers multiple optimisa-

4If just a single optimisation objective is considered, only 50 mappings need to be explored
at design time and stored on the target system
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Algorithm 4 EIM algorithm
Input: KPN

app

active

, MPSoC, scenario_id(s
i

), sys_mode
Output: (µ, ⌘)
1: (µ, ⌘) = getInitMapping(s

i

, sys_mode);
2: if singleAppActive(s

i

) == true:
3: return (µ, ⌘);
4: else:
5: switch(sys_mode):
6: case EA-HIGHPERF:
7: U = peUsage(KPN

app

active

, MPSoC, µ, ⌘);
8: M

p

= maxPUsage(U);
9: V

p

= varPUsage(U);
10: b

i

= eBudget(s
i

);
11: return iterativePOpt(µ, ⌘, M

p

, V
p

, b
i

);
12: case ENERGYSAVING:
13: econs = energyCons(KPN

app

active

, MPSoC, µ, ⌘);
14: return iterativeEOpt(µ, ⌘, econs);
15: default:
16: return (µ, ⌘);

tion objectives (performance and energy consumption). Consequently, the same
scenario-based DSE approach based on the NSGA-II genetic algorithm as intro-
duced in the previous section has been deployed to explore task mappings at design
time for each intra-application scenario (execution mode) of each application. No-
tice that, the difference between the static mapping exploration of this section
and the one in Section 3.2 exists in the mapping problem level where this section
explores task mappings at application level but Section 3.2 explores task mappings
at scenario cluster level.

By using the scenario-based DSE approach, task mappings with minimal O
p

,
minimal O

pb

and minimal O
e

for each intra-application scenario of each application
are generated (derived from the Pareto Front of mapping solutions like Figure 3.3)
and stored on the target system for run time mapping optimisation.

3.3.2.2 Run-time Task Remapping

At run time, the resource scheduler on the target system adopts our proposed
EIM algorithm to further optimise the task mapping at scenario level when a
new workload scenario is detected. The EIM algorithm, which is outlined in
Algorithm 4, can be divided into a static part and a dynamic part similar to
the STM of Section 3.2.4. The static part is used to capture the intra-application
dynamism in those inter-application scenarios with only a single active application.
For these inter-application scenarios se

i

2 SE, we have determined – using design-
time DSE – optimal or near optimal mappings (optimized for O

pb

and O
e

) for each
intra-application scenario sai

j

2 SAi of se
i

.
When the system detects a new workload scenario, the algorithm will first

choose the corresponding optimal mapping – as derived from the design-time DSE
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stage and stored in the scenario database – for each application active in the
detected workload scenario as the initial mapping. This process is implemented in
the function of line 1 of Algorithm 4 which will be explained in detail in the next
paragraph. As the database stores mappings for the intra-application scenarios of
each single application, its size typically is relatively small.

If there is only a single application active in the workload scenario, then the
initial mapping will be chosen from one of the following two statically derived
mappings, based on the system execution mode: the mapping with the maximal
throughput under a given energy budget (the mapping optimized for O

pb

) or the
mapping with the minimal energy consumption (the mapping optimized for O

e

).
Hereafter, as shown in lines 2-3 of Algorithm 4, the algorithm will directly return
the initial mapping as the final mapping decision. Otherwise, if there are multiple
applications active simultaneously, then the mapping with maximal throughput
(the mapping optimized for O

p

) or minimal energy consumption (based on the sys-
tem mode) for each active application will be chosen as initial mappings. These
initial per-application mappings will then simply be merged together to form the
initial mapping for the complete workload scenario. Here, there are two reasons for
not choosing the mapping with maximal throughput under a certain energy budget
as the initial mapping in the energy-aware high performance mode. First, the com-
munication locality behaviour of the mapping with maximal throughput under an
energy budget typically is not as good as the one with maximal throughput with-
out an energy budget. Our run-time algorithm exploits this locality incorporated
in the initial per-application mappings for further improvement of the workload
scenario mapping. Second, we will consider the energy constraints during the
mapping optimization process at run time, so we do not yet have to consider an
energy budget for the initial mapping in the case of an active multi-application
workload scenario.

The dynamic part of our EIM algorithm is only used for those workload sce-
narios that contain multiple simultaneously active applications and is outlined in
lines 4-16 of Algorithm 4. It aims at further optimizing the initial mapping found
during the static part of the EIM algorithm, as described above. To this end,
it distinguishes the system execution mode to take different strategies for map-
ping optimization. As described before, our target MPSoC system can run under
energy-aware high performance and energy saving modes. We will use different
strategies in these two modes targeting different optimization objectives. These
two strategies in the dynamic part of the EIM algorithm are described below.
For the propose of a better understanding of our algorithm, the metrics used in
algorithms 5 and 6 are shown in Table 3.3.

Performance Optimization When the MPSoC system is running under the
energy-aware high performance mode, our algorithm will optimize the mapping
for the active multi-application scenario with the objective to minimize the system
metric O

pb

. Consequently, the optimal mapping for each scenario is the one that
has the minimal O

pb

among all the possible mappings under energy budget of
b
i

for workload scenario s
i

. It is, however, extremely hard to find the optimal
mapping for each workload scenario at run time because of the following reasons.
Firstly, as one cannot obtain the true value of O

p

before actually executing the
application on the target platform, an estimated O

0

p

needs to be used to guide
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Table 3.3: Metrics used in Algorithms 5 and 6

Metrics Description
(µ

j

, ⌘
j

) the mapping proposed by app
j

M j

p

the maximal usage in U under the mapping of (µ
j

, ⌘
j

)

V j

p

the maximal usage variation in U under the mapping of (µ
j

, ⌘
j

)

Lj the performance loss of a remapping from (µ, ⌘) to (µ
j

, ⌘
j

)

Mk

p

the minimal M
p

among M j

p

(µ
k

, ⌘
k

) the mapping with Mk

p

V k

p

the V
p

of the mapping (µ
k

, ⌘
k

)

W t

p

the minimal V
p

+ L among V j

p

+ Lj

(µ
t

, ⌘
t

) the mapping with W t

p

V t

p

the V
p

of the mapping (µ
t

, ⌘
t

)

E
w

the minimal mapping energy consumption among E
ij

(µ
w

, ⌘
w

) the mapping with E
w

the algorithm to find the optimal mapping. Here, there exists of course a clear
accuracy/overhead trade-off between different estimation techniques. Efficient but
less accurate run-time mapping-performance estimation techniques may lead to
sub-optimal mappings, while the high overhead of more accurate techniques may
neutralize the performance benefits of the mapping optimization itself. Secondly,
the mapping problem is NP-complete, as was mentioned before. It is unrealistic for
a run-time mapping algorithm to explore the entire searching space to determine
the optimal mapping for a scenario. An alternative method is using heuristics
to search a part of the mapping space which may contain the optimal or a near
optimal mapping.

To solve the above problems, we change the objective of performance into two
other metrics: M

p

and V
p

that represent the maximal usage and usage variation
in U , where U is an array of processor usages (calculated by Equation 2.1) with a
total number of |PE| elements, according to the observation found in Section 2.3.1
that M

p

and V
p

correlate with O
p

. These two metrics will be used to optimize the
bottleneck of the application pipeline and balance the system workload. In this
case, we do not need to use the metric O

p

as the optimization objective, thereby
addressing the first of the two above problems. Regarding the second problem,
by using an optimization heuristic based on the metrics M

p

and V
p

, we aim at
finding an optimal or near optimal mapping in a computationally efficient fashion.
The rationale behind this heuristic is that a better mapping for the objective of
high performance usually has smaller M

p

and V
p

values (see Section 2.3.1). For
the purpose of restricting the energy consumption of the resulting mapping, we
use the estimated energy consumption of a mapping tm

j

= (µ
j

, ⌘
j

) for workload
scenario s

i

given by Equation 3.5 and the energy budget b
i

calculated by Equa-
tion 3.6. Here, the index e in E

ke

represents the energy-optimized mapping stored
in memory for app

k

, to control the searching space of possible mappings. The
details of Equation 3.5 will be explained in the next subsection. In Equation 3.6,
the first part ↵ is a user defined constant scaling factor set for the energy budget
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Algorithm 5 IPO algorithm
//performance optimization for workload scenario s

i

iterativePOpt(µ, ⌘, M
p

, V
p

, b
i

):
1: for each active app

j

:
2: (µ

j

, ⌘
j

) = getPSubstitute(µ, ⌘);
3: if (µ

j

, ⌘
j

) != (µ, ⌘):
4: U = peUsage(KPN

app

active

, MPSoC, µ
j

, ⌘
j

);
5: M j

p

= maxPUsage(U);
6: V j

p

= varPUsage(U);
7: Lj = perfLoss(app

j

, µ, ⌘, µ
j

, ⌘
j

);
8: Mk

p

= min(M j

p

);
9: if Mk

p

< M
p

:
10: (µ⇤, ⌘⇤) = (µ

k

, ⌘
k

);
11: iterativePOpt(µ⇤, ⌘⇤, Mk

p

, V k

p

, b
i

);
12:else:
13: W t

p

= min(V j

p

+ Lj);
14: (µ⇤, ⌘⇤) = (µ

t

, ⌘
t

);
15: if (µ⇤, ⌘⇤) == (µ, ⌘):
16: return (µ, ⌘);
17: else:
18: iterativePOpt(µ⇤, ⌘⇤, M t

p

, V t

p

, b
i

);

and the second part represents the estimated minimal energy consumption for a
workload scenario.

E
ij

= E
0

p

+ E
0

m

(3.5a)

E
0

p

=
X

pe

k

2PE

active

(DP
k

⇤ U
k

+ SP
k

⇤max(U)) (3.5b)

E
0

m

= DM ⇤
X

c

t

2C

mem

ij

(ec
t

) + SM ⇤max(U) (3.5c)

where PE
active

is the set of processors active for scenario s
i

under mapping tm
j

.
Cmem

ij

is the set of application FIFO channels in scenario s
i

that are mapped onto
the shared memory on the target system under mapping tm

j

. U
k

is the usage
of processor pe

k

2 PE. SP
k

and DP
k

refer to the static and dynamic power
consumption for processor pe

k

. And SM and DM respectively represents the
static and average dynamic power consumption (for read/write transactions) of
the shared memory on the target MPSoC system.

b
i

= ↵ ⇤
X

active_app

k

2s

i

E
ke

(3.6)

The mapping algorithm for the energy-aware high performance mode is out-
lined in Algorithm 5, which will be executed in an iterative fashion. The starting
mapping used in this algorithm is the one derived from Algorithm 4. In each iter-
ation, it first proposes a new mapping for each active application as shown in line
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2 of Algorithm 5. In this process, the algorithm searches the mapping space using
the following greedy pattern: it checks the processors in U in descending order to
determine whether the KPN application in question has a task or a bundle of ad-
jacent, communicating tasks5 resident on this processor. If so, then the algorithm
finds a possible substitute processor for the task/adjacent tasks that satisfies the
following conditions:

1. The M
0

p

of the new mapping is smaller than the M
p

of the old mapping
2. If the previous condition cannot be satisfied, then the algorithm tries to find

a substitute processor for which the resulting M
0

p

is equal to M
p

and V
0

p

is
smaller than V

p

. If the first condition was satisfied, then this condition will
never be used in this particular iteration

3. The estimated energy consumption of the new mapping should be smaller
than the energy budget b

i

.

The above process proposes new mappings for those applications that satisfy the
conditions (for the other applications, the mapping remains unaltered). These
newly proposed mappings are either a mapping that has a minimal M

0

p

(if condition
1 has been satisfied) or a mapping with minimal V

0

p

. However, in the above
process, it can also be the case that there are multiple new mappings proposed for
an application, e.g. when there are multiple tasks (or task bundles) that can be
remapped and for which the above conditions hold. In these cases, we use another
metric, L, to decide on the final proposed mapping, where the value of L needs
to be minimized. The metric L tries to capture the performance loss of a task
remapping for the application in question6 and is calculated using Equation 3.7.

L =
X

p

k

2B

j

i

((etj
k

� eti
k

) +
X

c

kt

2C

k

(ecj
kt

� eci
kt

)) (3.7)

Here, we mark the task/task bundle that needs to be remapped from pe
i

to pe
j

as
Bj

i

. C
k

represents the set of communication channels connected between p
k

and
other tasks in the target workload scenario.

After the algorithm has proposed a new mapping for each application, the next
step is to select the most effective among these remapping proposals to be used
for the next optimization iteration of the algorithm based on the metrics of each
new mapping calculated in lines 4-7 of Algorithm 5 or return a mapping as the
final one. This whole process is shown in lines 8-18 of Algorithm 5. If no new
mapping has been proposed for any of the applications in the workload scenario in
the previous step, then the input mapping will be returned as the final optimized
result. Otherwise, we use the following conditions to select the most effective
remapping for the next iteration of the algorithm:

1. If there is one and only one proposed mapping that has the minimal M
0

p

and
this M

0

p

is smaller than the M
p

of the original mapping, then this mapping
will be passed to the next mapping optimization iteration (lines 9-11 in
Algorithm 5).

5Mapping such a task bundle to a single processor is the outcome of the design-time
mapping optimization to reduce communication overhead.

6We note that L can be negative, implying that the task/task bundle has a higher
affinity with the processor it is proposed to be mapped on.
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Algorithm 6 IEO algorithm
//energy optimization for workload scenario s

i

iterativeEOpt(µ, ⌘, E):
1: for each active app

j

:
2: (µ

j

, ⌘
j

) = getESubstitute(µ, ⌘);
3: E

ij

= energyCons(KPN
app

active

, MPSoC, µ
j

, ⌘
j

);
4: Ew = min(E

ij

);
5: if Ew � E:
6: return (µ, ⌘);
7: else:
8: (µ⇤, ⌘⇤) = (µ

w

, ⌘
w

);
9: iterativeEOpt(µ⇤, ⌘⇤, Ew);

2. If the first condition has not been satisfied, then the proposed mapping with
min(V

0

p

+L) will be taken as the input mapping for the next iteration (lines
12-18 in Algorithm 5). The rationale behind this is that the algorithm tries
to gradually optimize the mapping for the entire workload scenario while
keeping the performance loss for a single application due to task remappings
as small as possible (i.e., taking into account the processor affinity of the
tasks proposed to be remapped).

Energy Optimization The algorithm used in the energy saving system mode is
shown in Algorithm 6, which is similar to the algorithm for the high performance
mode. It will iteratively optimize the mapping with the objective O

e

for a unit
of input workload (e.g., frame in the domain of multi-media applications). For
the purpose of energy savings, we need not only to consider the dynamic energy
consumption but also the static energy consumption. The energy consumption
E

ij

of a mapping (µ
j

, ⌘
j

) for workload scenario s
i

is calculated by Equation 3.5,
where E

0

p

is the dynamic and static energy consumed by all active processors and
E

0

m

represents the dynamic and static energy consumption of the shared memory.
This relatively simple energy model is built on several assumptions of the target
architecture: 1) the power model used for the shared memory in the system already
includes the power consumption of the bus connected to it; 2) for simplicity, we
ignore the energy consumption caused by resource contention and communication
delays. Consequently, the system active time for a specific workload scenario is
simply assumed to be max(U), which is subsequently used to calculate the static
energy consumption. Note that the application of techniques such as dynamic
power management (DPM) and dynamic voltage scaling (DVS) are beyond the
scope of this work.

The mechanism for searching the mapping space to find the energy optimized
mapping is implemented in the function listed on line 2 of Algorithm 6. In each
iteration, it greedily finds the mapping with minimal energy consumption for each
active application in the workload scenario by just remapping a single Bj

i

(task/-
task bundle). Similar to Algorithm 5, Algorithm 6 first proposes a new mapping
for each of the active applications, after which the mapping with minimal energy
consumption among the proposed mappings will be used in the next optimisation
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Table 3.4: Studied application workload scenarios.

Inter-app scenario Workload scenario
A1 mjpeg 7
A2 sobel 0
A3 mp3 2

A1A2 mjpeg 7, sobel 0
A1A3 mjpeg 7, mp3 2
A2A3 sobel 0, mp3 2

A1A2A3 mjpeg 7, sobel 0, mp3 2

iteration. However, if the condition on line 5 of Algorithm 6 is satisfied, then the
input mapping will be returned as the final optimization result.

3.3.3 Experiment

In this subsection, we present a number of experimental results in which we investi-
gate various aspects of our EIM algorithm using the extended Sesame simulator of
Section 3.1 (similar to Section 3.2.5.1). More specifically, in each system execution
mode, we compare the algorithm to three different run-time mapping algorithms
using the optimization objective of the system mode. For the high performance
mode, we compare our EIM algorithm to the following algorithms: Task Processor
Affinity (TPA) [83] which uses the affinity between tasks and processors to greedily
determine a mapping without considering resource contention, and Output-Rate
Balancing (ORB) [22] which aims at balancing the computation and communica-
tion load of each processor. For the energy saving mode, we compare our algorithm
to TPA and Iterative Energy-Aware Task Mapping (IEATM) [106, 49]. Moreover,
we also compare the run-time mapping results to the results of optimal mappings
for each workload scenario. These optimal mappings have been statically deter-
mined by means of design-time DSE as introduced in Section 3.3.2.1.

For our experiments, we use the multi-media applications considered in the
experiments of Section 3.2.5: MJPEG, MP3 and Sobel (95 different workload
scenarios in total) which are denoted as A1, A2 and A3 respectively in Table 3.4
and Figures 3.9 and 3.11. At design time, we have determined three pre-optimised
mappings for each intra-application scenario in each application as explained in
Section 3.3.2.1. That means that we need to store 45 optimal mappings in system
memory (i.e., the scenario database).

With respect to the target architecture, we target a heterogeneous MPSoC
containing 5 different processors with different computational and energy charac-
teristics, connected to a shared bus and memory. For this target MPSoC system,
we assume that these 5 processors can execute all application tasks. However, we
want to stress that our approach is not restricted to this assumption: dedicated
processors could also be used in the target system. In that case, some additional
information like the possible target processor of each task is needed for deriving a
correct mapping.
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3.3.3.1 Performance Optimization Experiments

The experiments in this subsection concern the evaluation of our run-time map-
ping algorithm in high performance mode, considering different inter- and intra-
application workload scenarios.

In the first experiment, we study the run-time mapping behaviour in the occur-
rence of different inter-application scenarios. To this end, we focus on the subset
of workload scenarios that have the heaviest computational demands in each inter-
application scenario. These workload scenarios are listed in Table 3.4, where the
first column specifies the encoded name (in terms of A1, A2 and A3) for each
inter-application scenario and the second column specifies the intra-application
scenarios (labeled by the integer following the application name) used to form
the workload scenario. For the scaling factor ↵ of the energy budget in our EIM
algorithm (see equation 3) we use the values 1.5 and 1.3 in our experiments.

The experimental results are shown in Figure 3.9. In Figure 3.9a, we com-
pare the performance of the mappings resulting from the EIM, TPA, and ORB
algorithms as well as from NSGA-II-based design-time DSE. The energy consump-
tion of these mappings is shown in Figure 3.9b. In these two figures, the bars of
NSGA-BP and NSGA-BE respectively represent the mappings with best perfor-
mance and minimal energy consumption found by the NSGA-II-based design-time
DSE. These are used as a baseline for comparison. From Figure 3.9a, we can see
that our EIM algorithm in most cases produces a better mapping for the tested
workload scenarios than the TPA and ORB algorithms. For the workload scenar-
ios in which only a single application is active (i.e., bars for A1, A2 and A3) our
EIM algorithm directly uses the mapping from design-time DSE, which results in
a mapping performance that is very close or even equivalent to the optimal map-
ping. However, although the mappings have similar performance, they could still
have a different energy consumption behaviour. In the case of our EIM algorithm,
we use the energy budget in the search for an efficient mapping to limit the energy
consumption of the resulting mapping. Consequently, and as shown in Figure 3.9b,
the EIM algorithm can yield mappings for single-application workload scenarios
that are more energy efficient than the ones obtained by NSGA-BP.

In the workload scenarios with multiple simultaneously active applications, we
can see that the EIM algorithm yields clear performance improvements compared
to the other three run-time task mapping algorithms, especially in the case of
workload scenario A1A2A3. By setting the parameter ↵ of our EIM algorithm to
different values, we can notice that in some workload scenarios, like A1, A3 and
A2A3, the mapping performance with a higher energy budget is better than the
one with a lower energy budget. However, in other workload scenarios, there is
no such behaviour. This can be explained by the fact that for the latter workload
scenarios the energy budget is big enough for the algorithm with a lower energy
budget to find a mapping that is as good as the one found by EIM with a higher
energy budget. In Figure 3.9b, we can see that even if we have an energy budget
in our EIM algorithm, the actual energy consumption of the final mapping may
still exceed the energy budget: like for EIM-1.5E in the A2A3 workload scenario
and for EIM-1.3E in a few other workload scenarios. This is caused by estimation
inaccuracies of the energy model used in our algorithm. Even if the estimated
energy consumption of a new mapping is under the predefined energy budget, the
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(a) Performance of mappings from different algorithms
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(b) Energy consumption of mappings from different algorithms

Figure 3.9: Algorithm comparison in high performance mode (inter-application
scenarios).

actual resulting system energy consumption after the remapping has taken place
may still not fully satisfy our desired energy budget.

In the second experiment, all the intra-application scenarios for one particular
inter-application scenario, namely A1A2A3, are considered as the experimental
workload. This means that there are 33 workload scenarios in total. We compare
the average performance and energy consumption of the optimized mappings as
obtained by the different algorithms. The results are shown in Figure 3.10a and
Figure 3.10b respectively. The error bars in the graphs show the variability of
the results. From Figure 3.10a, we can see that the mappings from our EIM
algorithm with a scaling factor ↵ = 1.5 achieve the best average performance
among the investigated algorithms. Even the worst mapping performance among
all the 33 workload scenarios of our EIM algorithm is still better than the best
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(a) Performance of mappings from different algorithms
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(b) Energy consumption of mappings from different algorithms

Figure 3.10: Algorithm comparison in high performance mode (intra-application
scenarios).

one in any of the other two algorithms. Comparing the performance of each
final mapping obtained by our EIM algorithm with the ones from TPA and ORB
in all our tested 33 workload scenarios, we measure ranges of 56.3%-66.6% and
11.5%-42.3% of performance improvement respectively. Figure 3.10b shows the
average energy consumption of the final mappings used in Figure 3.10a. The
results in this figure illustrate that the mappings from our EIM algorithm have
the lowest average energy consumption. Considering the energy consumption of
each final mapping, our EIM algorithm achieves, respectively, a 20.7%-29.6% and
6.1%-19.0% improvement for energy savings compared with TPA and ORB.

3.3.3.2 Energy Optimization Experiments

Considering the energy saving system mode, we also investigate our run-time map-
ping algorithm considering different inter- and intra-application workload scenar-
ios. The results of the different mapping algorithms when the primary objective
is energy optimization and when using the subset of inter-application scenarios
from Table 3.4 are shown in Figure 3.11. From this experiment, we can see that
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Figure 3.11: Algorithm comparison in energy saving mode (inter-application sce-
narios).
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Figure 3.12: Algorithm comparison under energy saving mode (intra-application
scenarios).

our EIM algorithm can efficiently produce near optimal (in terms of energy con-
sumption) mappings. Comparing the investigated mapping algorithms, besides
the NSGA-BE, our EIM algorithm overall shows the best results. In the single-
application workload scenarios, EIM simply uses the mapping optimized at design
time. For the multi-application scenarios, we can notice that our EIM algorithm
clearly improves on the other algorithms, finding mappings that are almost as
good as the ones obtained by NSGA-BE.

Figure 3.12 shows the results of average energy consumption of mappings opti-
mized for energy consumption by the different mapping algorithms when consider-
ing all 33 workload scenarios of inter-application scenario A1A2A3. The results in
this figure illustrate that the EIM algorithm performs much better than the other
two algorithms. For each single workload scenario, the EIM algorithm achieves
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Table 3.5: Run-time cost of different algorithms for performance optimization.

Algorithms Total task Normalized total
migration number algorithm computation time

TPA 12 1.0
ORB 36 22.5

EIM1.5 25 651.2

energy improvements of in between 50.5%-54.2% and 5.5%-20.2% as compared
with TPA and IEATM respectively.

3.3.3.3 Run-time Cost

Here, we would like to give an intuition of the run-time cost of our approach
in terms of the number of tasks that need to be migrated and the computation
cost of the algorithm. In this experiment, the intra-application scenarios in inter-
application scenario A1A2A3 with only application MP3 changing its execution
mode will be considered as the targeting scenarios. This means that the execution
mode of each application is: MJPEG (7), Sobel (0) and MP3 (0/1/2). These three
scenarios will be executed in sequence to find out the total task migration num-
ber and total algorithm computation time by applying different approach. The
total number of tasks in each scenario is 41. Table 3.5 shows the cost of differ-
ent approaches for mapping performance optimization, where the total algorithm
computation time of each approach is normalized to the one of TPA. From the
results, we can see that the baseline approach TPA has the minimal run-time cost
in both migration cost and algorithm computation time. Our proposed approach
EIM has the highest algorithmic computation time. However, we believe that the
computation cost of our EIM algorithm is still acceptable as it just needs a few
milliseconds (on an CPU with 2.17GHZ) to optimize the mapping for each work-
load scenario in our test case. Here, we would like to note that we have not yet
performed any effort to optimize our EIM algorithm to reduce its computational
cost. The run-time cost of the approaches for mapping energy optimization is
listed in Table 3.6, where our approach shows the highest total task migration
cost while the algorithmic computation time is relatively low as the diversity of
the pre-optimized mappings is small.

Compared to the algorithmic computation cost, the run time task migration
overhead typically is more substantial for MPSoC systems. From both experi-
mental results, we can see that the task migration cost of our EIM is relatively
heavy. For this reason we make the assumption that each workload scenario will
execute for a long enough time so that the system is able to benefit from our
EIM algorithm. Further research will be provided in the next chapter to exactly
determine at which switching granularity of workload scenarios a dynamic task
mapping algorithm could benefit from remapping.
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Table 3.6: Run-time cost of different algorithms for energy optimization.

Algorithms Total task Normalized total
migration number algorithm computation time

TPA 8 1.0
IEATM 9 64.0

EIM 16 62.2

3.3.4 Conclusion

In this section, we have proposed a run-time mapping algorithm, called EIM,
for MPSoC-based embedded systems to improve their performance and energy
consumption by capturing the dynamism of the application workloads executing
on the system. This algorithm is based on the idea of application scenarios and
consists of a design-time and run-time phase. The design-time phase produces
mappings for intra-application scenarios targeting different optimization objec-
tives after which the run-time phase aims to continuously monitor the changes in
workload scenarios on the underlying system and trying to perform iterative map-
ping optimization to improve the system performance and/or energy consumption
based on the optimal mappings of corresponding applications explored in the first
stage. Combining these two steps, the proposed approach can dynamically find a
near optimal mapping for multiple executing applications, while it is also capable of
running single applications under the optimal mapping (derived from design-time
DSE) with respect to different optimization objectives. In various experiments,
we have evaluated our algorithm and compared it with other run-time mapping
algorithms. The results clearly confirm the effectiveness of our algorithm.

3.4 Improving MPSoC’s Adaptivity with Hybrid Task
Mapping

In the second section of this chapter, the scenario clustering based task mapping
approach (STM) was proposed for a homogeneous MPSoC system to solve the
scalability problem of general hybrid task mapping approaches. In this approach,
task remapping is triggered by the change of inter-application scenarios and the
violation of application specific objectives during the execution of intra-application
scenarios in a certain inter-application scenario. However, the drawback of this
approach is that it can’t solve the flexibility problem with regard to support-
ing new applications on the target system where the design-time analysis needs
to be redone entirely. To solve both the scalability and flexibility issues, in the
third section, we proposed a new hybrid task mapping approach which solves
the scenario-level mapping problem by a divide-and-conquer method (EIM) for
a heterogeneous MPSoC system whenever the scenario on the system changes.
This approach optimises task mappings right after new workload scenarios are de-
tected. It does not, however, contain any further mapping optimisation during the
execution of a certain workload scenario as it is provided by the STM algorithm.

In this section, these two run-time mapping algorithms will be combined to-
gether for a heterogeneous MPSoC system to improve the system efficiency where
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Figure 3.13: The workflow of HTM

the novel hybrid task mapping technique (with energy-aware high performance
mode) of the third section is applied for scenario mapping initialisation and the
run-time on-the-fly mapping heuristic (the dynamic part of STM) of the second
section is extended (on a heterogeneous system) for dynamic QoS management
during scenario execution on the target system. This combined task mapping ap-
proach is referred as Hybrid Task Mapping (HTM). By using this HTM approach,
our goal7 is to optimise the mapping of each detected workload scenario s

i

2 S
for minimising the performance objective of O

pb

(energy consumption objective
included, see Section 3.3.1) and where each application also satisfies its own ob-
jective O

�

. In this section, O
�

is the application specific performance requirement
similar to Section 3.2.2. The target application set and architecture are the same
as the ones considered in Section 3.3

3.4.1 Workflow of HTM Approach

As shown in Figure 3.13, the entire workflow of our HTM approach can be di-
vided into three steps: design-time preparation, run-time mapping initialization

7Based on the problem definition of Section 3.2.2 and Section 3.3.1.
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and run-time mapping customization. In the step of design-time preparation,
two optimized mappings for each intra-application scenario of each application
are prepared by exploring the corresponding mapping space. These pre-optimized
mappings will be stored in system memory for run-time mapping initialization/op-
timization. At run time, when the system detects a new workload scenario, our
HTM algorithm will try to produce a good mapping for the active applications in
the scenario using (a combination of) the stored per-application mappings derived
from the design-time preparation step. Note that, according to the assumption
(coarse-grained workload scenarios) we made at the start of this chapter, each
workload scenario will execute long enough to justify a possible remapping of
application tasks. Otherwise, a trade-off needs to be made between the cost of
remapping and the mapping performance improvement, which will be discussed
in the next chapter. This process of determining a new mapping for all applica-
tions when a new workload scenario has been detected, is referred to as mapping
initialization. The objective of this process is to maximize the system through-
put under the predefined energy budget (or, in other words, minimize O

pb

). The
mapping initialisation, which uses the stored mapping information of isolated ap-
plications, may not immediately lead to finding the optimal system mapping for
a complete identified workload scenario (i.e., the combination of applications that
form the scenario). Therefore, during the execution of a certain workload scenario,
the HTM algorithm will try to actively further improve the mapping performance
when application-specific objectives are (about to be) violated. To this end, it
continuously monitors the system and tries to perform relatively small mapping
customizations to gradually further improve the system performance. Evidently, to
reduce migration overheads, the algorithm aims at keeping the number of required
task migrations as low as possible. This process is called mapping customization.
The details of these three steps will be explained in the following subsections.

3.4.1.1 Design-time Preparation

At design time, the mappings with minimal O
p

and O
pb

will be searched by the
scenario-based DSE approach of Section 3.2.3 for all intra-application scenarios
in each isolated application (i.e., in those inter-application scenarios with only a
single active application). As shown in Figure 3.13, it would also be possible to
cluster intra-application scenarios of applications, and only determine mappings
with minimal O

p

and O
pb

for an entire cluster of intra-application scenarios like
the work in Section 3.2. This would further reduce the number of mappings
that need to be explored and stored. However, in this section, we assume that
mappings with minimal O

p

and O
pb

are searched for all separate intra-application
scenarios of applications. Different with the design-time DSE in Section 3.3.2.1
where three mappings need to be explored for each intra-application scenario of
each separate application, here, we only need to explore two mappings because
the energy optimisation objective O

e

considered in the previous section is ignored
in this section.

3.4.1.2 Run-time Mapping Initialisation

In the mapping initialization stage, we use the EIM algorithm with the energy-
aware high performance mode introduced in Section 3.3.2.2 to find a good initial
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mapping for a newly detected workload scenario. This mapping optimisation
process is triggered by the change of workload scenarios. The mapping derived
from the EIM algorithm will be initialised on the target system for the detected
workload scenario. During the execution of a workload scenario, the mapping
customisation process will be applied to further optimise the mapping. As the
EIM algorithm can be directly applied in this work, we will not provide more
details about how it works.

3.4.1.3 Run-time Mapping Customisation

After the mapping is initialized for the active workload scenario, the system
will monitor the execution of this workload scenario. As mentioned before, the
application-specific objective is used to determine whether or not a performance
problem arises (triggering the mapping customisation process) at run time. Here,
we assume that the target MPSoC should, in principle, be dimensioned such that
it can accommodate all possible target applications but that a particular applica-
tion’s performance objective may be violated due to a bad mapping. When the
system detects the violation of application specific objectives, the dynamic part of
the STM algorithm (see Section 3.2.4) is applied to customise the current mapping.
Notice that, in the second section of this chapter, the STM algorithm was applied
for optimising task mapping on a homogeneous MPSoC system. However, in this
section, our target system is a heterogeneous MPSoC system. Consequently, there
is a little difference between the STM implementation in Section 3.2.4 and this
section.

According to the workflow of the dynamic part of the STM algorithm, the first
step is to find the critical task in the problematic application under the current
task mapping and also the reason that causes the problem. The second step is to
remap the critical task (or task bundle) onto the target system. In the first step,
the STM algorithm for the heterogeneous MPSoC system of this section has the
same behaviour compared with the one for a homogeneous MPSoC system that is
introduced in Section 3.2.4.1. However, in the second step, the difference between
these two versions of the STM algorithm exists in the process of remapping the
critical task under the reason of poor locality. It means that the MCC approach
is the main difference between these two versions where the MCC as expressed in
Equation 3.8 for this section (find the index m, n and z) is more complex than
the one in Section 3.2.4.2 (find the index m and n).

min(Circle_Cost(p
i

)z
mn

), with 0  m,n < |P |,m  i  n, 0  z < |PE| (3.8)

where:
Circle_Cost(p

i

)z
mn

=
X

mkn

p

k

7!pe

z

etz
k

+
X

mkn

p

k

7!pe

z

X

0j<|P |

ecz
kj

(3.9)

where etz
k

denotes the execution time of task k (neighbours of task i) for PE
z (might different with the PE onto which the task currently mapped), and ecz

kj

denotes the communication overhead between tasks k and j (the task communi-
cates with task k). |P | and |PE| represent the total number of tasks in the target
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Figure 3.14: Example of an MCC for a critical task (gray task on the left-hand
side)

application and the total number of processors on the target system. The symbol
a 7! b means a mapped onto b.

To find the MCC for the critical task on a heterogeneous MPSoC system, the
heterogeneity of processors should be taken into account as the execution time of
a task is not the same on different processor. Figure 3.14 shows an example of an
MCC (indicated by the oval on the right-hand side) consisting of a task bundle
of three tasks, including the critical task (gray task). As the task to processor
binding is part of the calculation of the MCC of the critical task, implying that
the binding with the minimal MCC is known after this calculation, the substitute
PE is the processor used in this binding. However, if the MCC solely consists
of the critical task itself, then the critical task will be mapped together with the
neighbouring task with which the critical task has the heaviest communication to
the processor that yields the minimal task cost for the combined tasks. After the
substitute PE has been found, the FIFO channels between the tasks that need to
be remapped are either mapped as internal communication onto the new PE (if
communicating tasks are mapped onto this PE) or onto the system bus.

3.4.2 Experiments

In this subsection, we present the experimental results in which we investigate
whether the extended STM algorithm is able to further improve the system effi-
ciency based on the optimised mapping by the EIM algorithm on the previously
mentioned Sesame simulator. The experiment setups are similar to those of Sec-
tion 3.3.3 where our three multi-media applications and the heterogeneous MP-
SoC are used again in this work. For all the three target applications, there are
15 intra-application scenarios (MJPEG : 11, Sobel : 1 and MP3 : 3) in total.
It means that we need to store 30 pre-optimised mappings in the memory of the
target heterogeneous MPSoC system. As the results of mapping initialisation by
the EIM algorithm is already presented in Section 3.3.3, we will not further study
the mapping initialisation part of the HTM algorithm. To study the behaviour
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(a) Performance of mappings from different algorithms

0.0E+00%

1.0E+06%

2.0E+06%

3.0E+06%

4.0E+06%

5.0E+06%

6.0E+06%

7.0E+06%

SMM% TPA% ORB% EIM61.5% STM%

M
ap

pi
ng
'p
er
fo
rm

an
ce
''

(e
xe
cu
1o

n'
cy
cl
es
)'

0.0E+00%

1.0E+08%

2.0E+08%

3.0E+08%

4.0E+08%

5.0E+08%

6.0E+08%

7.0E+08%

8.0E+08%

9.0E+08%

SMM% TPA% ORB% EIM61.5% STM%

M
ap

pi
ng
'e
ne

rg
y'
co
ns
um

p1
on

'
(n
j)'

(b) Energy consumption of mappings from different algorithms

Figure 3.15: Comparing the quality of mapping solutions derived from different
run-time mapping algorithms for the intra-application scenarios of A1A2A3

of the STM part of our HTM approach, the most complex inter-application sce-
nario where all the target three application active simultaneously (A1A2A3 in
Table 3.4) will be considered as the target workload scenario for investigating the
behaviour of the extended STM algorithm. For the purpose of comparison, the
TPA and ORB algorithms as mentioned in Section 3.3.3 are again considered in
this work. Moreover, we also compare the run-time mapping results of our HTM
approach to the results of Simple Mapping Merge (SMM) which simply merges
together the (statically derived) optimal mappings of each active application for
the corresponding intra-application scenario.

Figures 3.15a and 3.15b show the scenario execution time and energy consump-
tion of mappings found by the SMM, TPA, ORB, EIM and STM algorithms in all
the intra-application scenarios of a particular inter-application scenario, namely
A1A2A3. In the case of the STM algorithm, the algorithm uses and tries to im-
prove on the results of the EIM algorithm, as sketched in Figure 3.13 (i.e., the
HTM algorithm). Using inter-application scenario A1A2A3, there are 33 workload
scenarios in total that are considered as the application workload in this exper-
iment. The error bars in the graphs show the variability of the results. From
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Figure 3.16: Final mapping comparison of EIM and STM for all intra-application
scenarios of A1A2A3

Figure 3.15a, we can see that the mappings from our STM and EIM algorithm
with a scaling factor ↵ = 1.5 achieve the best average performance among the in-
vestigated five algorithms. Note that the mapping customization process is applied
during the execution of a certain workload scenario after the mapping initialization
process. The STM algorithm is therefore used to further optimize the mapping
solutions derived from the EIM algorithm. Comparing the results from STM and
EIM, we found that the STM algorithm can achieve an additional performance
improvement of 2.2% on average for all 33 considered intra-application scenarios.
The reason for this relatively small performance improvement is twofold. First,
the mapping derived by EIM for each new workload scenario is already a near
optimal solution, which implies that the potentials for further improvement by
the STM algorithm are limited. Second, the STM algorithm is designed for the
situation in which the (user-defined) application-specific performance objective is
violated. However, as the mapping is already optimised by the EIM algorithm,
such performance objective violations for an application will typically not be very
large. When there is a (small) performance objective violation, the STM algorithm
tries to find a new mapping by only making small changes to the old mapping in
an on-the-fly manner. If the new mapping satisfies the pre-defined performance
objective, then the STM algorithm will stop8. Figure 3.16 shows the details of the
mapping performance comparison between the STM and EIM algorithms.

Figure 3.15b gives the average energy consumption of the final mappings as
shown in Figure 3.15a. The results in this figure illustrate that the mappings from
our STM and EIM algorithms have the lowest average energy consumption, where
the STM algorithm achieves an additional energy improvement of 0.5% on average
compared to the EIM algorithm. In this experiment, we have demonstrated that
the STM algorithm is capable of further improving the mapping performance com-
pared with the EIM algorithm, without sacrificing the energy consumption of the

8In case the violation cannot be remedied by the STM algorithm, the user can be notified
and/or a strategy for graceful termination of applications could be used.
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Figure 3.17: Average algorithm computation cost (cycles on a 2.17GHZ CPU) for
intra-application scenarios of A1A2A3

mapping. Overall, compared with the mapping solutions derived from the SMM,
TPA and ORB algorithms, the average performance and energy consumption of
the final mapping solutions generated by applying the HTM algorithm (the map-
ping is first optimized by EIM followed by STM at run time) for the 33 workload
scenarios in A1A2A3 improve by 67.2%, 105,9%, 45.9% (performance) and 14.6%,
23.5%, 14.9% (energy) on average respectively.

With regard to the run-time computational overhead, we investigate the com-
putation cost of the run-time stage (EIM and STM) of our HTM algorithm and
compare it to the overhead of the other run-time mapping algorithms. The re-
sults of an experiment in which we average the algorithmic overhead for executing
different intra-application scenarios of A1A2A3 (the most complicated workload
scenario where all three applications are active) are shown in Figure 3.17. Note
that the time unit (cycles on a 2.17GHZ CPU) used in this figure is different
from the time unit used for the mapping performance as presented in the previous
figures, which are based on simulation cycles measured by the Sesame simulator.
From Figure 3.17, we can see that the SMM approach has the smallest algorithmic
cost. As in this approach there is no actual computation of a new mapping, it
just involves memory access time to retrieve the pre-optimized mapping from the
SDB for each active application. On the other hand, the EIM part of our HTM
algorithm has the heaviest computational cost to find a new mapping, which hap-
pens at the detection of a new workload scenario (mapping initialization). For the
other part of the HTM algorithm – the STM algorithm – the computation cost is
much smaller.

3.4.3 Conclusion

Based on the EIM and STM algorithms, a new hybrid task mapping approach,
called HTM, has been proposed for MPSoC-based embedded systems to improve
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their performance by capturing the dynamism of the application workloads exe-
cuting on the system. Our approach is based on the idea of application scenarios
and consists of three steps: design-time preparation, run-time mapping initializa-
tion and run-time mapping customization. The design-time preparation exploits
optimal mappings for each mode of each application which will be stored on the
target platform for further mapping optimization. At run time, the mapping
initialization process dynamically optimizes the mapping of the running applica-
tion(s) with the objective of maximizing the throughput under a predefined energy
budget based on the optimal mappings of the corresponding applications stored
on the system when a new workload scenario emerges. During the execution of a
certain workload scenario, mapping customization is performed to further improve
the performance of the mapping under an application-dependent objective. In var-
ious experiments, we have evaluated our algorithm and compared it with other
run-time mapping algorithms. These experiments indicate that our proposed ap-
proach can achieve considerable performance improvements (45.9% - 105.9%) and
energy savings (14.6% - 23.5%) compared with the other algorithms for workload
scenarios in which multiple applications are simultaneously active.

3.5 Related Research

In recent years, much research has been performed in the area of run-time task
mapping for embedded systems. In the context of performance optimization, the
authors of [27] propose a run-time mapping strategy that incorporates user be-
haviour information in the resource allocation process. An agent based distributed
application mapping approach for large MPSoCs is presented in [5]. The work of
[45] proposes a run-time spatial mapping technique to map streaming applications
onto MPSoCs. In [17], dynamic task allocation strategies based on bin-packing
algorithms for soft real-time applications are presented. A run-time task allocator
is presented in [48] that uses an adaptive task allocation algorithm and adaptive
clustering approach for efficient reduction of the communication load. The ap-
proach proposed in [106] produces multiple mappings for each application with
a trade-off between resource requirement and throughput. Mariani et al. [71]
proposed a run-time management framework in which Pareto-fronts with system
configuration points for different applications are determined during design-time
DSE, after which heuristics are used to dynamically select a proper system config-
uration at run time. A similar approach is presented in [116] targeting a generic
architecture. In [138], the authors propose a lightweight run-time manager, linked
with an automated design-time exploration and incorporated in the host processor
of the platform, to dynamically and efficiently configure the applications accord-
ing to the available platform resources. Compared with these algorithms, our
task mapping approaches proposed in this chapter take an application scenario-
based approach, and take computational and communication behaviour embodied
in design-time optimized mappings into account when optimizing the mapping
at run time. Recently, Schor et al. [105] also proposed scenario-based run-time
mapping approaches in which mappings derived from design-time DSE are stored
for run-time mapping decisions. However, [105] does not address the reduction
of mapping storage (all workload scenarios are stored) and does not dynamically
optimize the mappings at run time.
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3.6 Summary

To solve the scalability and flexibility problem of general hybrid task mapping ap-
proaches, in this chapter, we proposed several task mapping algorithms that use
the information derived from the NSGA-II-based design-time DSE to further op-
timise the task mapping at run time. The scenario clustering based task mapping
approach introduced in the second section uses the STM algorithm to dynami-
cally optimise task mappings for our multi-media application set on a homoge-
neous MPSoC system at run time. This approach is able to solve the scalability
problem with regard to the number of workload scenarios and also apparently
improves the system efficiency (performance and energy consumption). Consid-
ering both the scalability and flexibility problems, a novel hybrid task mapping
approach is proposed for a heterogeneous MPSoC system in the third section us-
ing a divide-and-conquer method where the scenario-level task mapping problem
is broken down into application-level task mapping problems at design time, and
the application-level mapping solutions are then dynamically combined and fur-
ther optimised to give a complete solution for a workload scenario at run time.
Combining the advantages of these two approaches, the HTM approach has been
evaluated for a heterogeneous MPSoC system to improve the system efficiency
where the EIM algorithm is applied for workload scenario mapping initialisation
and the STM algorithm is extended for dynamic QoS management during scenario
execution on the target system. For evaluating these approaches, we adapted the
Sesame simulator as introduced in the previous chapter and extended it with a run-
time resource scheduling framework. The experimental results derived from this
extended Sesame simulator confirm the effectiveness of our proposed approaches.





CHAPTER 4
Self-adaptive MPSoC Systems with

Adaptivity Throttling

I n the previous chapter, we have proposed several hybrid task mapping ap-
proaches to solve the scalability and flexibility problem of general hybrid task

mapping techniques. However, as mentioned at the start of the previous chapter
where the target scenarios on the MPSoCs were assumed to be coarse-grained
workload scenarios, the run-time system reconfiguration cost during the process
of dynamic task remapping was not explicitly taken into consideration. This as-
sumption is also used in most general hybrid task mapping approaches in which
the system manager typically always tries to reconfigure the system resources
when a new workload scenario has been detected. In reality, the above assump-
tion might not be applicable as a part of the target scenarios on a MPSoC system
could be fine-grained workload scenarios that are only active for a short duration
(different workload scenarios rapidly succeed one another at run time). For such
fine-grained workload scenarios, the reconfiguration overhead may easily eliminate
the benefits of reconfiguring the system: the reconfiguration itself may take longer
than the performance gain that is obtained after reconfiguration. Consequently, in
the case of fine grained workload scenarios on the target MPSoC system, a blind
system reconfiguration may actually degrade the system performance, especially
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on heterogeneous MPSoC systems. This problem is referred to blind adaptivity
as introduced in Section 1.4. In this chapter, we focus on solving this problem in
hybrid task mapping approaches.

For this purpose, the system reconfiguration cost should be carefully consid-
ered for dynamic task remapping at run time. To study the reconfiguration cost
during run-time task remapping, in the first section of this chapter, we extend the
Sesame simulation framework with the ability of run-time system reconfiguration
cost evaluation. This extended Sesame simulator supports a flexible and efficient
modeling, simulation and exploration of different system reconfiguration mecha-
nisms and policies in MPSoCs. It is used as the experimental environment for
evaluating the work of this chapter.

After that, in the second section, we propose a run-time self-adaptive sched-
uler/manager to handle the above mentioned blind adaptivity problem for MPSoC
systems. The smart system scheduler tries to predict whether or not reconfigu-
ration of the system actually is beneficial based on the active workload scenario
and the status of the hardware platform. According to this prediction, the sys-
tem will either be reconfigured or not. By using this technique, which is referred
to adaptivity throttling, unnecessary system reconfigurations can be avoided, and
consequently the system efficiency can be improved.

In the third section, the technique proposed in the second section combined
with the novel hybrid task mapping approach from Chapter 3 is used in a run-
time self-adaptive resource allocation framework to further improve the efficiency
of MPSoCs. By combining these two techniques, the previously discussed issues
of general hybrid task mapping approaches: scalability, flexibility and blind adap-
tivity can be solved. That makes a MPSoC system able to be fully adaptive to
the dynamic behaviour of target workload scenarios. After that, a short summary
is presented at the end of this chapter.

4.1 A System-level Task Migration Simulation Framework

To fulfil the computation requirements of modern sophisticated applications, MP-
SoC architectures have in recent years received much attention in the embedded
systems domain. As mentioned in the previous chapters, MPSoC systems often
require to support an increasing number of applications and standards, where
multiple applications may concurrently execute and contend for resources. Con-
sequently, to exploit the full potential and capabilities of such architectures, the
mapping of multi-application workloads onto the processing elements of the MP-
SoC becomes increasingly challenging. This is also due to the fact that the initial
task mapping may need to change at run time for different reasons such as the
requirements of supporting application dynamism (the change of application ex-
ecution mode), fault tolerance, load balancing or thermal balancing. For this
reason, the concept of task migration has been gaining research attention in the
domain of MPSoC design [14]. Task migration is the transfer of the execution
of a process (task) from one processing element to another. The concept orig-
inates from the massive deployment of distributed systems (and, in particular,
distributed operating systems) in the parallel computing domain.
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The main idea of task migration is the transfer of task context (state)1 and
its address space between processors [38]. In the domain of MPSoC systems, two
main aspects should be carefully considered to support task migration in differ-
ent architectures, namely what and how to transfer during migration. Regarding
the problem of what to transfer during migration, it depends on the architecture
of the target system, i.e. homogeneous versus heterogeneous. Different proces-
sor types have different ISAs, address widths, register file sizes, etc.. Migration
of tasks between heterogeneous cores requires different program codes and task
contexts. Even between homogeneous cores, the data that need to be transferred
during migration varies among different migration mechanisms. The second prob-
lem – how to transfer – is related to the organization of the memory (shared
and/or distributed) and interconnection (bus, NoC, etc.) of the target system.
This determines what kind of communication technique (load/store instructions
or message passing) should be used for task migration.

Besides the architecture related task migration mechanism described above, the
policies of task migration – determining when to migrate task(s), which task(s) will
be migrated and where these tasks will be migrated to – are also very important.
Such policies may highly depend on the goal of task migration (fault tolerance, load
balancing, thermal balancing, etc.). To design migration-enabled MPSoC systems,
a system designer needs to be able to determine what mechanism and policy of task
migration are the best choices for the target system already during the early stages
of design. To this end, this section presents a system-level simulation framework
that supports the flexible and efficient modeling, simulation and exploration of
different task migration mechanisms and policies in MPSoCs. Using a number
of experiments, in which we study task migration in both shared-memory and
message-passing MPSoC architectures, we also demonstrate the flexibility and
capabilities of our simulation framework.

4.1.1 Task Migration Mechanisms for Different Architectures

In this subsection, we will introduce several well-known task migration mechanisms
for different hardware architectures. Here, system architectures can be divided into
three categories according to the system memory organization: Uniform Memory
Access (UMA) [50], Non-Uniform Memory Access (NUMA) [67] and NO Remote
Memory Access (NORMA) [14, 38].

In a UMA system architecture, all the processors uniformly share the physical
memory. The cost of accessing the memory is the same for all the processors in
the system. A typical example of this architecture are the tightly coupled shared
memory SMP (Symmetric Multi-Processor) systems, where all the processors run
a single copy of an operating system that coordinates global activities. In SMP
systems, task migration only needs to transfer the task’s context between proces-
sors, while the address space of the migrating task does not need to be transferred
since it is located in the shared memory that is shared by all processors. In this

1The context of a task or a process is the minimal set of data used by this task/process
that must be saved to allow either task interruption and/or migration at a given instant, and a
continuation of this task at the point it has been interrupted/stopped and at an arbitrary future
instant.
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case, the cost of task migration is relatively low compared to the other multi-
processor architectures. In contrast to UMA, the memory access time in a NUMA
architecture depends on the memory location. A processor can access its own local
memory faster than non-local memory (e.g., memory local to another processor).
In this kind of architecture, besides the task’s context, the address space contents
of the migrating task may also need to be transferred between different memo-
ries. Clearly, such task migrations come at the cost of a performance penalty and
increased on-chip communication.

In the two previous types of architectures, processors share a single address
space (i.e., the memory is physically/logically shared among processors) and there-
fore the data transfer of task migrations can be done via load and store instruc-
tions. This is, however, not possible for NORMA architectures where processors
have a private memory (and address space) and do not grant access to their mem-
ory by other processors. In NORMA architectures, the task migration must there-
fore be coordinated using messages (i.e., message-passing) between processors. As
a consequence, the cost of task migration in NORMA architectures typically can
be high due to the need of transferring the migrating data over relatively slow,
multi-hop communication channels like in a NoC.

For scalability reasons, future MPSoC systems will increasingly be equipped
with distributed memory, i.e., either use NUMA or NORMA architectures. This
means that the impact of task migration is not negligible with respect to system
performance. To reduce the task migration cost, several task migration mecha-
nisms like the eager-copy, pre-copy and post-copy techniques [9, 101] have been
proposed. For heterogeneous architectures, as different processor types require
different program code and task contexts, the complexity of task migration is
much higher than for their homogeneous counterparts. State-of-the-art systems
solve this through checkpointing [19, 77, 84] and application-level save-restore
mechanisms [19], while there exists no mechanism that is fully transparent to
applications [52].

4.1.2 Task Migration Supports in Sesame

For the purpose of studying and evaluating the impact of different task migration
schemes on the overall performance of a MPSoC system, our Sesame simulator
is again deployed. However, in the original Sesame simulator, applications are
directly mapped onto the hardware platform via a mapping/virtual layer and can-
not be changed dynamically during simulation, which limits the study of task
migration mechanisms. To support the modeling and simulation of task migra-
tion in Sesame, we have modified its structure to resolve this constraint. More
specifically, a new middleware layer which is in charge of run-time task migra-
tion has been added to the Sesame framework. This middleware layer, called the
Run-time Task Migration Middleware (RTMM), removes the direct mapping re-
lationship between applications and hardware resources, as shown in Figure 4.1.
To coordinate task migration-related activities at the architecture level on be-
half of the RTMM, a Run-time Resource Scheduler (RRS) module is provided
in the architecture model layer. This RRS manages the hardware resources ei-
ther in a centralized or distributed (in large-scale systems) manner. It takes care
of collecting statistics (e.g., performance of each application, system execution



4.1. A System-level Task Migration Simulation Framework 83

Task0 Task1 Task2

Event Traces

Scheduled 
events

Shared 
Mem

Proc.0 Proc.1

Application layer
Architecture layer

M
apping layer

IO Proc.2

BUS

Structure 
description + 

run-time 
parameters

Task binding 
+ scheduling 

polices

Structure 
description + 
performance 
parameters

XML descriptions

RRS

Task 
migration 
polices

Run-time Task Migration 
Middleware (RTMM)

Extended layer

Task 
migration 

lib.

Figure 4.1: Extended Sesame’s layered infrastructure

information, etc.) from the underlying system during the simulation process, trig-
gering the RTMM layer to make a decision when task migration is needed and
sending migration commands to specific processors based on the decision of the
RTMM. To facilitate the simulation of different task migration mechanisms, we
provide a task migration library that implements several migration micro instruc-
tions as shown in Table 4.1. Using these micro instructions, different migration
mechanisms can easily be modelled. The first two instructions are designed for
systems that use shared memory whereas the other two instructions are used for
message-passing systems. In these instructions, the parameter mig_mode is used
to indicate different migration schemes like migrating task code only, task con-
text only or both. Figure 4.2 illustrates how the micro instructions can be used
in the RRS to support task migration for a system with shared memory. After
having received the new mapping scheme calculated by the RTMM, the RRS will
start the task migration process for the task(s) that will be migrated by issuing
the micro instructions according to the migration mechanism implemented in the
architecture. Here, the MIG_STORE triggers the storing of all migrating data
into shared memory, while the MIG_LOAD triggers the loading of this data at
the destination processor. For message-passing systems, the MIG_SEND and
MIG_RECEIVE micro instructions will be sent to the processors from/to which
a task is migrated, which will initiate a message-passing data transfer (realizing
the actual migration) between these two processors.
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Table 4.1: Micro instructions provided in the task migration library

Instruction Parameters

MIG_STORE old_pe, address_shmem, mig_mode, mig_datasize

MIG_LOAD new_pe, address_shmem, mig_mode, mig_datasize

MIG_SEND old_pe, new_pe, mig_mode, mig_datasize

MIG_RECEIVE new_pe, old_pe, mig_mode, mig_datasize

OLD_PE NEW_PE

Global
sharedMEM

RRS
Pseudo code executed on RRS

...

reqTaskMig(statistics); //send req. to RTMM
new_pe = getNewMapping(task_index); 
old_pe = getOldMapping(task_index); 
if (new_pe != old_pe)

MIG_STORE(old_pe, address_shmem, 
mig_mode, mig_datasize); 

MIG_LOAD(new_pe, address_shmem, 
mig_mode, mig_datasize); 

storeNewMapping(task_index,new_pe); 

...

1: mig_store

2: store_data

3: mig_load

4: load_data

Figure 4.2: A simple example of task migration implementation on a shared mem-
ory system

As mentioned before, task migration can be implemented for different pur-
poses such as a violation of application performance constraints, load balancing,
fault tolerance and so on. To trigger task migrations, our framework supports
different types of approaches that can be implemented in different layers, ranging
from the application level to the architecture level. For example, at application
level, explicit migration check-points can be inserted in the application code. In
this case, the task migrations are controlled by the application designer. At the
architecture level, each processor could also issue task migration requests to the
RRS, triggered by e.g. the detection of undesired (execution) behaviour like a
timing violation, hardware fault or overheating. Beside these, the RRS can also
trigger a task migration based on the statistics it has collected. In our framework,
the task migration process is performed by means of coordinated actions between
the RTMM and RRS. The exact responsibilities and workflow for each of these
two components is shown in Figure 4.3. At run time, the RRS will continuously
monitor the execution of applications and collect the running statistics of the tar-



4.1. A System-level Task Migration Simulation Framework 85

RTMM RRS

system 
monitoring

migration 
request

task inf.

migration 
decision

system 
inf.

migration 
policy

run-time statistics

YesTrigger

migration 
library

migrating 
task(s)

No

Figure 4.3: The task migration workflow of our framework

get system. Whenever there is a pre-defined migration condition detected (e.g.,
a performance deadline violation), the RRS will send a task migration request
to the RTMM. Currently, our simulation framework will stall all application pro-
cesses until the migration decision has been taken. The RTMM, after receiving
a migration request from the RRS, will make a migration decision based on the
task migration policy implemented, information of active tasks and the execution
statistics collected by the RRS. Here, the migration decision includes the informa-
tion of which task(s) should be migrated and where the task(s) should be migrated
to. It does not involve information about how the task will be migrated. This is
under the control of the RRS. Given this task migration decision, the RRS will
start the task migration events according to the migration mechanism that has
been implemented using the migration micro instructions. Notice that, the actual
migration of a task can only occur when the task is in a pre-defined migratable
state, e.g. frame boundaries for our multi-media applications.

Using the extended Sesame simulator, it is possible to evaluate the impact of
task migrations on system performance for different MPSoC architectures. To
achieve this flexibility, the following support for modeling and simulating different
task migration-enabled architectures is available at each layer.

• Application model layer: In our Sesame simulator, applications are mod-
eled using KPN computation model which can be implemented in any high
level programming language. To emit events to the architectural model, the
application processes are annotated. By default, the Sesame framework sup-
ports the generation of read, write and execute events as mentioned in Sec-
tion 2.1.1. To support the study of application-level task migration mecha-
nisms, we have added the possibility to instrument the code of processes such
that special task migration events can be generated, which trigger task mi-
grations in the RTMM. Besides the (instrumented) application source code,
a structural application description (using an XML-based language [30]) is
provided to the simulator. This description includes the topology of the
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processes in the target application(s) and the execution parameters of each
process.

• Mapping layer: This layer determines the mapping of processes (i.e. their
event traces) onto architecture model components by dispatching applica-
tion events to the correct architecture model component, as can be seen in
Figure 4.1. It also includes the mapping of communications at application
level onto communication resources in the architecture model. The mapping
layer has two additional purposes. First, the event dispatch mechanism in
the mapping layer provides a variety of static and dynamic policies to sched-
ule application tasks (i.e., their event traces) that are mapped onto shared
architecture model components. Second, the mapping layer is also capable
of dynamically transforming application events into (lower-level) architec-
ture events to facilitate flexible refinement of architecture models as intro-
duced in Section 2.1.4. In the extended Sesame simulator, the dispatching of
trace events to architecture components is now controlled together with the
RTMM / RRS tandem. The RTMM forwards events from the mapping layer
to the RRS in the architecture model layer, where the latter is in charge of
actually dispatching the trace events to the processor component onto which
the application task in question is currently mapped. The mapping descrip-
tion that acts as input for this mapping layer includes the task migration
related parameters like the minimal task context size and compiled task code
size.

• RTMM layer: In this layer, the migration policy (algorithm) is imple-
mented based on the goal of task migration. The policy defines which task(s)
should be migrated and where the task(s) should be migrated to. The de-
signer can implement different policies like the task remapping algorithms
proposed in Chapter 3 to test which one is the best for the design goal at
hand.

• Architecture model layer: This layer models the (non-functional be-
haviour of the) MPSoC hardware architecture, and can be generated using
a system library that provides the template models for different components
like processors, memories, communication channels and interconnects, etc.
Also, designers can add and customise their own system components. To
support task migration, the RRS component should be integrated into the
architecture model. We also provide a template RRS implementation. In
this template, one could use the micro instructions as described before to
support different task migration schemes based on the target system ar-
chitecture. Besides the architecture model, an architecture description file
should be provided. It describes the structure of the architecture and in-
cludes the non-functional properties of hardware components like frequency,
power, bandwidth/latency of communication channels, and so on.

4.1.3 Task Migration Case Studies

In this section, we present two case studies in which we model task migrations
in two very different systems, shown in Figure 4.4, to demonstrate the flexibility
and wide application scope of our simulation framework. The target applications
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Figure 4.4: The MPSoC architectures used for the case studies

Table 4.2: The parameters for application and architecture description in the
simulator

Parameters Explanation
T j

i

execution cycles of task i on processor j

CSj

i

code size of task i on processor j

TCj

i

minimal task context size of task i on processor j

S
m

, S
b

size of memory m or buffer b in the system
B

m

, B
c

bandwidth of memory m or comm. channel c
L
m

, L
c

latency of memory m or comm. channel c
F
k

frequency of hardware component k on the system

used in our experiments belong to the multi-media application domain. Each
application has a (soft) real-time performance constraint which can be used to
trigger task migrations as shown in the first experiment. For the application and
system architecture description, the parameters needed for simulation are listed
in Table 4.2. If needed, these parameters can be calibrated by designers using
low(er)-level simulators or measurements on real systems. We would like to stress
that this section does not focus on the actual assessment of state-of-the-art task
migration policies, but instead our aim is to demonstrate the flexibility and wide
application scope of our simulation framework. Therefore, in the two case studies,
we have chosen to implement only relatively simple task migration policies in the
RTMM. The details of each of the two experimental cases will be explained in the
following subsections.

4.1.3.1 A Heterogeneous UMA MPSoC

Target Application and System Architecture In this experiment, the tar-
get application is the Sobel filter for edge detection in images (frames) as intro-
duced in the previous chapter. The target MPSoC system is shown in the left part
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Figure 4.5: Task migration impact on application performance for the heteroge-
neous MPSoC

of Figure 4.4. In the heterogeneous MPSoC, 5 processors with different architec-
tures are connected by a bus. A global memory and a IO processor are shared by
these processors. The RRS has been integrated in the IO processor. The IO pro-
cessor can collect application performance statistics like Frame Execution Time
(FET) at the end of each processed frame (i.e., the time between a frame is read
and written by the IO processor). Based on these statistics, the RRS can trigger a
task migration event when needed. Initially, all processes except the two IO pro-
cesses in the Sobel application are mapped onto processor p0 of the heterogeneous
MPSoC (the IO processes are mapped onto the IO processor).

Migration Mechanism and Policy As the target architecture in this exper-
iment is a heterogeneous MPSoC with shared memory, the binary code of each
task for each processor might be different. Here, we assume that the compiled
code of each task for each processor is preserved in the global shared memory.
Under this assumption, we have modeled a task recreation mechanism [38] in this
experiment to support task migration. During task migration, the migrating task
will be killed on the original processor and the task state information will be
saved in global memory. The destination processor will load the binary code and
state information from shared memory to restore the task. Also, the communi-
cation channels connected with the migrating task will be redirected to the new
processor by remapping them.

Regarding the task migration policy in this experiment, we have modeled the
following two algorithms to make the task migration decision: a Random Task
Remapping (RTR) which generates a random mapping for task remapping2, and
a Task Processor Affinity (TPA) [83] as introduced in Section 3.3.3.

2RTR randomly decides which task(s) should be migrated and where the migrating task(s)
should be migrated to.
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Figure 4.6: Task migration cost of different algorithms on the heterogeneous MP-
SoC

Experimental Results In this experiment, we use a single picture as the con-
tinuous input stream of frames for the Sobel application. The migration trigger in
this experiment is a violation of the application performance constraint. To this
end, we have set a performance constraint for Sobel, using the Frame Execution
Time (FET) metric, such that it enforces a task migration request after the first
frame has been processed. The migration request is handled by the RTMM, which
subsequently applies the implemented migration policy to make a task migration
decision. During this process, all the tasks of the Sobel application will stall and
wait for the task migration decision. After the migration has finished, the sys-
tem continues to process the subsequent frames and monitor the execution of the
application.

Figure 4.5 shows the experimental results of the migration impact to the ap-
plication performance by using different task migration policies (algorithms) for
our heterogeneous MPSoC. The marked lines labeled as RTR1 and RTR2 are the
results of migrating tasks based on two different migration decisions computed by
the RTR algorithm. The dotted line represents the execution using the initial map-
ping and without task migration. In Figure 4.6, we also show the task migration
overhead for each policy, which includes two main elements: the computational
cost of the task migration decision and the task migration cost itself. The compu-
tational cost of the task migration decision has been measured on a real CPU and
then normalised to the simulation frequency of our simulator. In Figure 4.5, we
clearly notice the task migration taking place after the first frame since the higher
FET values for the second frame include the task migration overhead. After the
second frame, the FET values stabilize again, i.e., no further task migrations are
triggered. From the results, we can also see that the migration cost of TPA is the
highest among three task migration scenarios. Here, RTR2 has migrated 2 tasks,
whereas RTR1 and TPA both migrated 4 tasks. Consequently, RTR2 has the
smallest task migration overhead overall. However, after migration, the resulting
mapping as derived by TPA clearly shows the best performance.



90 Chapter 4. Self-adaptive MPSoC Systems with Adaptivity Throttling

0.0E+00%

1.0E+07%

2.0E+07%

3.0E+07%

4.0E+07%

5.0E+07%

6.0E+07%

7.0E+07%

1% 2% 3% 4% 5% 6%

Fr
am

e&
ex
ec
u*

on
&*
m
e&
in
cl
ud

in
g&
m
ig
.&

(s
im

ul
a4

on
%c
yc
le
s)
%

Frame&ID&

No%mig.% RTR?1KB% EIM?1KB% EIM?32KB%

Figure 4.7: Task migration impact to application performance on the homogeneous
MPSoC

4.1.3.2 A Homogeneous NORMA MPSoC

Target Application and System Architecture The applications used in this
experiment are the three multi-media applications: MJPEG, MP3 and Sobel as
introduced in the experiments of previous chapter.

With respect to the target system in this experiment, the architecture is shown
in the right part of Figure 4.4. In this system, 8 homogeneous processors and an
IO processor are connected by a 2D mesh NoC. Similar to the system described
in the last experiment, the RRS has also been integrated into the IO processor.
Initially, we again map all processes except the IO processes onto processor p0.

Migration Mechanism and Policy In this experiment, the target system
architecture is a homogeneous MPSoC system with private memories connected
to the processors (i.e., no remote memory access). As all processors have the same
architecture, a task’s context can be shared among processors. Therefore, we
have modeled a task replication mechanism [38] to support task migration in this
system. The idea is that each processor on the system has a replica of all tasks.
Only one copy of a task can be active and running on a specific processor while the
other copies are suspended and reside in memory of the other processors. When a
task migration is needed, the task is suspended in the source processor and resumed
in the destination processor, using the context of the migrating task. Also, the
communication channels connected to the migrating task will be redirected to the
new processor by the RRS. So, using this migration mechanism, only the context of
the migrating task needs to be migrated between processors. This greatly reduces
the communication overhead of task migration at the cost of increased memory
usage because of the storage of task copies.

The task migration policies used in this experiment are slightly different than
in the previous experiment. Since the target architecture is a homogeneous MP-
SoC, each task has the same task execution time on each processor on the system.
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Figure 4.8: Task migration cost of algorithm EIM with different task context size
on the homogeneous MPSoC

Consequently, the TPA algorithm would not be very effective in this case. As a
substitute, we have modeled the EIM algorithm from Section 3.3 without consid-
ering its energy constraint.

Experimental Results Figure 4.7 shows the results of the migration impact
to the application performance for our homogeneous MPSoC. In this experiment,
the three afore-mentioned applications are mapped onto the target system. For
the purpose of results comparison, we also use the concept of frame to define the
workload of applications. Here, we combine one unit workload (e.g., one picture) of
each application together as one frame for all applications. In this case, the frame
execution time of multiple applications is defined as the maximal frame execution
time among applications (each application processes its own unit of workload). For
example, the frame execution time F of our three target applications for processing
one frame workload is represented as Equation 4.1.

F = max(F
mjpeg

, F
sobel

, F
mp3) (4.1)

where F
mjpeg

, F
sobel

represents the frame execution time of processing one picture
for MJPEG, Sobel respectively and F

mp3 means the execution time of processing
one short piece of encoded MP3 song.

Similar to the previous experiment, a single input frame will be reused con-
tinuously to act as input stream for each application. In this experiment, task
migration is used for dynamic resource reallocation, and therefore task migration
is triggered when the system workload changes. For example, a new applica-
tion enters the system or an active application finishes and quits the system. In
Figure 4.7, there is only a single application (MP3) active in the system during
Frame ID ’1’. At the end of this frame, two other applications, namely Sobel
and MJPEG, are activated on the system and execute from frame ’2’ until ’6’.
This means that a task migration is triggered during Frame ID ’2’, as is clearly
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visible in Figure 4.7. This figure shows the results for both the RTR and EIM
migration decision algorithms. For EIM, the migration impact with different task
context sizes have been considered (a 1KB and a 32KB context). From the results
shown in Figure 4.7, we can see that the applications show poor performance after
task migration when applying RTR. This can be explained by the fact that the
communication costs of the NoC are high, especially for the applications that are
communication intensive. In our case, it is better to map the MJPEG and Sobel
applications each onto a single processor to reduce the communication cost. How-
ever, the RTR algorithm will generate mapping decisions without considering the
communication cost at all. On the other hand, by applying the EIM algorithm,
the final mapping has good performance behaviour. Moreover, comparing the
EIM-1KB and EIM-32KB curves, it can be seen that the application performance
during task migration (Frame ID ’2’) can be substantially influenced by the task
context size. To study how the task migration overhead is affected by the size
of the migrating data in more detail, we have measured the migration overhead
for different task context sizes. The results of this experiment are given in Fig-
ure 4.8. Clearly, the cost of transferring task context on our target homogeneous
system linearly increases with the size of task context. However, in Figure 4.8, the
task migration overhead also includes the computation cost of the EIM algorithm.
From this figure, we can see that the task migration cost increases slowly with the
task context size when it is under 8KB. However, when the task context size is
bigger than 8KB, the task migration cost has a near linear relationship with the
task context size. The reason is that when the task context size is small (like below
8KB in our test case) the task migration cost is dominated by the computation
cost of the EIM algorithm. However, when the task context size increases to a
certain amount, the cost of transferring task context dominates the task migration
cost.

4.1.4 Related Research

Task migration has been traditionally studied in distributed systems for dynamic
load balancing [117, 65, 24]. However, with the increasing popularity of MPSoCs
in modern embedded systems, task migration has also gained research attention in
this domain and has been studied for different purposes. For the purpose of ther-
mal balancing, Cuesta et al. [33] provide three task migration policies to optimize
the thermal profile of MPSoCs by dynamically balancing the weight of the on-chip
thermal gradients, maximum temperature and effect of the underlying floorplan on
heat dissipation properties of each core. In the work of [81], task migration-based
thermal balancing policies are proposed to modulate power distribution between
processing cores to achieve temperature flattening. The authors in [41] use proac-
tive task migration among neighboring cores to balance the thermal profile for
many-core systems. For the purpose of load balancing, in [14], task migration
combined with intelligent initial placement are used to maintain load balancing
in the MPSoC system. The authors in [18] analyze the impact of task migration
in a NoC based MPSoC system. In their work, task migration is triggered after
the resource allocation heuristic which tries to balance the system on demand is
executed. To support fault tolerance on MPSoC systems, task migration is also a
required technique [20, 75, 28]. The idea in [20, 75] is to improve dependability of
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the system by exploiting the migration method in case of run-time faults in the
processing cores. In [28], a system-level fault-tolerance technique for application
mapping, which aims at optimizing the entire system performance and commu-
nication energy consumption, is proposed. To this end, application components
running on a faulty core are migrated altogether to available non-employed spare
cores.

In the context of task migration mechanisms supported in MPSoC systems,
quite some work has been done on task migration at application level, middleware
level and architecture level. In [14], the authors propose a user-managed migra-
tion scheme based on code checkpointing and user-level middleware support as an
effective solution for many MPSoC application domains. The work in [1, 100] im-
plements task migration in a middleware layer which is built on top of the uClinux
operating system running on a prototype multicore emulation platform. To sup-
port heterogeneity in task migration, [89] provides a middleware, called Low Level
Virtual Machine (LLVM), to postcompile the tasks at runtime depending on their
target processor. At the architecture level, [2] discuss the possible architectural
support for MPSoC systems to allow dynamic task migration. In [12], the authors
propose a hybrid memory organization for NoC-based MPSoC systems as the way
to minimize the energy spent during the code transfer when task migration or
dynamic task allocation needs to be performed.

With regard to task migration simulation, in [113, 111, 112], the authors ex-
tended Sesame to have a system-level simulator for run-time task mapping in
the context of reconfigurable systems. In their simulator, tasks can be migrated
between a general purpose processor and a reconfigurable accelerator which en-
ables the system to be more efficient in terms of various design constraints such
as performance, chip area and power consumption. However, no details of the
task migration implementation are shown in this work. Different with this simula-
tor, our proposed simulator provides a general purpose task migration framework
which is not limited by the target architecture, the task migration purpose and
task migration mechanism. To the best of our knowledge, this section presents
the first effort in the direction of establishing a generic simulation infrastructure
that allows for the efficient exploration of a wide range of migration mechanisms
and policies in MPSoCs.

4.1.5 Conclusion

Task migration is a useful technique that can be used in MPSoC systems for
different purposes such as load balancing, thermal balancing, fault tolerance, im-
proving system energy efficiency and so on. Therefore, investigating the suitability
of specific task migration schemes for a target system architecture is an important
design step that needs to be addressed as soon as the early stages of design. For
this purpose, in this section, we have presented a high-level simulation framework
that allows for simulating and exploring different task migration mechanisms and
policies for a wide range of different system architectures. Using two case studies,
we have demonstrated the flexibility and wide application scope of our simula-
tor. To this end, the case studies evaluate different task migration policies and
mechanisms for vastly different target architectures. The experiments point out
that our task migration simulator can provide designers with useful insights on
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the suitability of a specific migration scheme for the target system and allows for
exploring different migration policies.

4.2 Dynamic Task Mapping with Adaptivity Throttling

To cope with run-time dynamic application behaviour, MPSoC systems could
dynamically adapt the mapping of application tasks onto the underlying system
resources to improve the system’s performance. However, such performance im-
provement comes at the cost of a system reconfiguration in which application
tasks may have to be migrated between processors. This trade-off implies that
reconfiguring the system is only beneficial when the performance gains outweigh
the reconfiguration overhead. To address this problem for MPSoCs, this section
presents a scenario-based run-time resource management framework with the abil-
ity of adaptivity throttling that uses the history of application scenario execution
behaviour to predict the actual benefit of a system reconfiguration to allow for
explicitly deciding (at runtime) whether or not to reconfigure.

4.2.1 Objective Formulation

Our target applications belong to the domain of streaming applications (like mul-
timedia applications) that continuously process an incoming stream of data ele-
ments. To capture the duration of a workload scenario in this case, we use the
concept of scenario frames. Here, we define one scenario frame as the time it
takes for each active application within a specific workload scenario to process a
single unit (frame) of data (e.g., processing a single MP3 frame, an H264 frame,
etc.). This means that the frame execution time pj

i

of a workload scenario s
i

un-
der mapping tmj

i

is defined as the maximum of frame execution times of all active
applications within the scenario:

pj
i

= max(pij
app

k

) (4.2)

where pij
app

k

represents the frame execution time of application app
k

that is active
in scenario s

i

under mapping tmj

i

. Consequently, the total execution duration of
scenario s

i

under mapping tmj

i

is calculated as pj
i

⇤ n
i

where n
i

is the number of
scenario frames executed on the system.

When a new workload scenario has been detected, this means that one or more
applications may have stopped and/or new ones have started. Here, we assume
that when a new application is started, it is added to the system using a pre-
determined, default task mapping. Given a newly detected scenario, the complete
task mapping of those applications that persist in the new scenario and any newly
added applications needs to be reconsidered. Remapping of the application tasks
in the newly detected workload scenario can be beneficial performance wise (i.e.,
every workload scenario has an optimal task mapping) but this depends on both
the actual performance gain of reconfiguring the system and the reconfiguration
costs. The reconfiguration costs include two parts: 1) the overhead of the re-
source scheduler which includes the time of finding a new mapping and making
a reconfiguration decision, and 2) the task migration cost that may occur during
system reconfiguration. Here, we denote the reconfiguration costs for scenario s

i
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to change from mapping tmj

i

to tmj

0

i

as cjj
0

i

, which includes the time of finding the
new mapping tmj

0

i

and making the reconfiguration decision for the new mapping.
This implies that the system reconfiguration benefit B can now be expressed as:

B = (pj
i

� pj
0

i

) ⇤ n
i

� cjj
0

i

(4.3)

Our objective is to maximize the system performance for a sequence of workload
scenarios S0. This means that we want to maximize the total system reconfigu-
ration benefit

P
s

k

2S

0 b
k

⇤B
k

, where b
k

2 {0, 1} is the migration decision made
by the run time scheduler and B

k

is the reconfiguration benefit of workload sce-
nario s

k

2 S0. Obviously, the solution to this problem is b
k

= 0 if B
k

<= 0 and
b
k

= 1 if B
k

> 0. Consequently, to achieve our objective, the system needs to
correctly predict the system reconfiguration benefit B for each workload scenario.

4.2.2 Task Mapping with Adaptivity Throttling

4.2.2.1 Design-time Preparation

To achieve the objective of run-time adaptivity for a MPSoC system, in our pro-
posed approach where a general hybrid task mapping technique is deployed, a
design-time preparation stage is needed to provide the necessary information for
the run-time manager. For each possible workload scenario, the optimal mapping
needs to be found at design time. To this end, we have deployed the scenario-based
DSE approach proposed in Section 2.3 in those cases where the mapping problem
is intractable for exhaustive DSE3. The design-time DSE yields a performance op-
timized mapping for each workload scenario, which are stored in system memory
for run-time usage.

To determine the performance gain of reconfiguring the system (remapping
application tasks) versus keeping the currently active mapping in case of a newly
detected workload scenario, we must know the performance of both the current
mapping and the pre-optimized mapping of the newly detected scenario. In the
work of this section, we assume that these two performance numbers have also
been determined at design time and are stored in system memory. This means
that the frame execution time of each workload scenario under its pre-optimized
mapping (as found by design-time DSE) is stored. Moreover, we assume that we
also have a look-up table (generated at design time) to determine the performance
of a newly detected scenario under the old mapping of the previously active ap-
plication scenario. Evidently, the memory consumption of this look-up table will
be problematic when the number of target applications is large. This problem
will be solved in the next section by using a light-weight run-time mapping per-
formance predictor. Finally, we also statically store the size of data that needs to
be migrated during task migration for every task in all target applications for the
run-time prediction of migration costs.

3Exhaustive DSE: exhaustively explore every possible mapping in the mapping space to
derive the optimal solution for the target optimization goal. We use it for small-scale task
mapping problems to derive the best solution at design time.
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4.2.2.2 Run-time Resource Reconfiguration

To construct the adaptive resource scheduler as introduced before, the problem
that needs to be solved is to correctly predict the system reconfiguration benefit
B. It consists of three parts: the performance improvement pj

i

� pj
0

i

, the recon-
figuration cost cjj

0

i

and the workload execution duration n
i

. These three parts
are unknown before the system reconfiguration. Thus, prediction models should
be used to determine a reconfiguration decision based on the benefit B. In this
section, we mainly focus on the prediction of the workload scenario duration n

i

.

Mapping Performance Prediction As explained in the previous section, the
performance of each workload scenario under the mappings derived at design time
are stored on the system. In this case, the run-time scheduler does not need to
dynamically predict the performance of workload scenarios which saves additional
overhead, at the cost of additional design-time preparation and the system storage
needed for storing the performance information.

Reconfiguration Cost Prediction The reconfiguration cost of our target MP-
SoC consists of two parts: the overhead of the resource scheduler and the task
migration cost during system reconfiguration. When a new workload scenario is
detected, the system scheduler will first determine a new mapping (in our case
the stored pre-optimized mapping) for this workload scenario, and then make a
reconfiguration decision. The overhead of these two steps can be determined by
means of measurements. However, the other part of the reconfiguration cost, the
cost of task migration, should still be predicted. As mentioned before, the amount
of data that needs to be migrated between processors for each task is known at
design time. Subsequently, we use a simple linear analytic model for the migration
cost:

CMig = (
X

t

i

2T

mig

ms
i

)/r
mem

(4.4)

where T
mig

is the set of migrating tasks, ms
i

represents the amount of migrating
data for task t

i

, and r
mem

is the memory access speed. This model is based on two
assumptions: the migrating data is transferred via the MPSoC’s shared memory
and the resource scheduler sequentially controls task migrations.

Reconfiguration Decision Prediction For a newly detected workload sce-
nario s

i

, the potential performance improvement due to system reconfiguration
can be calculated by using the stored mapping performance information that was
derived at design time. Combining the performance improvement and the (pre-
dicted) system reconfiguration cost, the scheduler can determine a lower bound
bn

i

for the execution duration of this workload scenario:

bni = cjj
0

i /(pji � pj
0

i ) (4.5)

According to the derivation in Section 4.2.1, one can easily see that the sys-
tem should be reconfigured only if the execution duration of s

i

is larger than bn
i

(B > 0). In this section, we propose an Accumulated Statistical Metric Model
(ASMM), which is based on the Statistical Metric Model (SMM) [103], to predict
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Figure 4.9: ASMM example with 3 history samples.

the scenario execution duration. The SMM is a probability distribution over ap-
plication patterns of varying length. It models the conditional distribution on the
identity of the ith (quantized) sample given the identities of all previous (quan-
tized) samples in a metric sequence. The difference between our ASMM and the
original SMM concerns the way of how the prediction value is generated, as will
be explained below.

Using our ASMM, we build a metric model based on the probability distri-
bution of scenario execution duration for each workload scenario, which means
each workload scenario has its own ASMM. When a new workload scenario is de-
tected, the system scheduler uses the ASMM of this workload scenario to predict
its duration. Figure 4.9 gives an example of the ASMM-based prediction of a re-
configuration decision when using 3 history samples. In our problem, the samples
of scenario execution duration are measured in the number of frames (F). These
frame numbers are quantized using a limited number of bins (or ranks) to reduce
the complexity of our predictor, see the upper part of Figure 4.9 for an exam-
ple. The lower right part of Figure 4.9 shows a simple instance of our ASMM. It
includes three kinds of tables: the execution duration history tables, duration pre-
diction tables and tables with probabilities for all possible duration predictions.
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The first two types of tables store rank numbers. The width and depth of the
history tables usually determine the prediction ability of the ASMM and should
be set based on the target problem. At the end of a workload scenario, all tables
of the workload scenario are updated according to its actual execution duration.
We refer the interested reader to [103] for further details about (A)SMMs.

To illustrate the ASMM-based reconfiguration decision, please consider the
lower left part of Figure 4.9. The input of our ASMM is the (quantized) execution
duration sample history (top of Figure 4.9) of the detected scenario and the dura-
tion bound bn

i

. According to the detected workload scenario, the corresponding
ASMM will be used to determine the reconfiguration decision. In our example,
the ASMM first checks the history table with 3 history samples to see if there is a
pattern match regarding the scenario’s duration history. If there is no match, like
in the case of our example, the ASMM will continue to search the history tables
with a smaller width of history samples (i.e., using a shorter history). This process
continues until there is a history pattern match or it ends up at the direct duration
prediction without any execution duration history (the table at the bottom of the
ASMM in Figure 4.9). In both cases, the duration bound bn

i

is compared with
all the possible duration prediction values and for those prediction values bigger
than bn

i

their probabilities will be accumulated: hence the name Accumulated
SMM. This accumulated probability represents the chance of B > 0 if the system
is reconfigured for this workload scenario. Only if the accumulated probability is
larger than the probability bound bp (set by the designer), the ASMM will return
a positive reconfiguration decision. In our example, the probability bound bp is
set to 50%.
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Figure 4.10: Workflow of run-time adaptive resource scheduler.
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(b) Scenario sequence with shortterm distribution
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(c) Scenario sequence with prob distribution

Figure 4.11: The scenario duration distributions used for generating workload
scenarios.

Workflow of the Adaptive Resource Scheduler Based on the above de-
scription of the proposed adaptive resource scheduler with the ability of adaptivity
throttling, the workflow of such adaptive MPSoC scheduler is illustrated in Fig-
ure 4.10. To achieve the adaptivity goal, several components such as: a Scenario
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DataBase (SDB), a Run-time System Monitor (RSM) and a Run-time Resource
Scheduler (RRS) should be integrated on the target MPSoC system. The SDB is
used to store the task mappings as derived from design-time DSE as well as the
mapping performance information of each workload scenario and the migrating
data size of each task. The RSM is in charge of detecting and identifying the
active workload scenario, and also collects statistics (e.g., the actual execution
duration of a workload scenario) from the underlying system during the execution
of a certain workload scenario. The RRS uses our proposed approach (general
hybrid task mapping with adaptivity throttling) to do resource reconfiguration
for the identified workload scenario. When the RSM detects a new workload sce-
nario, the RRS obtains the pre-optimized mapping for the current active scenario
from the SDB. Hereafter, the RRS makes a reconfiguration decision based on the
reconfiguration benefit B of changing the current mapping to the new mapping.
According to this decision, the RRS will either reconfigure the system based on
the new mapping or continue the system’s execution under the current mapping.
When the current workload scenario finishes, the RRS updates the information in
the corresponding ASMM based on the actual execution duration collected by the
RSM.

4.2.3 Experiments

4.2.3.1 Experimental Setup

To evaluate the efficiency of our proposed run-time adaptive resource scheduler,
we deploy the extended Sesame simulator introduced in Section 4.1 in which the
resource scheduler integrated in the architecture model and the task migration
middleware cooperate to realise the simulation of adaptivity throttling for a MP-
SoC system.

In our experiments, we aim at showing how the proposed technique improves
the system performance. To this end, it is important to assess system performance
under a variety of different workload scenario behaviours. The actual function-
ality of the applications within these scenarios is, on the other hand, of lesser
importance for this purpose. Therefore, we use synthetic streaming applications
within workload scenarios to simplify the simulation process. In our experiments,
we prepare five synthetic streaming applications where each application contains
only 1 execution mode. In this case, the total number of workload scenarios is
31 (25 � 1). The number of tasks in each application ranges from 4 to 8. We as-
sume that each task can be executed on each processor of the target MPSoC using
the corresponding pre-compiled code (stored in the shared memory). The task
execution time and migration data size of each task on each processor have been
randomly generated and range between 10,000 and 100,000 time units (simulation
cycles) and between 50K and 500K Bytes respectively. Communications between
tasks range from 1,000 to 10,000 Bytes in size. Regarding the target architecture,
we target a heterogeneous MPSoC containing 5 different processors with different
computational characteristics, connected to a shared bus and memory. This tar-
get MPSoC is similar to the heterogeneous MPSoC considered in Section 4.1.3.1,
consequently a similar task recreation mechanism for run-time task migration is
used in our experiments of this section.
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Figure 4.12: Execution pattern of different resource scheduling approaches.

To model dynamic application behaviour over time (e.g. due to user be-
haviour), we generate three workload scenario sequences. These sequences are
generated in two steps. The first step is to choose a workload scenario from the
total 31 workload scenarios considered in our experiment. Each workload scenario
has the same probability to be selected. The second step is to generate the du-
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ration in frames of the selected workload scenario. This process iterates until a
pre-defined total frame number (100,000 frames in our case) has been achieved for
the scenario sequence. As the workload scenarios considered in our test case need
around 40 frames on average to neutralize the reconfiguration cost, we limit the
duration of each workload scenario to a value between 1 and 80 frames. In our
three scenario sequences, the duration of each workload scenario and frequency
of changes to this duration are generated using different distributions as shown
in Figure 4.11. Here, the x-axis represents the nth appearance of one specific
workload scenario and the y-axis represents the execution duration in frames for
that particular appearance of the workload scenario. In the longterm distribu-
tion, the duration of a workload scenario is either long or short and does not
frequently change, whereas in the shortterm distribution the scenario execution
duration does frequently change. Like in shortterm, the frequency of changes in
the prob distribution is high but the actual scenario execution duration now has
been generated from the following probability distribution: 1!30%, 11!10%,
21!10%, 31!10%, 41!10%, 51!10%, 61!10%, 71!10%. That is, a workload
scenario has a probability of 30% that it will be executed for only 1 frame and
10% for each of the other duration times.

With regard to the parameters of our ASMM, the maximal width and depth of
the ASMM table is 4 (2-history, 1-prediction and 1-probability) and 1024 respec-
tively, which is large enough for our test cases. The probability bound bp for our
ASMM is 50%. This will not lead to either a pessimistic or aggressive decision.
As we limit the scenario execution duration from 1 to 80 frames, we divide the
scenario execution durations into 8 bins/ranks in our ASMM, each containing a
frame range of 10.

4.2.3.2 Experimental Results

In the first experiment, we compare the scenario execution time (including the run-
time reconfiguration cost) of each of the three workload scenario sequences under
four resource scheduling approaches. The first approach (ALMIG) is executing
each workload scenario under its pre-optimized mapping stored in the SDB. This
means that the run-time scheduler will always reconfigure the system based on the
pre-optimized mapping whenever a new workload scenario appears. The second
approach (STATIC) is executing all the workload scenarios under a single pre-
optimized mapping that has been optimized to work best – on average – for all
workload scenarios. In STATIC, no system reconfiguration takes place. The third
approach (ASMM) uses our ASMM-based run-time adaptive resource scheduler.
Finally, as a baseline, we also compare to the ideal case (OPT) that applies ALMIG
but for which all run-time reconfiguration costs have been discarded. At the
beginning of each simulation, the target system is initialised by the mapping of
the STATIC approach.

Figure 4.12 shows the results of the scenario execution time of the first 100
appearances of a single selected workload scenario in our three workload scenario
sequences. Clearly, in all cases the OPT approach performs best, and STATIC
performs worst in those cases where the system should have been reconfigured.
We can also see that the scenario execution time is influenced by the reconfigura-
tion cost. For example, consider the bottom parts of the three graphs, i.e., small
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Figure 4.13: Performance comparison of different predictors.

scenario execution durations. Here, one can clearly see that ASMM consistently
outperforms ALMIG since the latter is negatively affected by the reconfiguration
overhead whereas our ASMM approach is not because it predicted that reconfig-
uration is not beneficial. For larger scenario execution durations (top parts of the
three graphs), the performance of ALMIG and ASMM is similar (i.e., they both
reconfigure the system).

In the second experiment, we compare the total execution time of each work-
load scenario sequence under our adaptive resource scheduler with different sce-
nario duration predictors. We compare three application behaviour predictors
to our ASMM approach: a Last Value predictor (LV), a Table-Based predictor
(TB) [51] and the original SMM [103]. For a fair comparison, the parameters used
for TB and SMM are the same for ASMM. Figure 4.13 shows the results of this
experiment. In this figure, the total scenario execution time is normalized to the
ALMIG approach. As one can see, in the longterm case, all predictors show a
good performance as they are all able to accurately predict the execution pattern.
For the shortterm distribution, the LV predictor shows a poorer performance im-
provement. This is mainly because of a high prediction error (nearly 100%) of
the LV predictor in this distribution. In the prob test case, our ASMM predictor
clearly outperforms the other three predictors. This is because the scenario execu-
tion does not have a fixed pattern anymore which induces a high prediction error
for the LV and TB predictors. Compared with the SMM predictor, our ASMM
uses the accumulated probability to determine a reconfiguration decision, which
increases the chance of making the right decision when reconfiguration is actually
needed.

The overhead of our approach involves the run-time computational overhead
and the system memory consumption. Comparing the scenario execution time
of ASMM and STATIC in the bottom part of each figure in Figure 4.12, we can
see that the ASMM results are close to those for STATIC. This means that the
run-time overhead of our approach does not have a major impact on system per-
formance. In terms of memory usage, our approach needs 880 bytes and 920 bytes
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for storing the total of 31 mappings and the application/architecture information,
respectively. The memory usage of our ASMM predictor is dynamic and based on
the execution pattern of workload scenarios. In the worst case, for each ASMM
with the parameters considered in our experiments, it needs 584 bytes to record
all possible patterns. However, during the simulation, only a small part of the
worst memory usage was actually used for our test cases.

4.2.4 Related Research

In recent years, much research has been performed in the area of run-time task
remapping for MPSoC systems to achieve better performance. However, they
rarely consider the problem of whether the system will benefit from the resource
reconfiguration when the workload of the system changes frequently on MPSoC
systems. This problem might be caused by the user behaviour. In this case, it is
better to consider the user behaviour [29, 48] or system execution history [103] to
further improve the system efficiency. Sarikaya et al. [103] proposed SMM to pre-
dict the run-time application behaviour, and applied this technique to an adaptive
dynamic power management scheme. In our approach, we modified their SMM
to predict the scenario duration which is part of our adaptive run-time frame-
work. In [29], the user behaviour information is used to adapt the strategy used
for resource allocation at run time. Based on the user behaviour, the online ma-
chine learning model will predict which kind of communication contention should
be minimized on an NoC based MPSoC system. The authors of [48] proposed a
customer-aware task allocation and scheduling for MPSoCs. In their approach, an
initial task allocation and scheduling (TAS) solution under the objective of min-
imizing the energy consumption and system lifetime for each execution mode is
generated at design time. At run time, they conduct online adjustment of the TAS
based on the processor usage history to guarantee the lifetime reliability and/or
reduce the energy consumption. Different to these previous efforts, we use the user
behaviour/system execution history to control the resource allocation process.

4.2.5 Conclusion

To increase the efficiency of MPSoC systems, we have proposed a run-time adap-
tive resource scheduler that reconfigures the system based on past and future (pre-
dicted) application workload behaviour. At design time, we explore performance
optimal task mappings for different workload scenarios. These pre-optimized map-
pings are used at run time by the resource scheduler to reconfigure the system
resources. The decision of whether or not to reconfigure is made based on the sce-
nario execution pattern. By using the proposed approach, the system can adapt
its behaviour according to e.g. user behaviour. Experimental results confirm the
effectiveness of our approach.

4.3 A Run-time Self-Adaptive Resource Allocation
Framework

In the previous section, we have illustrated how to solve the blind adaptivity issue
of general hybrid task mapping approaches for fine-grained workload scenarios on
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Figure 4.14: The structure and workflow of SARA framework

MPSoC systems. However, the method proposed in the previous section assumed
that the optimal mapping of each target workload scenario has been explored at
design time and stored on the system for run-time usage. Consequently, the sys-
tem manager can directly apply the pre-optimised mapping for a newly detected
workload scenario to make a reconfiguration decision. As mentioned before, this
assumption is only applicable when the number of target workload scenario is
relatively small. It means that the approach proposed in the previous section
still suffers from the scalability and flexibility problem with an increasing number
of target applications. Therefore, in this section, we combine the technique of
adaptivity throttling proposed in the previous section and the novel hybrid task
mapping approach from Section 3.3 together into a scalable self-adaptive MPSoC
management framework –Scenario-based Adaptive Resource Allocation framework
(SARA)– to to solve the issues of general hybrid task mapping approaches: scala-
bility, flexibility and blind adaptivity, thereby considerably improving the system
performance.

4.3.1 Scenario-based Run-time Adaptive Resource Allocation
Framework

Similar to the adaptive resource allocation framework proposed in the previous
section, our SARA framework consists of three components: a Run-time System
Monitor (RSM), a Run-time Mapping Generator (RMG) and a self-Adaptive Re-
source Scheduler (ARS). The RSM is in charge of detecting the active workload
scenario on the target MPSoC system and dynamically collecting system statistics.
The RMG and ARS are responsible for the system adaptation and address the is-
sues of general hybrid task mapping approaches as explained above. Figure 4.14
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shows the high-level system workflow of the SARA framework. When the RSM
detects a new workload scenario, the RMG will generate a new mapping for the
detected (active) scenario. Hereafter, the ARS makes an adaptation decision by
predicting the benefit of changing the current mapping into the newly proposed
one (by the RMG). According to this decision, the ARS will then either recon-
figure the system based on the new mapping or continue the system’s execution
under the current mapping.

4.3.1.1 Scalable Run-time Task Mapping

In the SARA framework, we solve the task mapping problem by using the hy-
brid task mapping technique of Section 3.3 which prepares partial task mappings
for workload scenarios at design time and completes the mappings for the entire
scenario at run time using the RMG component. Figure 4.15 gives an overview
of how the RMG generates a new mapping for the workload scenario detected by
the RSM. At design time, a performance-optimized task mapping (and, if needed,
also a power-optimized mapping) for each execution mode of each application in
isolation is determined by our scenario-aware DSE techniques introduced in Sec-
tion 2.3 (in case of optimising the mapping performance) and Section 3.2.3 (in
case of multiple mapping optimisation objectives). This significantly reduces the
time and memory requirements needed for, respectively, finding and storing the
pre-optimized task mappings at design time. Moreover, if a new application needs
to be supported on the target MPSoC system, this would only require providing
the pre-optimized mappings of this new application to the RMG without redo-
ing the entire process of design-time mapping preparation for all possible (new)
workload scenarios.

At run time, after the RSM has detected a new workload scenario, the RMG
will first merge the pre-optimized mappings of each separate, active application
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in the detected workload scenario to form a first-order mapping for the entire sce-
nario. Subsequently, the RMG will then further optimize this first-order mapping
by using run-time mapping optimization heuristics, based on e.g. a load balance
algorithm or a dynamic mapping optimization algorithm such as the STM or EIM
proposed in Chapter 3.

4.3.1.2 Adaptivity Throttling

The ARS component of our SARA framework uses the adaptivity throttling tech-
nique proposed in Section 4.2 to solve the blind adaptivity issue of MPSoC systems,
and consequently improves the adaptivity of MPSoC systems with regard to the
granularity of target workload scenarios. Figure 4.16 illustrates how the ARS com-
ponent conditionally reconfigures the target system based on the outcome of the
prediction models (i.e, (p� p0) ⇤ u > c). In this figure, the information about the
target applications and hardware architecture used in the performance prediction
model as well as the reconfiguration cost prediction model should have be prepared
at design time, and depends on the type of models used for these predictions (as
discussed below).

The prediction models in ARS cannot be computationally intensive as they
have to efficiently make a reconfiguration decision at run time. For the perfor-
mance and reconfiguration cost prediction, relatively simple regression models or
analytical models such as the performance model from [98, 97] can therefore be
applied. The prediction of scenario execution duration is the most important
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Figure 4.17: An instance of SARA for the target MPSoC system

part of the ARS. It is a dynamic parameter that could be heavily influenced by
user behaviour. A commonly used predictor for such kind of parameters, which
has also been used in our ARS component, is the history-based predictor such
as a last value predictor, table-based predictor and the Statistical Metric Model
(SMM) [103]. They can predict the future value of a parameter – in our case the
duration of a newly detected workload scenario – based on its history information.

After having derived a reconfiguration decision based on the three predictive
models for performance, reconfiguration cost and scenario duration, the ARS will
either reconfigure the system according to the new mapping or keep the old map-
ping. By applying such adaptivity throttling in the ARS, our adaptive MPSoC
system is able to cope with fine-grained workload scenarios for which it is not
beneficial to reconfigure the system.

4.3.2 Implementation of SARA on the Target Heterogeneous
MPSoC

In this section, we present an instance of our SARA as shown in Figure 4.17 on
a heterogeneous MPSoC system with shared memory. With this SARA instance,
our optimization goal is to maximize the system performance for a sequence of
workload scenarios. For this SARA instance, the details of design-time prepara-
tion, the run-time mapping optimizing heuristic in the RMG and the prediction
models in the ARS will be detailed in the following subsections.
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4.3.2.1 Design Time Preparation

For the design time mapping optimization, the same DSE approach from Sec-
tion 4.2.2.1 is deployed. After applying the design-time DSE, the performance-
optimized mappings are stored in system memory for run-time usage.

Besides the performance-optimized mapping for each execution mode of each
isolated application, the execution time of each task on each processor, the com-
munication times between tasks on different communication channels of the target
system and the migrating data size between processors for each task should also
be analyzed at design time and stored on the target system for the purpose of
mapping performance prediction and system reconfiguration cost prediction.

4.3.2.2 Run-time Mapping Optimizing Heuristic

In the RMG, we have adopted the EIM algorithm as the mapping optimizing
heuristic. This algorithm aims at generating mappings with good quality in terms
of system throughput (in this section, we have not considered the algorithm’s
ability to also include an energy consumption constraint).

4.3.2.3 Mapping Performance Prediction

For the target heterogeneous MPSoC system with shared memory, we use a sim-
ple linear analytic model to dynamically predict the performance of different task
mappings for workload scenarios. At design time, the execution time of each task
and the communication time between tasks for one unit of workload of each appli-
cation have been analyzed and stored on the target system. Using this information,
the performance of a certain workload scenario s
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is derived by equation 4.2 where the performance of each active application
app

k
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Figure 4.18: The scenario duration distribution used for generating lprob

4.3.2.4 Reconfiguration Cost Prediction

Similar to that has been discussed in Section 4.2.2.2, the reconfiguration cost on
our target MPSoC system includes two parts: the overhead of our SARA frame-
work and the task migration cost during system reconfiguration. The overhead
of SARA is determined by means of measurements and the task migration cost is
calculated by the linear analytic model as introduced in Section 4.2.2.2 (see Equa-
tion 4.4). Here, we label the overhead of SARA as CSara and the task migration
cost as CMig. Consequently, for a certain workload scenario s

i

with an origi-
nal task mapping tmj

i

and a newly generated mapping tmj

0

i

, the reconfiguration
cost can be derived by the following equation. Notice that, the overhead of this
specific SARA instance (CSara) includes the time of deriving a new mapping in
the RMG, estimating mapping performance for both the old mapping and the new
mapping, calculating task migration cost CMig and updating the system run-time
information (e.g., actual scenario execution duration) in SARA.

cjj
0

i

= CSarajj
0

i

+ CMigjj
0

i

(4.7)

4.3.2.5 Reconfiguration Decision Prediction

Different with the description of the ARS in Section 4.3.1.2, in our SARA in-
stance of the target MPSoC system, we do not try to predict the exact value of
the scenario execution duration n which is a dynamic parameter that relates to
the user/system behaviour. In most MPSoC systems (except for systems with
periodic workload scenarios), it is hard to accurately predict the exact value of
this parameter based on history information. However, we can avoid this problem
by approaching our goal slightly differently. Our purpose is to derive a reconfigu-
ration decision based on the reconfiguration benefit B. If the execution duration
of the detected workload scenario is higher than a certain value (boundary), then
the system can be reconfigured. Consequently, there is no need to directly predict
a concrete value for the scenario execution duration but, instead, it is sufficient
to predict the probability that the execution duration is higher than the given
boundary. Therefore, the ASMM prediction model from Section 4.2.2.2 has been
adopted for this purpose.
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4.3.3 Experiments

In this subsection, we present the experimental results in which we investigate
various aspects of our proposed SARA framework. The simulation environment is
similar to that was adopted in Section 4.2.3.1. We have implemented our SARA
framework on the migration enabled Sesame simulator. In this simulation frame-
work, the synthetic applications and the heterogeneous MPSoC system as de-
scribed in the experiments of previous section are used again for the experiments
of this section.

4.3.3.1 Evaluating Adaptivity

In this experiment, the main goal is to evaluate the adaptivity of our approach.
In the experiment of the previous section, we have shown the results of using
the general hybrid task mapping approach with adaptivity throttling for differ-
ent workload scenario sequences of five synthetic applications on the target het-
erogeneous MPSoC. In this experiment, besides the three workload scenario se-
quences longterm, shortterm and prob, we also consider another scenario sequence:
lprob. As shown in Figure 4.18, the lprob sequence is generated by combining the
approach of prob (considering a different probability distribution) and longterm
described in Section 4.2.3.1. The prob scenario sequence of Section 4.2.3.1 is re-
labelled to sprob as the scenarios in the sequence frequently change, similar to
the shortterm sequence. Our lprob scenario sequence is generated under the fol-
lowing probability distribution: 9!10%, 19!10%, 29!10%, 39!10%, 49!10%,
59!10%, 69!10%, 79!30%. Whereas the longterm and shortterm scenario se-
quences more or less reflect extreme cases in workload scenario behaviour, the
two prob sequences possibly exhibit a more realistic view on dynamic behaviour
in application workloads.

For the purpose of comparison, we compared our SARA framework with three
alternative approaches. First, an approach (STATIC) in which all applications are
statically mapped (i.e., no run-time mapping takes place) using a mapping which
has shown to be optimal on average for all possible workload scenarios. Second, an
approach (MIGRATE-OPT) that always reconfigures the system whenever a new
workload scenario has been detected according to a corresponding pre-optimized
mapping derived at design time. Note that this approach, which is similar to how
many state-of-the-art run-time mapping techniques operate, stores 31 mappings
(one mapping for each workload scenario) in total on the system. Finally, we also
compare to SARA without adaptivity throttling (SARA-NOTH).

The results of the total execution time (including system reconfiguration time)
of all workload scenarios in each generated scenario sequence are shown in Fig-
ure 4.19. In this figure, we can clearly see that our SARA approach outperforms
the three alternative approaches in almost all scenario cases except the STATIC
approach in the sprob case, whereas SARA-NOTH performs the worst. According
to the above-mentioned distribution of each scenario sequence, the average sce-
nario duration of sprob is less than 30 frames and lprob is higher than 60 frames,
where longterm and shortterm both have a mean execution duration of around 40
frames. As mentioned before, the workload scenarios considered in our test cases
need around 40 frames on average to neutralize the reconfiguration cost. From
the perspective of average scenario duration, one can easily understand the reason
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Figure 4.19: Performance comparison of different resource scheduling approaches

of why the approaches that always reconfigure the system for a newly detected
workload scenario, i.e. MIGRATE-OPT and SARA-NOTH, perform worse than
STATIC in the scenario sequences of sprob, longterm and shortterm. However,
when the average scenario duration is large enough like in lprob, this kind of ap-
proaches start to perform better than STATIC. Notice that with even larger aver-
age scenario durations the performance difference of the approaches that (always)
migrate and STATIC wil only become larger. Comparing MIGRATE-OPT and
SARA-NOTH, the former one always performs better as it uses the pre-optimized
mappings for entire workload scenarios which are better in mapping quality com-
pared to the mappings found by the EIM algorithm in SARA-NOTH. With regard
to our SARA instance, it shows good behaviour for each test case because of its
ability to throttle adaptivity. It even performs relatively well in the case of sprob
where 70% of the workload scenarios have a short duration and for which recon-
figuring the system is not beneficial. In this particular case, the static mapping
approach works best as this approach does not suffer from any run-time overheads.

To better understand how these adaptive techniques work, we zoom into the
run-time executing behaviour of a certain workload scenario in the scenario se-
quences for these techniques. Figure 4.20 shows the results of the scenario execu-
tion time (including system reconfiguration time) of the first 100 appearances of a
single selected workload scenario in our four workload scenario sequences. Clearly,
the MIGRATE-OPT approach performs best and STATIC performs worst in those
cases where the system should have been reconfigured (i.e., scenario execution du-
ration is large enough such that reconfiguration is beneficial): see the top parts of
the four figures. On the other hand, in the cases where the system should not be
reconfigured (bottom parts of the four figures), STATIC is the best and SARA-
NOTH is the worst. We can also see that the scenario execution time is influenced
by the reconfiguration cost. For example, consider the bottom parts of the up-
per two graphs (longterm and shortterm), i.e., small scenario execution durations.
Here, one can clearly see that SARA consistently outperforms MIGRATE-OPT
and SARA-NOTH since the latter two approaches are negatively affected by the
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(a) Execution pattern under longterm distribu-
tion
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(b) Execution pattern under shortterm distribu-
tion
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(c) Execution pattern under lprob distribution
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(d) Execution pattern under sprob distribution

Figure 4.20: Execution pattern of different resource scheduling approaches

reconfiguration overhead whereas SARA is not because it accurately predicted
that reconfiguration is not beneficial. However, compared with STATIC, SARA
still suffers from its computational overhead. Moreover, erroneous predictions in-
ducing unnecessary system reconfigurations also affect the performance of SARA.
In the upper two graphs (longterm and shortterm), there is a clear pattern for the
duration of workload scenarios where SARA can accurately predict. In these two
cases, the performance is mainly affected by its computational overhead. However,
in the case of sprob, a high prediction error is the main factor that influences the
performance of SARA as it is hard to predict such a random scenario behaviour
with frequent changes. This implies that the prediction error mainly comes from
the scenario duration predictor (ASMM) in the ARS of our SARA instance. A
similar situation can be seen in the first 10 appearances of scenario s in the graph
of lprob where SARA shows a poor behaviour (filled dots randomly distributed
around the straight line of STATIC) whereas SARA’s performance in the other
parts of this graph is much better. This is also caused by a high prediction error in
SARA. However, in this case, the prediction error is caused by the accuracy of the
mapping performance and reconfiguration cost predictors in the ARS of SARA.
As the scenario duration of these first 10 appearances of scenario s is very close
to the average frame number needed to neutralize the reconfiguration cost in our
test cases, a small prediction error of these two parameters can easily lead to an
erroneous system reconfiguration prediction.

From this experiment, we can see that our SARA framework is able to han-
dle complex and dynamic workload scenarios and further improves the system
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Figure 4.21: Performance comparison of different resource scheduling approaches
in complex workload scenarios

efficiency by run-time task remapping and adaptivity throttling.

4.3.3.2 Evaluating Scalability

To evaluate the scalability of our approach, we consider ten synthetic streaming
applications in this experiment, where each application has the same properties
as the applications used in the previous experiment. Consequently, there are 1023
workload scenarios in total. For the purpose of simulating the dynamic application
behaviour over time, we use a scenario sequence which is similar to lprob from
the first experiment but without limiting the scenario execution duration. In
this experiment, the impact of an increasing scenario execution duration will be
studied. Furthermore, the parameters of the ASMM are the same as in the first
experiment except for the maximal depth of the history tables which is set based
on the actual scenario duration bins.

Figure 4.21 shows the total execution time (including system reconfiguration
time) of 100 appearances of the workload scenario with all the 10 applications
active. The x-axis in Figure 4.21 represents the average scenario duration (in
scenario frames) of the 100 appearances of the workload scenario. For better vis-
ibility of the results, we have discarded the results of MIGRATE-OPT which is
a line between SARA-NOTH and SARA, but converges earlier with SARA than
SARA-NOTH. From this figure we can clearly see that our SARA framework still
works well when the number and the complexity of workload scenarios increases.
Note that in this experiment, as the workload scenario contains a large number of
tasks and communication channels, the system reconfiguration cost is also larger
compared with the first experiment. Consequently, the number of average sce-
nario frames needed for neutralizing the reconfiguration cost is also bigger than in
the first experiment. Taking our SARA instance for example, the computational
overhead of SARA can be neutralized when the average number of scenario frames
is larger than 150 (the crosspoint of SARA and STATIC is around 150 frames).

To further improve the scalability of our SARA framework, we use a caching
mechanism that aims at avoiding the run-time mapping optimization heuristic
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Table 4.3: Run-time system storage demands (bytes) of the different techniques

Experiment1 Mapping App&Arch Inf. ASMM

STATIC x x x

MIGRATE-OPT 880 x x

SARA-NOTH 55 920 x

SARA 55 920 dynamic

Experiment2 Mapping App&Arch Inf. ASMM

STATIC x x x

MIGRATE-OPT 56320 x x

SARA-NOTH 110 1840 x

SARA 110 1840 dynamic

becoming a performance bottleneck of the target system when frequent scenario
changes occur. To this end, the SARA framework uses a small amount of sys-
tem memory like a scratchpad to cache the mappings optimized by the run-time
heuristic for the workload scenarios that undergo the most frequent changes. Con-
sequently, it is able to further save considerable computational overhead with re-
gard to run-time mapping optimization, especially for complex workload scenarios.

4.3.3.3 System Storage Overhead

Regarding the run-time system storage consumption of the four studied approaches,
several assumptions should be mentioned. On our target MPSoC system, we store
all the design-time prepared information in the shared memory. For storing the
pre-optimized mappings, we assume that the mapping information of each task
and each communication channel between tasks can be stored in one byte. In the
first experiment, there are 30 tasks and 25 communication channels in total for all
the five synthetic streaming applications. Consequently, to store a pre-optimized
mapping, the maximal memory usage is 55 bytes (all tasks and communication
channels are active). The total number of tasks and communication channels in
the second experiment is 60 and 50 respectively. Beside the pre-optimized map-
pings, in our SARA framework, we also need to store the application/system
information and the scenario execution history information if the ARS predicts
scenario duration based on history information like in the ASMM-based method
of our SARA instance. Here, we assume that each piece of application/system
information needs one word of system memory and each history scenario duration
is encoded using one byte.

Based on these assumptions, Table 4.3 gives the run-time system storage de-
mands of the four approaches in the above two experiments. From this table, we
can see that our SARA instance consumes the largest system memory usage in
the first experiment. However, in our SARA framework, the memory usage only
linearly increases with the number of applications for storing the Pre-optimized
Mappings and App&Arch Information on a certain target MPSoC system. It does
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not have the scalability problem of MIGRATE-OPT. Consequently, in the second
experiment, the memory usage of MIGRATE-OPT is much larger than SARA-
NOTH and SARA. With regard to the memory usage of the ASMM in our SARA
instance, it is dynamic at run-time and depends on the application behaviour as
discussed in Section 4.2.3.2. The memory usage of the ASMM will increase ex-
ponentially with the number of applications. However, this scenario execution
duration predictor can also be implemented by other techniques like Neural Net-
works [62, 37] if the memory usage becomes an issue.

4.3.4 Conclusion

To increase the efficiency of MPSoC systems, in this section, we have proposed a
scalable, run-time adaptive resource scheduler that reconfigures the system based
on the system workload and user behaviour. At design time, we explore per-
formance (near) optimal task mappings for different workload scenarios. These
pre-optimized mappings will then be used at run time by the resource scheduler
to reconfigure the system resources. The decision of whether or not the system
should be reconfigured is made explicitly based on the scenario execution history
pattern. By using the proposed approach, the system is able to effectively adapt
its behaviour according to user behaviour, as demonstrated by our experimental
results.

4.4 Summary

In this chapter, we focused on the blind adaptivity problem of general hybrid task
mapping approaches for MPSoC system with fine-grained workload scenarios. To
investigate this problem, the system reconfiguration cost should be carefully con-
sidered for dynamic task remapping at run time. For this purpose, we extended
our Sesame simulator with the ability of modeling, simulation and exploration
of different system reconfiguration mechanisms and policies in MPSoCs. This ex-
tended Sesame simulator was used as the evaluating tool for the work of this chap-
ter. To solve the blind adaptivity problem, we proposed an adaptivity throttling
technique that tries to avoid unnecessary system reconfigurations by predicting
whether or not reconfiguration of the system actually is beneficial based on the
active workload scenario and the status of the hardware platform. This proposed
technique was evaluated combining with a general hybrid task mapping approach
where the pre-optimised mapping of a detected workload scenario is considered for
such reconfiguration prediction and consequently is applied (or not) on the system
according to the prediction. After evaluating the effectiveness of this adaptivity
throttling technique, it was further adopted in our SARA framework that was
proposed to solve the previous discussed issues like scalability, flexibility and also
blind adaptivity of most general hybrid task mapping techniques for MPSoC sys-
tems. In the SARA framework, the scalability and flexibility problem is solved by
applying the divide-and-conquer method that was used in the novel hybrid task
mapping approach of Section 3.3.



CHAPTER 5
Toward the design of future large scale

adaptive MPSoC systems

The scalability with regard to the number of target workload scenarios in general
hybrid task mapping techniques of MPSoC systems has been investigated

in the previous chapters. However, as mentioned in Section 1.4, this scalability
problem is also related to the size of the target hardware platform (i.e. the number
of hardware components in the system). With the technological advancements, the
number of processing elements in a MPSoC system will increase to tens or maybe
even hundreds. This imposes a big challenge to manage the hardware resources at
run-time in a scalable manner. In this chapter, we focus on providing a scalable
resource allocation approach for large-scale MPSoC systems with complex and
dynamic workload behaviour.

The architecture of future MPSoCs is still an open research problem in the
domain of embedded systems. A popular solution are tile-based architectures like
Tilera’s 64-core TILEPro64 processor [134] and Intel’s 48-core Single-Chip Cloud
Computer (SCC) [74]. In the first section, such a tile-based MPSoC architecture
is presented as the prototype of our target large-scale heterogeneous MPSoC sys-
tems. After that, a hierarchical resource management mechanism is proposed for
such a tile-based MPSoC system. Based on this mechanism, a Scenario-based
Hierarchical run-time Adaptive Resource Allocation (SHARA) framework is im-
plemented and evaluated for the target large-scale MPSoC system. With this
framework, we want to demonstrate that the adaptivity techniques studied thus
far can also be applied to future, large-scale MPSoCs. At the end of this chapter,
the related research and a short conclusion are presented.

5.1 Tile-based MPSoC architecture

With the scaling of technology, future MPSoCs will feature tens up to hundreds
of (heterogeneous) processing elements that are all integrated on a single chip.

This chapter is based on:
• W. Quan and A. D. Pimentel, “Adaptive Large-scale MPSoC Systems,” Submitted.
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Figure 5.1: The architecture of the target MPSoC system

Traditional system design methods [73] of MPSoCs are not anymore appropriate
to the design of future large-scale MPSoC systems. The design of future large-scale
MPSoC systems is still an open research question. A very popular prototype is the
tile based scalable system [134, 129, 74, 47, 76, 105]. In this chapter, we consider
the tile-based heterogeneous MPSoC system illustrated in Figure 5.1 as our target
system. From this figure, we can see that the system is composed of four identical
tiles. In each tile, there are four heterogeneous processing elements connected
to a shared memory by bus. Note that the communication in our target system
has multiple levels like the intra-processor communication by buffers, intra-tile
communication by a shared bus and inter-tile communication by a Network-on-
Chip (NoC) similar to [105]. The reason for considering this type of MPSoC
architecture is that the architecture of a tile in our target system can be designed
by current state-of-the-art MPSoC design approaches like the work from [95]. Also
this kind of layered architecture could reduce the communication congestion that
might happen in a large-scale NoC.

Our objective in this chapter is to improve the system performance by adap-
tively reconfiguring the target large-scale MPSoC system based on dynamically
derived mappings for each detected workload scenario. It includes: firstly deriving
a spatial and temporal optimised task mapping for each newly detected workload
scenario on the target MPSoC system and secondly reconfiguring the system ac-
cording to the newly derived mapping when the reconfiguration is predicted to be
beneficial.

5.2 Hierarchical Control Mechanism

From the perspective of the control mechanism for system resource management,
it can be divided into three categories [115, 105]: 1) centralised resource manage-
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Figure 5.2: The hierarchical resource management on the target MPSoC system

ment, 2) distributed resource management and 3) the combination of two previous
methods. On modern MPSoC systems where a limited number of processing ele-
ments are present, centralised approaches are usually considered because of their
effectiveness and simplicity [71]. However, when the system scales, a centralised
approach often suffers from its performance bottleneck as heavy communication
might happen during resource reallocation when the number of processing elements
is very large. To avoid this problem, distributed resource management approaches
have been proposed [59, 108, 5]. However, these distributed approaches are usually
complex and not easy to implement. Most importantly, these kind of approaches
can only find a local optimal resource allocation solution. Consequently, a trade-
off solution that combines the centralised and distributed resource management is
commonly considered in multi-/many core systems [105]. For our target large-scale
MPSoC system, we also adopt this hybrid approach where the control structure is
hierarchically organised as in Figure 5.2. The Global Manager (GM) takes charge
of workload partition among tiles and each Local Manager (LM) optimises the
resource allocation inside a tile for the assigned applications. This control mech-
anism can be implemented on the target system by either dedicated hardware
(controller) or software.

According to the above-mentioned control mechanism, a scenario-based hierar-
chical run-time adaptive resource allocation framework is proposed to adaptively
reallocate the hardware resources on large-scale heterogeneous MPSoC systems.
Note that this framework is not limited to the architecture we considered in this
chapter, as tiles can be virtually divided on a target system. Taking a general
NoC-based MPSoC system as illustrated in Figure 5.3 as an example, the entire
system can be firstly divided into identical tiles and then controlled by our ap-
proach. The details of our proposed SHARA framework will be explained in the
following section.
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Figure 5.3: An example of dividing a MPSoC into virtual tiles

5.3 Scenario-based Hierarchical Adaptive Resource
Allocation

When considering dynamic resource reallocation on a MPSoC system, three steps
are needed. The first step is to decide when the resource reallocation should be
triggered. For example, it could be a scenario change, a different QoS require-
ment, a system fault and so on. The second step is to derive a new resource
scheme based on the detected trigger. After that, the third step is the actual
system reconfiguration. Figure 5.4 shows a high-level workflow of our SHARA
framework. In this chapter, we assume that the trigger of the resource allocation
events is the change of workload scenario on the target MPSoC system. At run
time, the GM will continuously monitor the execution of workload scenarios on the
target MPSoC system. When a new workload scenario is detected, the system will
enter the resource reallocation stage. In this stage, the GM will try to redistribute
the applications in the detected workload scenario according to the utilisation of
each tile and the resource consumption of each application in the system. Based
on the new workload distribution and the potential reconfiguration benefit, the
global scheduler in the GM will start a global workload scheduling. In each tile,
if the workload (applications) allocated by the GM is different with its previous
workload, the local scheduler of the LM will adaptively reconfigure the hardware
resources based on the mapping optimised in the LM and the corresponding re-
configuration benefit.

In this chapter, we mainly focus on the last two steps of dynamic resource
reallocation on our target MPSoC system as mentioned above. To derive a new
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Figure 5.5: Divide-and-conquer solution for complex task mapping problem

mapping for a workload scenario on the target MPSoC system, we propose a scal-
able run-time task mapping approach which hierarchically maps the applications
onto the tile-based MPSoC system. Normally, after deriving a new mapping for
the new workload scenario, system reconfiguration should be done by the resource
schedulers under the new generated mapping scheme. However, this is not always
beneficial as the cost may overweight the benefit of such a system reconfiguration.
If the schedulers still reconfigure the target system when it is not beneficial, this
will lead to the problem of blind adaptivity as discussed in the previous chapter.
To solve this problem on our large-scale MPSoC system, the adaptivity throt-
tling technique proposed from the previous chapter is also adopted in the resource
schedulers of the system which hierarchically allocate the system resources based
on the reconfiguration decision predicted at different architecture levels (tile/pro-
cessor level).



122Chapter 5. Toward the design of future large scale adaptive MPSoC systems

5.3.1 Scalable Run-time Task Mapping in SHARA

In our SHARA framework, we address the complex task mapping problem on our
tile-based heterogeneous MPSoC system using the idea of the hybrid task map-
ping technique described in Section 3.3 which prepares partial task mappings for
workload scenarios at design time and completes the mappings for the entire sce-
nario at run time. This task mapping approach was proposed for a small-scale
heterogeneous MPSoC system. It solves the scalability problem with regard to the
number of tasks in the mapping problem. However, as mentioned before, the com-
plexity of a task mapping problem not only depends on the number of application
tasks but also on the number of target processing elements. In this chapter, we
solve this problem by taking advantage of both the MPSoC architecture and its
hierarchical control mechanism as shown in Figure 5.5. As the tiles in our target
MPSoC system have the same architecture, compared with the approach used in
Section 3.3, we can further simplify the design-time mapping optimising problem
by considering only a partial target architecture (i.e., a tile) to limit the number of
processing elements in the mapping problem. The problem of how to further op-
timise the entire mapping for the target workload scenario and the target MPSoC
system will be solved at run time by light-weight heuristics. The details of our
proposed task mapping approach will be explained in the following subsections.

5.3.2 Design-time Mapping Optimisation

At design time, the DSE approach of Section 4.2.2.1 is deployed for exploring
performance optimal mappings at application level. Note that the target architec-
ture in this mapping exploration process is the tile architecture inside the target
MPSoC system. This greatly reduces the complexity of each single task mapping
problem compared with exploring task mappings targeting the complete large MP-
SoC system. In this tile-based MPSoC architecture, there is no need to redo the
design time mapping optimisation with the scaling of the target MPSoC system
(i.e. a larger number of same tiles in the target MPSoC).

Figure 5.6 shows the mapping of an application on the tile architecture we
considered in our MPSoC system. At design time, the mappings that need to be
explored are expressed as what is shown in the mid-part of Figure 5.6. These
mappings will be stored in the local memory of the GM. Beside the performance
optimised mapping for each execution mode of each isolated application, the ex-
ecution time of each task on each processor in a tile, the communication time
between tasks on different communication channels of the target system and the
migrating data size between processors for each task should also be analysed at de-
sign time and stored on the target system for mapping optimisation and adaptivity
throttling.

5.3.3 Scalable Run-time Task Mapping

5.3.3.1 Tile-level Workload Partition

The mappings prepared at design time are optimised targeting the hardware re-
sources inside a tile. To fully utilise the resources of our target MPSoC system
where multiple identical tiles are present, the application level parallelism in a
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Figure 5.6: A simple example of encoded task mapping for the tile-based MPSoC

workload scenario will be addressed in the GM by means of workload partition.
When the workload scenario on the target system changes, the mapping of appli-
cations (application to tile) in this new scenario may be adjusted by using a load
balancing heuristic as shown in Algorithm 7. It means that the workload partition
is triggered by the change of the workload scenario on the target MPSoC system.
For a newly detected workload scenario, the utilisation of each tile will be calcu-
lated using the application/system information in the function of line 2 based on
the current/old mapping on the system. The actual workload partition process
starts from line 5 to line 14 in Algorithm 7. In each iteration of this process, if the
maximal resource usage among tiles can be reduced, the application with smallest
resource consumption (line 8) on the tile with maximal resource utilisation will
be reallocated onto the tile with minimal resource utilisation. It means that the
algorithm tries to gradually balance the system by migrating applications from
overloaded tiles to lightly-loaded tiles. When an application is reallocated to a
different tile, its pre-optimised mapping will be used on the new tile as shown
in line 9 of Algorithm 7. This process will continue until the workloads on the
system are well balanced. As the task migration overhead will greatly influence
the system performance as can be seen in the experiment section, this algorithm
tries to balance the system workload with a minimal number of task migrations
among tiles to reduce the tile-level task migration overhead.

5.3.3.2 Processor-level Task Mapping Optimisation

After the entire new workload scenario is reallocated by the GM, each tile on
the target MPSoC system might need to execute a new tile-level scenario. In
the workload partition process, it only focuses on the total resource consumption
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of a complete application. The task mapping of an application on the resources
inside a tile is either generated from the pre-optimised mappings stored on the
system or the mapping preserved from the previous workload scenario. However,
simply merging per-application mappings might not good enough with regard
to the optimising goal like the performance objective considered in this chapter.
After the GM finished the workload scheduling, the LM in the tile where the new
workload has to be executed will further optimise the task mapping derived from
the workload partition heuristic in the GM. In each LM, we again adopt the EIM
algorithm proposed in Section 3.3 without considering the energy constraint which
generates mappings with good quality in system throughput to further optimise
the mapping for the new workload.

By using the scalable run-time task mapping approach in SHARA framework,
Figure 5.7 shows a simple example of mapping a workload scenario onto our tar-
get MPSoC system. In this example, a workload scenario with five applications
is mapped on the empty tile-based MPSoC system. When the GM in SHARA
detects the new workload scenario, it will allocate these new applications onto
tiles available in the target system by the tile-level workload partition algorithm.
After that, each LM starts to further optimise the mapping of applications that
are allocated on the corresponding tile. As only one application is active on tile0
to tile2, the LM on these three tiles will not further optimise the default mapping
as it has already been optimised at design time. However, the mapping of applica-
tions on tile3 is further optimised by the EIM algorithm to improve the mapping
quality.
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Figure 5.7: A simple example of mapping a workload scenario on the target MP-
SoC system

5.3.4 Adaptivity Throttling for System Reconfiguration

To avoid the blind adaptivity problem discussed at the beginning of this chap-
ter for our tile-based MPSoC system, the adaptivity throttling technique from the
previous chapter is adopted in the schedulers of our target system. However, differ-
ent with the adaptivity throttling of previous chapter, the system reconfiguration
could happen at two different levels (tile level and processor level) on the target
MPSoC of this chapter. Consequently, the three parameters: the performance im-
provement p� p0, the reconfiguration cost c and the workload execution duration
n for adaptivity throttling at each architecture level should also be predicted from
the corresponding architecture level.

5.3.4.1 Mapping Performance Prediction

Our target MPSoC system consists of several identical tiles. Each tile has a typical
heterogeneous MPSoC architecture. For this kind of system, we can apply the
same performance analytic model to the different tiles in our target MPSoC. The
LM of each tile has an instance of the performance model. In this work, we use the
simple linear analytic model adopted in the SARA framework of Section 4.3.2.3
to predict the performance of different task mappings for workload scenarios of
each separate tile. According to our hierarchical task mapping approach, the tasks
of an application will be mapped to the same tile to reduce the communication
overhead. It means that each tile can separately process its workload (no data
dependence between tiles). Consequently, the performance (in term of scenario
frame execution time) of the complete tile-based MPSoC system can be calculated
by the GM using the following equation.
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5.3.4.2 Reconfiguration Cost Prediction

To predict the reconfiguration cost, a similar prediction model of the SARA frame-
work as introduced in Section 4.3.2.4 can be applied in the GM and each LM of our
tile-based MPSoC system. Notice that, in our MPSoC system, there are two levels
of system reconfiguration: the tile-level system reconfiguration and processor-level
system reconfiguration. Consequently, to calculate the cost of tile-level system re-
configuration, the computational overhead in the GM (derived by measurements),
the total data size of inter-tile task migration and the data transferring speed via
the NoC are required (the last two parameters are prepared at design time and
stored on the system as mentioned in Section 5.3.2). Similarly, for processor-level
system reconfiguration cost prediction, the computational overhead of the LM, the
intra-tile task migration data size and the memory access speed inside a tile are
required.

5.3.4.3 Scenario Duration Prediction

For the purpose of scenario duration prediction, we use the scenario execution his-
tory information to predict the future execution behaviour of workload scenarios.
However, in this chapter, different with the approach used in the SARA framework
of Section 4.3.2.5, we directly use the average scenario duration of previous exe-
cutions of a workload scenario as the future execution duration value. The reason
of considering such a simple prediction model is based on the following facts. In
this chapter, we assume a large number workload scenarios will be executed on
the target system. If the previously discussed predictors like table-based predic-
tors and (A)SMM predictors are adopted, the memory usage will be a big concern
on our MPSoC system as mentioned in Section 4.2.3.2. Besides that, from the
adaptivity throttling experiments of the previous chapter, we observed that the
performance of our adaptive resource scheduler is highly dependent on the average
scenario execution duration. Therefore, such a simple prediction model is a proper
choice for our initial study on large-scale MPSoC systems with a large number of
workload scenarios. This average scenario duration information will be updated
by the GM after the workload scenario actually finished its execution. This simple
scenario duration predictor is initialised in the GM. When a new workload sce-
nario is detected, the GM will predict a scenario duration for tile-level adaptivity
throttling and send this predicted value to each LM for processor-level adaptivity
throttling.

5.3.4.4 Hierarchical Adaptivity Throttling in SHARA

Using the introduced adaptivity throttling mechanism, a hierarchical scheduling
policy is implemented in the SHARA framework where the GM actually schedules
the system resources at tile level for new workload scenarios based on the tile-
level reconfiguration decision and each LM schedules the resources inside the tile
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Figure 5.8: Hierarchical adaptivity throttling in SHARA

according to processor-level reconfiguration decision. Figure 5.8 shows how this
hierarchical adaptivity throttling approach works in our SHARA framework. To
derive a tile-level reconfiguration decision using the adaptivity throttling mecha-
nism in the GM, those parameters needed for predicting the reconfiguration bene-
fits should target the whole complete workload scenario on the target system. The
performance improvement prediction in the GM happens after a new mapping is
generated by the workload partition algorithm. The GM will firstly send the cor-
responding mapping information to the LM in each tile. After each LM predicted
the performance in that tile, it will send back the performance information to the
GM. The system performance of a whole workload scenario is then determined by
the GM using Equation 5.1. The tile-level reconfiguration cost depends on both
the computational overhead in the GM and the task migration cost between tiles
via the NoC. In the example of Figure 5.8, the possible task migration cost con-
cerns migrating application App3 from tile3 to tile0. In each LM, the performance
prediction only focuses on the workloads that are allocated to the tile by the GM
and the reconfiguration cost includes the computational overhead in itself and the
possible task migrations (like the third task of App4) inside a tile via the local
shared bus. With regard to the scenario execution duration prediction, the GM
and each LM use the same prediction.
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Figure 5.9: Comparison of two load balancing algorithm for tile-level workload
partition

5.4 Experiments

In our experiments, we would like to show how our SHARA framework improves
the system performance by applying the hierarchical task mapping and adaptiv-
ity throttling. We simulate the tile-based MPSoC integrated with our SHARA
framework by the migration enabled Sesame simulator (see Section 4.1) similar to
the experiments of the previous chapter. With regard to the target applications,
we use 16 synthetic streaming applications with each application containing only
1 execution mode. In this case, the total number of workload scenarios is 65535
(216�1). The number of tasks in each application ranges from 4 to 8. We assume
that each task can be executed on each processor of the target MPSoC using the
corresponding pre-compiled code. The task execution time and migration data size
of each task on each processor have been randomly generated and range between
1,000 and 100,000 time units (simulation cycles) and between 5K and 50K Bytes
respectively. Communications between tasks range from 100 to 10,000 Bytes in
size. In our experiments, we assume that all target applications are firstly loaded
onto the same tile (tile0) with their pre-optimised mappings as an initial state of
the system.

As introduced in the Section 5.3.3.1, the algorithm used in our GM (we refer
to it as SC in this experiment) for tile-level workload partition tries to balance the
workload among tiles with minimal inter-tile task migration. In the first experi-
ment, we compare it with a load balancing algorithm (noted as BF ) similar to the
FFBP algorithm introduced in Section 3.2.5.2 to show the effect of our algorithm
for reducing the task migration cost while achieving a well balanced system at tile
level. In this BF algorithm, the active applications of the new workload scenario
will be sorted in resource consumption descending order. And then the appli-
cations under this descending order will be gradually allocated to the tile with
minimal resource utilisation (the resource utilisation of tiles will be recalculated
after each allocation) under the pre-optimised mapping. In this experiment, we
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do not consider a further mapping optimisation in the LM of each tile and also
the adaptivity throttling ability of our SHARA has been deactivated. It means
that the system will only optimise the mapping of a newly detected workload sce-
nario by workload partition in the GM. After that, the system will be reconfigured
based on the new mapping to execute the new workload scenario. We randomly
generate 10000 workload scenarios and each workload scenario only execute for 1
scenarioframe as a scenario sequence. Figure 5.9 gives the results of executing 10
such scenario sequences under these two algorithms where BF �NOMIGCOST
and SC �NOMIGCOST represent the results without considering the tile-level
system reconfiguration cost by using BF and SC respectively. From the results,
we can clearly see that our algorithm has similar performance compared with BF
if we ignore the reconfiguration cost. However, when the cost of system reconfig-
uration is taken into consideration, our algorithm performs much better than BF
as the BF algorithm does not take the previous position of each application into
account for workload distribution.

After investigating the mapping quality and tile-level reconfiguration cost by
applying the global task mapping optimisation in the GM, we further study the hi-
erarchical mapping optimisation approach of our SHARA framework in the second
experiment. In this experiment, we still ignore the adaptivity throttling ability
of our framework (task migration happens when the newly derived mapping is
different with the old mapping). We select two workload scenarios S16 and S4
as our target scenarios to show how the scenario execution time is influenced by
system reconfiguration. The scenario S16, in which all the target applications
are active, is the most complex workload scenario of all possible scenarios. And
S4 is a scenario where only four applications are active. In this experiment, our
hierarchical mapping optimisation approach (as it contains two steps of mapping
optimisation in the GM and LMs, here we label it as GM � LM) is compared
to three other approaches NGM � NLM , NGM � LM and GM � NLM . The
NGM �NLM approach does not contain any mapping optimisation process. It
means that, in this approach, the mapping in the initial state of the target system
is directly used for executing the target two workload scenarios. The GM�NLM
and NGM � LM only considers the tile-level and process-level mapping optimi-
sation for the target scenarios from the initial system state respectively. In this
experiment, we assume that the system will be triggered for reconfiguration when
the first workload scenario is detected on the system. For the target two workload
scenarios S16 and S4, they are separately executed for a single scenario frame di-
rectly from the initial system state (all target applications are loaded onto tile0).
The results of this experiment are illustrated in Figure 5.10. In this figure, the
x-axis represents different states of the two target scenarios where for example
S16 � NOCOST and S16 � COST are executing the scenario S16 without and
with considering all system reconfiguration cost (both tile-level and process-level)
respectively. Here, the results of ⇤ � NOCOST is derived by directly executing
the corresponding scenario for a single frame under the mapping optimised by the
various approaches.

If we only consider the quality of the mapping (⇤ � NOCOST ) derived from
different approaches, from the experimental results, we notice that the mapping
optimisation in the GM is more important compared with the optimisation in the
LMs. Compared to the approach of NGM � NLM , the other three approaches
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Figure 5.10: Performance comparison of different task optmisation approach

NGM � LM , GM � NLM and GM � LM improve the scenario performance
by 17%, 121% and 220% respectively in S16�NOCOST and 3%, 26% and 26%
in S4 � NOCOST . In the complex scenario case S16, the GM and LMs are
able to greatly improve the mapping quality. However, when the scenario is rela-
tively simple like S4 where the resource contention is not critical, the performance
improvement is not that apparent anymore especially the improvement from the
optimisation by the LMs. When taking the system reconfiguration cost into con-
sideration, we can see from the results shown in Figure 5.10 that the system recon-
figuration cost which contains both the task migration cost and the computational
overhead in the GM and LMs will dominate the execution time of scenarios if the
scenario duration (number of scenarioframes) is very short. In our test cases,
as we set the execution duration of each scenario to one scenarioframe, conse-
quently the final performance (reconfiguration cost included) of NGM �NLM is
much better than the other three approaches. To further understand where the
system reconfiguration cost comes from, we zoom into the scenario execution time
of S16 � COST and S4 � COST in Figure 5.11. In this figure, the symbols of
EXE, OGM , OGC, OLM and OLC respectively represent the actual execution
time of the target scenario under the mapping optimised by the corresponding
approach, the overhead of inter-tile (global) task migration, the computational
overhead of the GM, the overhead of intra-tile (local) task migration and the com-
putational overhead of LMs. Note that, as the LMs in our system work in parallel,
the OLM and the OLC come from the tile where the intra-tile task migration cost
and the computational overhead in the LM in total is the maximal among tiles.
From Figure 5.11, we clearly see that when the GM takes part in the mapping
optimisation process, the system reconfiguration cost mainly comes from the task
migration between tiles. Considering the processor-level system reconfiguration,
the overhead is dominated by the computational cost in LMs especially when the
number of tasks that are allocated to the tile is very large. The reason behind
that can be explained as follows. In our experiment, the mapping used for fur-
ther optimisation in each tile is merged from the pre-optimised mapping of each
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Figure 5.11: System reconfiguration cost in S16� COST and S4� COST

application. This original mapping normally is already well balanced among pro-
cessors in each tile. The algorithm used in each LM will take a relatively large
time to further improve the mapping quality with only a few tasks that need to
be migrated among processors.

From the second experiment, we can see that if the scenario execution duration
is very short, the system should not be reconfigured as the large system reconfigu-
ration cost will neutralize the performance improvement by run-time task mapping
optimisation. Consequently, in the third experiment, we would like to show how
the system performance is influenced by the scenario execution duration in our
target large-scale MPSoC system. For this purpose, we investigate the workload
scenario S16 of the second experiment with a gradually increasing scenario execu-
tion duration. In this experiment, we use the complete SHARA framework (the
adaptivity throttling is enabled) for run-time resource allocation and compare it
with the three approaches NGM�NLM , GM�NLM and GM�LM considered
in the second experiment. Figure 5.12 shows the total execution time including the
system reconfiguration cost of different scenario durations under different resource
allocation approaches. Clearly, as the NGM � NLM does not need application
remapping, the total execution time increases linearly with the scenario dura-
tion (in scenarioframes). Similar behaviour can be found in GM � NLM and
GM � LM . However, as the system is reconfigured according to the correspond-
ing optimised mapping at the beginning of the scenario S16, the total execution
time has a slower increase with the scenario duration under these two approaches
compared to NGM � NLM . As the mapping quality derived by GM � LM is
better than the one derived by GM�NLM , the total execution time of the former
approach has an even slower increase with scenario duration. From these three
approaches, we can see that the NGM � NLM has the best performance when
the scenario duration is small (for example, under 15 scenario frames in our test
case) as it avoids the system reconfiguration cost. However, with the increase of
scenario execution duration, it is increasingly outperformed by GM �NLM and
GM � LM .
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Figure 5.12: The influence of scenario duration to final system performance using
different approaches

By using the adaptivity throttling ability of our SHARA framework, we are
able to solve the drawback of the other approaches. When the scenario execution
duration is small, the system will be kept unchanged to avoid unnecessary system
reconfigurations. On the other hand, when the scenario execution duration is
large, the system will be reconfigured to the mapping optimised by SHARA. In
this experiment, the scenario duration predictor has been deactivated1 to exclude
its influence for deriving a reconfiguration decision which will be further studied
in the next experiment. The results of using our complete SHARA framework
shown in Figure 5.12 verify the ability of improving the system performance by
our hierarchical adaptivity throttling approach on the target large-scale MPSoC
system. When the scenario duration of scenario S16 is lower than 11, SHARA
is very close to NGM � NLM . After that, it is very close to GM � LM . This
also reflects the fact that the overhead of adaptivity throttling is small enough
to be ignored. However, notice that, from 11 to 15 in the x-axis of Figure 5.12,
the results of SHARA are close to GM � LM . If the prediction models used for
adaptivity throttling in SHARA are absolutely accurate, these points should have
been close to NGM �NLM . This problem is mainly caused by the accuracy of
the mapping performance predictor and the migration cost predictor.

In the fourth experiment, we apply our proposed SHARA framework in more
complex scenario cases on the target MPSoC system to test its performance when
scenario duration prediction is considered and compare the results with two ap-
proaches STATIC and again GMLM . In the STATIC approach, all applications
are statically mapped (i.e., no run-time mapping takes place) using a mapping
which has shown to be optimal on average for all possible workload scenarios.
The GMLM is similar to a normally used approach in small scale MPSoCs where
the system will always be reconfigured based on the optimised mapping when a

1We directly use the actual execution duration of the target workload scenario for reconfig-
uration prediction.



5.4. Experiments 133

1.0E+09'

1.5E+09'

2.0E+09'

2.5E+09'

3.0E+09'

3.5E+09'

seq10' seq100' seq10.100'To
ta
l&s
ce
na

rio
&e
xe
cu
/o

n&
/m

e&
in
&

si
m
ul
a/

on
&c
yc
le
s&

Scenario&sequence&

STATIC' GMLM' SHARA'

Figure 5.13: Performance of SHARA in more complex scenario cases

new workload scenario is detected. To model dynamic application behaviour over
time (e.g. due to user behaviour), we generate three kinds of workload scenario
sequences. Each sequence is generated in two steps. The first step is to randomly
choose a workload scenario from all the possible workload scenarios. For each
selected workload scenario, it will appear in the scenario sequence for multiple
times. The second step is to generate the duration in scenario frames for each ap-
pearance of the selected workload scenario. In this experiment, we model totally
random user behaviour to show the performance of our approach in extreme cases.
For this purpose, the scenario duration is generated by a random generator with
a certain average scenario duration (number of scenarioframes). This process
iterates until a pre-defined total frame number (10,000 frames in our case) has
been achieved for each scenario sequence. Our three target scenario sequences
seq10, seq100 and seq10 � 100 in Figure 5.13 are distinguished by the average
number of scenario frames set for the random scenario duration generator where
an average frame number of 10, 100 and 10 to 100 (the average frame number set
for the generator in each iteration is also randomly derived from 10 to 100) are
used for generating the three kinds of sequence respectively.

The results of each kind of scenario sequence shown in Figure 5.13 are aver-
aged over five randomly generated different sequences. From this figure, we can see
that our SHARA approach has a good trade off between STATIC and GMLM .
When the average number of scenario frames for each workload scenario is small
like seq10, the GMLM approach where a system reconfiguration alway happens
when a new scenario is detected has the worst performance. However, it has the
best performance when the average scenario frame is large like seq100 as in this
case the system reconfiguration cost is covered by the performance improvement
because of system reconfiguration. If the average number of scenario frames be-
comes even larger, the gap between STATIC and GMLM , SHARA will also
increase. Comparing SHARA with GMLM , in the case of seq100, our SHARA
approach suffers from both the reconfiguration prediction overhead and error sys-
tem reconfiguration prediction which mainly caused by the prediction error in
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mapping performance and task migration cost as mentioned in the third experi-
ment. In the case of seq10 � 100, the scenario duration predictor also influences
the prediction of system reconfiguration. However, as the system performance
degradation caused by errors in the system reconfiguration prediction in SHARA
is almost equal to the unnecessary reconfiguration overhead in GMLM when the
average scenario duration is short, our SHARA shows a similar performance with
GMLM . The problem of how to improve the system performance by optimising
the prediction accuracy of our predictors used for adaptivity throttling will be
further studied in future work.

Regarding to the run-time system storage consumption of our SHARA frame-
work, several assumptions should be mentioned. On our target MPSoC system,
we store all the design-time prepared information in the local memory of the GM.
For storing the pre-optimised mappings, we assume that the mapping information
of each task and each communication channel between tasks is stored in one byte.
In our target synthetic streaming applications, there are 88 tasks and 67 commu-
nication channels in total. Consequently, to store the pre-optimised mappings, the
memory usage is 155 bytes. Beside the pre-optimised mappings, in our SHARA
framework, we also need to store the application/system information and the av-
erage scenario execution history information. Here, we assume that each piece of
this information needs one word of memory. Consequently, for storing the applica-
tion/system information, 1408 bytes of memory are required. With regard to the
average scenario execution history information, as each workload scenario needs
one word to store the information, the total memory usage is 256 KB.

5.5 Related Research

There are a lot of task mapping approaches for improving the adaptivity of small
scale MPSoC systems with only a certain number of scenarios or applications
that need to be supported. But most of them still lack scalability when the task
mapping problem becomes complex in large-scale systems with a large number of
applications and processing elements. To solve this problem, several distributed
resource management approach for large-scale MPSoC systems or many-core sys-
tems have been proposed like the work in [44, 5]. In [44], the authors proposed a
new concept - invasive computing - for resource management on a heterogeneous,
tile-based manycore system. This invasive computing technique uses a multi-agent
management layer underpinned by distributed runtime and OS services to support
a flexible resource management. The agent of each application executing in the
system tries to increase the speedup of its application by acquiring additional cores
from the nearby regions. [5] presents a scheme for run- time application mapping
in a distributed manner using agents targeting adaptive NoC-based heterogeneous
multi-processor systems. Compared to these approaches, our approach uses a hi-
erarchical resource management approach and explicitly studies the influence of
system reconfiguration for run-time resource allocation. Recently, [105] also pro-
posed a scenario-based run-time mapping approach for many-core systems which is
very similar to our work. In their approach, the execution scenarios are combined
into a finite state machine and the transitions between scenarios are limited in
the pre-determined states. However, we do not have such kind of limitations and
consequently more complex run-time situations can be considered in our work.
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5.6 Conclusion

In this chapter, we proposed a scenario-based hierarchical run-time adaptive re-
source allocation framework to increase the adaptivity of large-scale heterogeneous
MPSoC systems where a large number of scenarios or applications need to be sup-
ported. The SHARA framework adopts a hierarchical resource allocation mech-
anism to reduce the complexity of the task mapping problem at run time. In
this framework, the system resources are allocated as tiles which could be either
real tiles in a tiled system or virtual tiles virtually divided in a system by the
global manager. Inside each tile, the hardware resources will be allocated to the
workload active on it by the corresponding local manager. For a new workload
scenario, after deriving a new mapping by the hierarchical task mapping approach,
the hierarchical adaptivity throttling technique will be applied for actual system
reconfiguration based on the scenario execution history behaviour. It is helpful
to avoid unnecessary system reconfiguration in the case when the reconfiguration
is not beneficial. By applying our SHARA framework on the target tile-based
MPSoC system, the problem of scalability considering both the number of target
workload scenarios and the number of processing elements in the target system,
but also the flexibility and blind adaptivity problems of general hybrid task map-
ping approaches as mentioned in previous chapters are addressed.





CHAPTER 6
Conclusion and Future Work

In this chapter, we will conclude the work of this thesis and give a brief introduc-
tion of possible future work in the domain of dynamic resource management

of MPSoC systems.

6.1 Conclusion

The technology improvement and the adoption of more and more complex appli-
cations in the embedded domain are causing a rapid increase in the complexity
of embedded systems. The major solution for today’s embedded systems, namely
heterogeneous multiprocessor system-on-chip (MPSoC), is fuelled by the increas-
ing demand of high-performance and low-power solutions in the embedded devices.
These MPSoC systems are increasingly required to be adaptive at run time to sup-
port complex and dynamic application workloads, dynamic QoS, fault tolerance
and so on. To achieve the ability of system adaptivity for MPSoCs, two kinds of
techniques, namely dynamic hardware reconfiguration and dynamic software re-
configuration as introduced in the first chapter, have been proposed in recent years.
Among those solutions, the approaches with dynamic application task remapping
provide a good trade off between the hardware overhead and design complexity.
In this thesis, we have focused our research on improving the adaptivity of MPSoC
systems with complex workload behaviour by means of dynamic application task
remapping.

The process of application task mapping plays a crucial role in exploiting the
system properties such that applications can meet their, often diverse, demands on
performance and energy efficiency. To cope with dynamic application behaviour,
hybrid task mapping approaches has been widely studied recently. These hybrid
strategies combine the design-time static task mapping with the run-time manage-
ment in order to select mapping configurations that are best suited for the current
workload scenario on the target system. However, most of these approaches still
suffer from the issues that have been stated in Section 1.4 as the research questions
of this thesis.

137
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With regard to the first research question: How to improve the efficiency of
static task mapping exploration, we solved this problem by pruning the search
space of the target mapping problem with domain-specific heuristics. When the
mapping solution space is very large in a static mapping optimisation problem, it
is impossible to explore each solution at design time. In this case, a possible solu-
tion is using heuristics to guide the search process such that it only concentrates
on parts of the solution space that may contain the optimal solution. By using
this approach, in Chapter 2, we presented a GA-based mapping DSE algorithm
(BEG) for design-time task mapping exploration with a single optimisation goal of
maximising mapping performance. This algorithm is guided by a domain-specific
heuristic to find the optimal mapping solution with maximal performance. With
the help of such a heuristic, the proposed DSE algorithm only needs to evaluate
the mapping candidates that have a higher chance to be the optimal solution. Con-
sequently, it can solve large-scale static task mapping problems more efficiently.
For multi-objective static mapping optimisation problems, we have deployed the
NSGA-II-based DSE approach as introduced in Section 3.2.3. Similar to the BEG
algorithm, this multi-objective DSE approach allows for effectively pruning the
design space by only evaluating a representative subset of the target problem
(chosen by the genetic operators). However, as the NSGA-II-based approach does
not have a similar heuristic adopted in the BEG algorithm to derive good mapping
candidates in the search process, the efficiency of NSGA-II is lower than BEG.

For the second research question: How to achieve scalability with regard to the
number of workload scenarios as well as flexibility in hybrid task mapping tech-
niques, two different hybrid scenario-based task mapping approaches have been
presented in Chapter 3. The scenario-clustering based task mapping approach
proposed in Section 3.2 solves the scalability issues of general hybrid task map-
ping techniques when large number of workload scenarios need to be supported
on the target system. In this approach, the target workload scenarios are firstly
divided into different scenario clusters. For each separate scenario cluster, a map-
ping that on average performs best for all scenarios inside the scenario cluster is
explored at design-time and stored on the target system for run-time usage. More
specifically, in Section 3.2, we distinguished each inter-application scenario as a
separate scenario cluster. Inside each inter-application scenario, there are multi-
ple intra-application scenarios caused by the change of execution modes of each
active application. At run time, a light-weight system resource scheduler applies
the proposed STM algorithm to perform mapping initialisation and customisation
according to the pre-stored cluster-level mapping information. The mapping ini-
tialisation process is triggered by the change of inter-application scenarios on the
target system and the mapping customisation process is triggered by a violation
of application-specific performance objectives.

This scenario-clustering based task mapping approach still cannot solve the
flexibility issue for supporting new applications on the target system. In this
approach, when a new application needs to be supported, design-time analysis
needs to be redone for each possible new inter-application scenario. In Section 3.3,
we therefore presented a novel hybrid task mapping approach that uses a divide-
and-conquer method to solve both the scalability and flexibility issues of general
hybrid task mapping techniques. In this approach, the scenario-level task mapping
problem is broken down into application-level task mapping problems at design
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Figure 6.1: Design-time target mapping problems of the two proposed hybrid task
mapping approaches

time, and the application-level mapping solutions are then dynamically combined
and further optimised to give a complete solution for a workload scenario at run
time. By applying this method, we only need to do static mapping optimisation for
each application in isolation at design time. Consequently, when a new application
needs to be added on the target system, only a small effort of static mapping DSE
for this single application needs to be done. At run-time, the EIM algorithm takes
charge of the mapping optimisation for the active workload scenario. The mapping
optimisation process is triggered by the change of workload scenarios.

Figure 6.1 illustrates the target mapping optimisation problems that need to
be solved at design time for the target applications using these two hybrid task
mapping approaches. In both cases, the number of mappings that needs to be
explored and consequently the memory usage for storing the pre-optimised map-
pings on the target system can clearly be reduced compared to general hybrid task
mapping techniques where design-time analysis should be done for each possible
workload scenario. To support n applications where each application has m execu-
tion modes, the total number of possible workload scenarios on the target system
is (m+ 1)n � 1. By using our scenario-clustering task mapping approach and the
one with a divide-and-conquer method, the total number of mappings that needs
to be explored and stored is 2n � 1 and m ⇤ n respectively. This means that the
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scenario-clustering task mapping approach has a better scalability in the case of a
small number of applications but where each application contains a large number
of execution modes. Otherwise, the divide-and-conquer task mapping technique
will be better. These two proposed hybrid task mapping approaches not only solve
the scalability and flexibility problems of general hybrid task mapping approaches
that explore task mappings for all the target workload scenarios at design time but
also produce similar mapping results like those from general hybrid task mapping
approaches.

To solve the third research question: How to deal with blind adaptivity at run
time for an adaptive MPSoC system, an adaptivity throttling technique has been
proposed in Chapter 4. The blind adaptivity problem of an adaptive MPSoC sys-
tem is caused by run-time system reconfiguration costs. When a reconfiguration
is triggered on a MPSoC system, the system reconfiguration should actually not
happen if the reconfiguration overhead outweighs its benefit (performance and/or
energy consumption). However, in state-of-the-art hybrid task mapping tech-
niques, this problem has not been explicitly studied. In Chapter 4, we presented
our solution for the blind adaptivity problem by applying adaptivity throttling in
the resource scheduler of the target MPSoC system to improve the system effi-
ciency. By using this technique, the system scheduler can predict (using several
analytic prediction models) whether or not reconfiguration of the system actually
is beneficial based on the active workload scenario and the status of the hardware
platform. According to this prediction, unnecessary system reconfigurations can
be avoided, and consequently the system efficiency can be improved.

This adaptivity throttling technique has been combined with a general hybrid
task mapping approach where the pre-optimised mappings (derived by design-time
DSE) for all the target workload scenarios can be directly used at run time and
the divide-and-conquer task mapping approach of Section 3.3 to improve perfor-
mance of a heterogeneous MPSoC system. Comparing the MPSoC system that
uses a normal hybrid task mapping approach with adaptivity throttling to the MP-
SoC system using our divide-and-conquer task mapping approach with adaptivity
throttling, the former one has a slightly better performance as its system reconfig-
uration is based on the design-time optimised mapping. However, the advantage
of the latter system is that it solves not only the blind adaptivity problem but
also the scalability and flexibility problem of such a general hybrid task mapping
approach.

About the last research question stated in the first chapter: Are hybrid task
mapping techniques still applicable on future large-scale MPSoCs, we presented our
initial research in Chapter 5. For a task mapping problem, its complexity is related
to both the number of target application tasks and processing elements in the tar-
get MPSoC system. When adopting traditional hybrid task mapping approaches
on a large-scale MPSoC, two issues are obvious. Firstly, the design-time mapping
exploration will become intractable even when our previously proposed techniques
are considered. This is because the complexity of each single mapping problem is
now dominated by the number of processing elements in the target system. Sec-
ondly, the mechanism for run time resource management is also problematic be-
cause centralised resource management approaches deployed in general hybrid task
mapping approaches are not suitable for large-scale systems anymore. To solve
these two issues, we proposed a solution that uses a similar divide-and-conquer
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approach as considered in the hybrid task mapping techniques of Chapter 4. More
specifically, we presented a tile based MPSoC architecture as the prototype of fu-
ture large-scale heterogeneous MPSoC systems that contains multiple identical
tiles where each tile contains several heterogeneous processing elements. For this
MPSoC system, we made an assumption that an entire application can only be
mapped to a single tile to reduce the communication overhead between tasks in-
side an application. Under this assumption, the task mapping problem is greatly
simplified on our target large-scale MPSoC system. At design-time, we only need
to solve the mapping problem targeting a single tile architecture. Consequently,
the design-time DSE approaches presented in this thesis can directly be used to
solve the task mapping problem of each tile.

At run time, for the target MPSoC platform, we studied a hierarchical resource
management mechanism to overcome the performance bottleneck of centralised ap-
proaches and the complexity of distributed approaches. In this mechanism, the
run-time task mapping process is divided into two levels where the tile-level re-
source allocation (across tiles) is handled by the global manager of the system
and the processor-level resource allocation (inside each tile) is solved by a local
manager. The tile-level resource management explores the application-level paral-
lelism for the target applications by a load balancing heuristic. The processor-level
resource allocation is done by the hybrid task mapping approach presented in Sec-
tion 3.3 to explore the task-level parallelism. The actual resource reconfiguration
on the target MPSoC system is controlled by the manager of each level using the
adaptivity throttling technique. By applying our scenario-based hybrid task map-
ping approach and the adaptivity throttling technique on the target tile-based
MPSoC system, the problem of scalability (with regard to the size of both the
number of target applications and the target platform), flexibility and blind adap-
tivity can be solved. This hierarchical solution for our target tile-based MPSoC
system is also applicable to a general large-scale MPSoC system. For example,
considering a general NoC-based large-scale MPSoC, one can virtually divide the
MPSoC into smaller blocks and then apply our approach to improve the system
adaptivity. Therefore, for large-scale MPSoC systems with complex and dynamic
application behaviour, our hybrid task mapping approaches are still useful for
generating better mapping solutions compared to pure dynamic task mapping ap-
proaches normally adopted for large-scale systems and consequently improving the
system efficiency.

To evaluate the proposed techniques described in this thesis, we deployed the
Sesame simulation framework (see Section 2.1). It is a system-level modeling and
simulation environment which allows for flexible evaluation of different applica-
tions, different underlying architectures, and different application-to-architecture
mappings for MPSoC systems. This Sesame simulator was directly used for design-
time mapping DSE in our work. However, the original Sesame is unable to support
the simulation of dynamic application behaviour and run-time mapping optimisa-
tion/customisation. To enable this property, we have extended it with a run-time
resource scheduling framework as introduced in Section 3.1. Using the extended
Sesame simulator, we are able to study different mapping optimising techniques for
MPSoC systems with complex and dynamic workload behaviour. The proposed
approaches of Chapter 3 have been evaluated by this extended Sesame simulator.
In the research work of Chapter 4 and 5, the impact of system reconfiguration
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was taken into consideration for dynamic task remapping at run time. For this
purpose, the Sesame simulation framework was further extended with the ability
of run-time system reconfiguration cost evaluation to study system reconfiguration
mechanisms and policies for adaptive MPSoCs.

Overall, this thesis presented our research for improving the adaptivity of MP-
SoC systems with dynamic and complex application behaviour using dynamic
application task remapping. It can help embedded system designers to build an
efficient MPSoC system that can adaptively cope with complex run-time behaviour
of target applications. More specifically, our two extended Sesame simulators pro-
vide a highly flexible and efficient simulation environment for MPSoC designers
to evaluate their possible adaptivity and run-time mapping solutions at the very
early stage of design. The techniques for solving the scalability, flexibility and
blind adaptivity issues of general hybrid task mapping approaches proposed in
this thesis can be integrated in MPSoC products to improve the system adap-
tivity. Furthermore, our initial research on large-scale adaptive MPSoC system
shows a possible solution for the design of further MPSoC systems.

6.2 Future Work

There are many potential directions for future research based on the work pre-
sented in this thesis. For example, considering the static multi-objective task
mapping problem of Section 3.2.3, the NSGA-II-based approach still has an effi-
ciency problem in complex mapping optimisation problems as general crossover
and mutation operators were directly used without any optimisation like the ge-
netic algorithm proposed in Section 2.3. To improve the efficiency of this DSE
approach, further efforts such as providing domain-specific heuristics to optimise
the genetic operators can be done. In our proposed scenario-clustering based task
mapping approach, currently, only the performance constraints of target appli-
cations are considered as the trigger for run-time mapping customisation during
the execution of a certain inter-application scenario. In the future, we may also
consider some other triggers such as the violation of system power consumption or
chip overheating for mapping customisation to satisfy different run-time execution
requirements of the target MPSoC system. As mentioned in Section 4.2.3.2, the
memory consumption of our history based scenario duration predictor (ASMM)
will be an issue in the case a large number of workload scenarios need to be consid-
ered on the target system. To solve this problem, we could consider to implement
this scenario execution duration predictor by other techniques like Neural Net-
works. In Section 5.4, we also mentioned the accuracy problem of predictors used
for adaptivity throttling. This accuracy problem can lead to an erroneous system
reconfiguration that apparently degrades the system performance. Therefore, how
to improve the prediction accuracy for the predictors in our adaptivity throttling
technique is also another future research direction.

Besides the above mentioned future research directions for optimising the work
presented in this thesis, some other possible extension of our work are:

• Prototyping a real adaptive MPSoC system with our proposed dynamic task
remapping techniques on e.g. an FPGA to further optimise and increase the
practicability for our approaches. On a real system, more concrete problems
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such as how the run-time scheduler should be integrated into the system,
how to implement different task migration mechanism for task remapping
and so on need to be carefully considered.

• In this thesis, only approaches for software reconfiguration (i.e., application
task remapping) have been considered to improve the system adaptivity
on MPSoC systems. As mentioned in the first chapter, dynamic hardware
reconfiguration is also an option for adaptive MPSoC systems. With a hard-
ware reconfigurable MPSoC, hardware reconfiguration approaches like dy-
namic voltage and frequency scaling can be combined with our software
reconfiguration approaches to derive an even more efficient MPSoC system.
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Summary

Modern embedded systems, which are more and more based on Multi-Processor
System-on-Chip (MPSoC) architectures, increasingly require to be adaptive at run
time to support complex and dynamic application workloads, dynamic Quality-of-
Service management, etc. As one of the approaches for improving the adaptivity
of MPSoC systems, dynamic application task (re-)mapping plays a crucial role
in exploiting the system properties such that applications can meet their, often
diverse, demands on performance and energy efficiency. The research of this the-
sis aims at improving these dynamic application mapping techniques to increase
the efficiency of modern MPSoC systems by adaptively reconfiguring the system
according to the dynamic behaviour of application workloads and the status of
the target system.

The application task (re-)mapping methods presented in this thesis belong to
the class of hybrid task mapping approaches. They overcome the drawback of
static task mapping techniques traditionally considered in embedded systems that
are unable to support dynamic application behaviour as well as the drawback of
pure dynamic (on-the-fly) task mapping techniques that typically only produce
mappings of relatively low quality. Our hybrid task mapping approaches have two
mapping optimisation stages: design-time static mapping exploration and run-
time mapping optimisation/customisation. At design time, two static Genetic-
Algorithm based mapping DSE approaches have been proposed to explore partial
task mappings (at the level of inter- or intra-application scenarios) for workload
scenarios that might appear on the target MPSoC system under optimisation
objectives such as performance and/or energy consumption. At run time, a light-
weight resource scheduler – integrated with our proposed mapping optimisation
algorithms and a technique for so-called adaptivity throttling – has been deployed
for dynamic system reconfiguration. According to the reason that has triggered the
system reconfiguration, the scheduler on the target system is able to dynamically
derive near optimal application mappings for the purpose of system reconfiguration
based on the mapping information explored at design time. However, applying an
adaptivity throttling technique, the actual system reconfiguration will only take
place when it has been predicted to be beneficial.

By using our proposed hybrid task mapping techniques, which benefit from
both static and dynamic task mapping approaches, the efficiency of MPSoC sys-
tems can be considerably improved. On top of this, our techniques also provide
solutions for the issues of scalability, flexibility and blind adaptivity that general
hybrid task mapping approaches suffer from. Moreover, using a hierarchical con-
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trol mechanism, we also show that our techniques can perform well on future,
large-scale MPSoC systems.



Samenvatting

Moderne embedded systemen zijn steeds vaker gebaseerd op Multi-Processor System-
on-Chip (MPSoC) architecturen en moeten zich kunnen aanpassen aan de verande-
rende eisen van de complexe applicaties tijdens run-time en ondersteuning bieden
voor gegarandeerde service niveaus (QoS). Een van de methodes om de adaptiviteit
van MPSoC systemen te verbeteren is het dynamisch toewijzen van applicatieta-
ken aan resources zodat aan de snelheidseisen en energiebudgetten voldaan kan
worden. Het onderzoek gepresenteerd in dit proefschrift heeft als doel om de effi-
ciëntie van moderne MPSoC systemen te verbeteren door de systeemconfiguratie
aan te passen aan het dynamische gedrag van de applicaties en de status van het
onderliggende hardware platform.

Dit proefschrift presenteert een methode voor het toewijzen van applicatieta-
ken die behoort tot de klasse van hybride methodes. Deze hybride klasse heeft
niet de nadelen van een statische toewijzing van taken, die gebruikelijk is bij em-
bedded systemen, zoals het ontbreken van ondersteuning voor dynamisch applica-
tiegedrag. Aan de andere kant van het spectrum vinden we de puur dynamische
methodes, die configuraties van relatief lage kwaliteit opleveren. Onze hybride
methode voor het toewijzen van taken heeft twee fases: Een statische exploratie
in de ontwerpfase en een optimalisatie- en aanpassingsfase tijdens run-time. Tij-
dens de ontwerpfase wordt de ontwerpruimte van partiële taaktoewijzingen (op
het niveau van inter- of intra-applicatie scenarios) doorzocht door twee statische
methodes die zijn gebaseerd op genetische algoritmes. Hierbij wordt gezocht naar
mogelijke applicatiescenarios met werkverdelingen op de MPSoC, geoptimaliseerd
op snelheid en/of energiegebruik. Tijdens run-time zorgt een lichtgewicht resource
scheduler – die geïntegreerd is met onze algoritmes voor het toewijzen van taken
en tevens een methode bevat om de mate van adaptiviteit te begrenzen – voor
de dynamische herconfiguratie van het systeem. Aan de hand van de reden die
geleid heeft tot een herconfiguratie van het systeem kan de scheduler, door ge-
bruik te maken van de statische exploratie in de designfase, dynamisch een vrijwel
optimale toewijzing van taken genereren. Doordat er gebruik gemaakt wordt van
de methode die de mate van adaptiviteit begrenst zal een herconfiguratie alleen
plaatsvinden als er bepaald is dat deze voordelig is voor het systeem.

Met de door ons voorgestelde hybride methode voor het toewijzen van taken
aan resources, die de voordelen van de statische methodes van toewijzing combi-
neert met de dynamische methodes, wordt de efficiëntie van de MPSoC systemen
significant verbeterd. Onze methode biedt daarnaast ook oplossingen voor de
problemen met schaalbaarheid, flexibiliteit en adaptiviteit waar generieke hybride
methodes mee kampen. Bovendien laten we zien dat onze methodes, door gebruik
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te maken van een hiërarchisch controlemechanisme, ook goed kunnen presteren op
de grootschalige MPSoC systemen van de toekomst.



Acknowledgements

The last near four years of my PhD life leave me an indelible memories. With ups
and downs, all the past days are now still as fresh as yesterday. As the proverb
says: "No man is an island". In the process of pursuing my PhD degree, I was
not alone. Quite a lot of bright people practically or mentally supported and
helped me. Without their support and guidance, I would not be able to have this
moment. Here I would like to extend my gratitude to all these people.

First, I would like to thank my daily supervisor and co-promotor: Andy Pi-
mentel. I feel very lucky that I have Andy to supervise my PhD research. He
provided me an excellent working environment that is full of freedom and trust.
Under this environment, I was able to pursue and explore my own direction of
research. Apart from providing excellent scientific support and guidance, he was
always willing to make time for problem discussion, paper revision and so on.
During my PhD life, I have greatly benefited from his professional knowledge and
inspirational attitude. I can never thank him enough for his selfless dedication
and effort to me.

I would like to express my sincere gratitude to my previous promoter, Prof.
Chris Jesshope, for offering me the position and the opportunity to do a PhD in
the University of Amsterdam. As Chris has already retired, when I started to
write this thesis, Prof. Cees de Laat took over him as my promoter. I am grateful
to Cees for his supervision and help at the end of my PhD life. I also want to
thank Prof. Chunyuan Zhang from National University of Defence Technology
in China. He enlightened me on the research road of computer architecture. His
support and encouragement gave me the power to go ahead on my research road.

A very special thanks goes out to Simon Polstra and Peter van Stralen. From
the start of my PhD study, I worked together with them in the same room. I
really appreciate their countless help on both my research and my daily PhD life.
Furthermore, I would like to thank all the other colleagues of in our group, with
whom I spent most of my working days. They are Clemens Grelck, Raphael Poss,
Roy Bakker, Roeland Douma, Qiang Yang, Jian Fu, Fangyong Tang, Sebastian
Altmeyer, Roberta Piscitelli, Irfan Uddin, Michiel van Tol, Merijn Verstraaten.
Thanks for all of you! Everything we did together is a nice memory to me.

I would also like to thank my committee members (Prof. Pieter Adriaans,
Prof. Henk Corporaal, Prof. Chunyuan Zhang, Dr. Clemens Grelck and Dr. Ana
Varbanescu) for serving as my committee members and taking time to review my
thesis.

161



162 Acknowledgements

Meanwhile, I want to appreciate the friendship with many great Chinese friends
during my stay in the Netherlands. Without them, I would never have had such
a wonderful life in the past few years.

Finally, I would like to thank my parents for always supporting me to do what
I want and encouraging me when I was upset. I owe my deepest gratitude to my
girl, Lingxue, who accompanied me through my PhD life. She brightened my life
with her wisdom. Without her, this thesis would not have been possible.

Wei Quan
Amsterdam, juli 2015


