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Abstract This chapter discusses conceptual issues, basic requirements and practical 
suggestions for designing dynamically configured security infrastructure provisioned 
on demand as part of the cloud-based infrastructure. This chapter describes general 
use cases for provisioning cloud infrastructure services and the proposed architectural 
framework that provides a basis for defining the security infrastructure requirements. 
The proposed security services lifecycle management (SSLM) model addresses 
specific on-demand infrastructure service provisioning security problems that can 
be solved by introducing special security mechanisms to allow security services 
synchronisation and their binding to the virtualisation platforms run-time environ-
ment. This chapter describes the proposed dynamically provisioned access control 
infrastructure (DACI) architecture and defines the necessary security mechanisms 
to ensure consistent security services operation in the provisioned virtual infrastruc-
ture. In particular, this chapter discusses the design and use of a security token service 
for federated access control and security context management in the generically 
multi-domain and multi-provider cloud environment.
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170 Y. Demchenko et al.

5.1  Introduction

Cloud technologies [1, 2] are emerging as a new way of provisioning virtualised 
computing and network infrastructure services on demand for collaborative projects 
and groups. Security in provisioning virtual infrastructure services should address 
two general aspects: supporting secure operation of the provisioning infrastructure 
and provisioning a dynamic access control infrastructure as part of the provisioned 
on-demand virtual infrastructure.

The current cloud security model is based on the assumption that the user/customer 
should trust the cloud service provider (CSP). This is governed by the service level 
agreement (SLA) that in general defines mutual provider and user expectations and 
obligations. However, such an approach addresses only the first part of the problem 
and does not scale well with the potential need to combine cloud-based services 
from multiple providers when building complex infrastructures.

Cloud providers are investing significant efforts and costs into making their own 
infrastructures secure and achieving compliance with the existing industry security 
services management standards (e.g. Amazon Cloud recently achieved Payment 
Card Industry Data Security Standard (PCI DSS) compliance certification and Microsoft 
Azure Cloud claims compliance with ISO27001 security standards). However, 
overall security of cloud-based applications and services will depend on two other 
factors: security services implementation in user applications and binding between 
virtualised services and cloud virtualisation platforms. Advanced security services 
and fine-grained access control cannot be achieved without deeper integration with the 
cloud virtualisation platform and incumbent security services, which in its turn can be 
achieved with open and well-defined cloud IaaS platform architectures.

This chapter presents recent results of the ongoing research on developing 
architecture and framework for dynamically provisioned security services as part 
of the provisioned on-demand cloud-based infrastructure services. This chapter 
extends earlier published works by authors with the recent results and implemen-
tation experiences.

This chapter analyses the basic use cases and proposes an abstract model for 
on-demand infrastructure services provisioning. Section 5.3 provides a short 
description of the architectural framework for on-demand infrastructure services 
provisioning proposed in earlier authors’ work [3, 4]. It is used as a basis to define 
the general security requirements to the security infrastructure. Section 5.4 discusses 
conceptual issues, basic requirements, proposed architectural solutions, supporting 
security mechanisms and practical suggestions for provisioning dynamically 
configured access control services as part of the provisioned on-demand cloud-based 
infrastructure services. This section summarises the earlier works by authors [5–7] 
and describes the proposed dynamically provisioned access control infrastructure 
(DACI). Section 5.5 describes the security token service that allows federated access 
control to distributed multi-domain cloud resources.

Consistent security services design, deployment and operation require continuous 
security context management during the whole security services lifecycle, which is 
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1715 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

aligned to the main provisioned services lifecycle. The proposed security services 
lifecycle management (SSLM) model addresses specific on-demand infrastructure 
service provisioning security problems that can be solved by introducing a special 
security mechanism to allow synchronisation of security services and their binding to 
virtualisation platform and run-time environment. This chapter discusses how these 
security mechanisms can be implemented by using Trusted Computing Group 
Architecture (TCG Architecture) and the functionality of the Trusted Platform Module 
(TPM) that is currently available in many computer platforms and supported by most 
VM management platforms. Section 5.4.5 describes the proposed security bootstrap-
ping protocol that uses TPM functionality and can be integrated with DACI.

The practical implementation of DACI reveals a wide spectrum of problems 
related to distributed access control, policy and related security context management. 
This chapter discusses important security services and mechanisms that ensure 
consistency of the provisioned security infrastructure and its integration with user 
applications: authorisation tokens used for provisioning and authorisation session 
management and for security context exchange between infrastructure services and 
providers (Sect. 5.4.6) and the standard-based security token service as an important 
mechanism for inter-domain access control and identity management (Sect. 5.5).

5.2  Background

5.2.1  Cloud Computing as an Emerging Provisioning  
Model for Complex Infrastructure Services

Modern e-Science and high-technology industry require high-performance infrastruc-
ture to handle large volume of data and support complex scientific applications and 
technological processes. Dynamicity of projects and collaborative group environment 
require that such infrastructure is provisioned on demand and capable of dynamic 
(re-) configuration. A large amount of currently available e-Science/research 
infrastructures is currently available on the grid, which in the case of Europe are 
coordinated by the European Grid Initiative (EGI) [8]. Future research infrastructures 
will inevitably evolve in the direction of using cloud resources and will combine 
both grid and cloud resources.

Currently large grid projects and cloud computing providers use their own 
dedicated network infrastructure that can handle the required data throughput but 
typically are over-provisioned. Their network infrastructure and security model are 
commonly based on the traditional VPN model that spreads worldwide, creates 
distributed environment for running their own services geographically distributed 
(like Google and Amazon) and provides localised access for users and local providers. 
Their service delivery business model and consequently security model are typically 
based and governed by a service level agreement (SLA) that in general defines mutual 
provider and user expectations and obligations.
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172 Y. Demchenko et al.

Recently, cloud technologies [1, 2, 9] are emerging as infrastructure services 
for provisioning computing and storage resources and gradually evolving into the 
general IT resources provisioning. Cloud computing can be considered as natural 
evolution of the grid computing technologies to more open infrastructure-based 
services. Cloud “elasticity”, as recognised by researchers and technology practitioners, 
brings a positive paradigm shift in relation to the problem and the problem-solving 
infrastructure from sizing a problem to infrastructure to sizing infrastructure to the 
problem.

The current cloud services implement three basic service models: infrastructure 
as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). 
There are many examples of the latter two models, PaaS and SaaS, that are typi-
cally built using existing SOA (service-oriented architecture) [10] and Web 
Services or REST (representational state transfer) [11] technologies. However, the 
IaaS model, if intended to provision user or operator manageable infrastructure 
services, requires a new type of service delivery and operation framework that 
should also include security infrastructure integration with the user or enterprise 
legacy security infrastructure.

This chapter presents the ongoing research aimed at developing an architectural 
framework that will address known problems in on-demand provisioning virtualised 
infrastructure services that may include both computing resources (computers 
and storage) and transport network. The solutions for pooling, virtualising and 
provisioning computing resources are provided by current grid and cloud infrastruc-
tures. New solutions should allow the combination of IT and network resources, 
supporting abstraction, composition and delivery for individual collaborating user 
groups and applications.

5.2.2  General Use Case for Cloud-Based On-Demand 
Infrastructure Services Provisioning

One general use case for on-demand cloud-based infrastructure services provision-
ing can be considered: large project-oriented scientific infrastructure provisioning 
including dedicated transport network infrastructure. However, two different 
perspectives in developing infrastructure services can be considered – users and 
application developers’ perspective, on one side, and providers’ perspective, on 
the other side. Users are interested in uniform and simple access to resources and 
services that are exposed as cloud resources and can be easily integrated into the 
scientific or business workflow. Infrastructure providers are interested in infrastructure 
resource pooling and virtualisation to simplify their on-demand provisioning 
and extend their service offering and business model to virtual infrastructure 
provisioning.

Figure 5.1 illustrates the typical e-Science infrastructure that includes grid and 
cloud-based computing and storage resources, instruments, control and monitoring 
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1735 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

system, visualisation system and users represented by user clients. The diagram also 
reflects that there may be different types of connecting network links: high-speed 
and low-speed which both can be permanent for the project or provisioned on 
demand.

The figure also illustrates a typical use case when a high-performance infra-
structure is used by two or more cooperative users/researcher groups in different 
locations. In order to fulfil their task (e.g. cooperative image processing and analysis), 
they require a number of resources and services to process raw data on distributed 
grid or cloud data centres, analyse intermediate data on specialist applications and 
finally deliver the result data to the users/scientists. This use case includes all basic 
components of the typical e-Science research process: data collection, initial data 
mining and filtering, analysis with special scientific applications and finally presen-
tation and visualisation to the users.

With the growing complexity and dynamicity of collaborative projects and 
applications, they will require access to network control and management functions 
to optimise their performance and resources usage. Currently, transport network, 
even if provided as VPN, is set up statically or can only be reconfigured by a network 
engineer.

Fig. 5.1 Project-oriented collaborative infrastructure containing grid-based scientific instrument 
managed by grid VO-A, 2 campuses A and B, and cloud-based infrastructure provisioned on 
demand
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5.3  Architectural Framework for Cloud IaaS Model

5.3.1  Abstract Model for On-Demand Infrastructure Services 
Provisioning

Figure 5.2 below illustrates the abstraction of the typical project- or group-oriented 
virtual infrastructure (VI) provisioning process that includes both computing 
resources and supporting network that is commonly referred as infrastructure 
services. The figure also shows the main actors involved in this process, such as 
physical infrastructure provider (PIP), virtual infrastructure provider (VIP) and virtual 
infrastructure operator (VIO).

The required supporting infrastructure services are depicted on the left side of 
the picture and include functional components and services used to support normal 
operation of all mentioned actors. The virtual infrastructure composition and 
management (VICM) layer includes the logical abstraction layer and the VI/VR 
adaptation layer facing correspondingly lower PIP and upper application layers. 
VICM-related functionality is described below as related to the proposed composable 
services architecture (CSA).

The proposed abstraction provides a basis and motivates the definition of archi-
tectural framework for cloud-based infrastructure services provisioning to support 
the main cloud IaaS features such as on-demand provisioning, elasticity, scalability, 
virtualisation, lifecycle management and combined compute and network resource 

Fig. 5.2 Main actors, functional layers and processes in on-demand infrastructure services 
provisioning
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1755 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

provisioning. The proposed architectural framework comprises of the following 
components discussed in this chapter:

Infrastructure services modelling framework (ISMF)• 
Composable services architecture (CSA)• 
Service delivery framework (SDF)• 
Dynamically provisioned security infrastructure that includes dynamically • 
provisioned access control infrastructure (DACI) and related security services 
and mechanisms for inter-domain security context management

The proposed architecture is SOA (service-oriented architecture) [10] based and 
uses the same basic operation principle as known and widely used SOA frameworks, 
which also provides a direct mapping to the possible VICM implementation platforms 
such as enterprise service bus (ESB) or OSGi framework [12, 13].

The infrastructure provisioning process, also referred to as service delivery 
framework (SDF), is adopted from the TeleManagement Forum SDF [14, 15] with 
necessary extensions to allow dynamic services provisioning. It includes the following 
main stages: (1) infrastructure creation request sent to VIO or VIP that may include 
both required resources and network infrastructure to support distributed target 
user groups and/or consuming applications, (2) infrastructure planning and advance 
reservation, (3) infrastructure deployment including services synchronisation and 
initiation, (4) operation stage and (5) infrastructure decommissioning. The SDF 
combines in one provisioning workflow all processes that are run by different 
supporting systems and executed by different actors.

Physical resources (PR), including IT resources and network, are provided by 
physical infrastructure providers (PIP). In order to be included into VI composition 
and provisioning by the VIP, they need to be abstracted to logical resource (LR) 
that will undergo a number of abstract transformations including possibly interac-
tive negotiation with the PIP. The composed VI needs to be deployed to the PIP 
which will create virtualised physical resources (VPR) that may be a part, a pool or 
a combination of the resources provided by PIP.

The deployment process includes distribution of common VI context, configuration 
of VPR at PIP, advance reservation and scheduling and virtualised infrastructure 
services synchronisation and initiation to make them available to application layer 
consumers.

The proposed abstract models allow outsourcing the provisioned VI operation 
to the VI operator (VIO) which is from the user/consumer point of view, provide 
valuable services of the required resources consolidation – both IT and networks – 
and take a burden of managing the provisioned services.

5.3.2  Dynamically Provisioned Cloud Security Infrastructure

The proposed architecture provides a basis and motivates development of the gen-
eralised framework for provisioning dynamic security infrastructure that includes 
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176 Y. Demchenko et al.

the dynamically provisioned access control infrastructure (DACI), security services 
lifecycle management model (SSLM), common security services interface (CSSI) 
and related security services and mechanisms to ensure the consistency of the dynami-
cally provisioned security services operation. The required security infrastructure 
should provide a common framework for operating security services at VIP and 
VIO layers and be integrated with the PIP and user legacy security services.

Figure 5.3 illustrates security and trust domain-related aspects in the infrastruc-
ture provisioning. It shows trust domains related to VIO, VIP and PIP that are 
defined by the corresponding trust anchors (TA) denoted as TA1, TA2 and TA3. The 
user (or requestor) trust domain is denoted as TA0 to indicate that the dynamically 
provisioned security infrastructure is bound to the requestor’s security domain. The 
dynamic security association (DSA) is created as a part of the provisioning VI. 
It actually supports the VI security domain and is used to enable consistent opera-
tion of the VI security infrastructure.

5.3.3  Infrastructure Services Modelling Framework

The infrastructure services modelling framework (ISMF) provides a basis for 
virtualisation and management of infrastructure resources, including description, 

Fig. 5.3 Dynamic security association (DSA) to support security infrastructure provisioned on 
demand as a part of the overall infrastructure
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1775 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

discovery, modelling, composition and monitoring. In this chapter, we mainly focus 
on the description of resources and the lifecycle of these resources. The described 
model in this section is being developed in the GEYSERS project [16].

5.3.3.1  Resource Modelling

The two main descriptive elements of the ISMF are the infrastructure topology and 
descriptions of resources in that topology. Besides these main ingredients, the ISMF 
also allows for describing QoS attributes of resources, energy-related attributes and 
attributes needed for access control.

The main requirement for the ISMF is that it should allow for describing physical 
resources (PR) as well as virtual resources (VR). Describing physical aspects of a 
resource means that a great level of detail in the description is required, while 
describing a virtual resource may require a more abstract view. Furthermore, the 
ISMF should allow for manipulation of resource descriptions such as partitioning 
and aggregation. Resources on which manipulation takes place and resources that 
are the outcome of manipulation are called logical resources (LR).

The ISMF is based on semantic Web technology. This means that the description 
format will be based on the Web Ontology Language (OWL) [17]. This approach 
ensures the ISMF is extensible and allows for easy abstraction of resources by 
adding or omitting resource description elements. Furthermore, this approach has 
enabled us to reuse the network description language [18] to describe infrastructure 
topologies.

5.3.3.2  Virtual Resource Lifecycle

Figure 5.4 illustrates relations between different resource presentations during 
the provisioning process stages that can also be defined as the virtual resource 
lifecycle.

The physical resource information is published by a PIP to the registry service 
serving VICM and VIP. This published information describes a PR. The published 
LR information presented in the commonly adopted form (using common data or 
semantic model) is then used by VICM/VIP composition service to create the 
requested infrastructure using a combination of (instantiated) virtual resources and 
interconnecting them with a network infrastructure. In its own turn, the network can 
be composed of a few network segments run by different network providers.

It is important to mention that physical and virtual resources discussed here are 
in fact complex software-enabled systems with their own operating systems and 
security services. The VI provisioning process should support the smooth integra-
tion into the common federated VI security infrastructure by allowing the definition 
of a common access control policy. Access decisions made at the VI level should be 
trusted and validated at the PIP level. This can be achieved by creating dynamic 
security associations during the provisioning process.
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5.3.4  Service Delivery Framework (SDF)

Service-oriented architecture (SOA) [10] allows for better integration between 
business process definition with higher abstraction description languages and 
dynamically composed services and provides a good basis for creating dynamically 
composable services that should also rely on the well-defined services lifecycle 
management (SLM) model. Most of existing SLM frameworks and definitions are 
oriented on rather traditional human-driven services development and management. 
Dynamically provisioned and reconfigured services will require rethinking of existing 
models and proposing new security mechanisms at each stage of the typical provi-
sioning process.

The service delivery framework (SDF) [14] proposed by the TeleManagement 
Forum (TMF) provides a common basis for defining software-enabled services [15] 
lifecycle management framework that includes both the service delivery stages and 
required supporting infrastructure services.

Fig. 5.4 Relation between different resource presentations in relation to different provisioning 
stages (Refer to Fig. 5.3 for the initial VI presentation)
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1795 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

5.3.4.1  SDF Workflow

Figure 5.5 illustrates the main service provisioning or delivery stages:

Service request (including SLA negotiation). The SLA can describe QoS and 
security requirements of the negotiated infrastructure service along with information 
that facilitates authentication of service requests from users. This stage also includes 
generation of the global reservation ID (GRI) that will serve as a provisioning 
session identifier and will bind all other stages and related security context.
Composition/reservation, which also includes reservation session binding 
with GRI providing support for a complex reservation process in a potentially 
multi-domain multi-provider environment. This stage may require access control 
and SLA/policy enforcement.
Deployment, including services registration and synchronisation. Deployment 
stage begins after all component resources have been reserved and includes 
distributing the common composed service context (including security context) 

Fig. 5.5 On-demand composable services provisioning workflow
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and binding the reserved resources or services to the GRI as a common 
provisioning session ID. The registration and synchronisation stage specifically 
targets possible scenarios with the provisioned services migration or re-planning. 
In a simple case, the registration stage binds the local resource or hosting platform 
run-time process ID to the GRI as a provisioning session ID.
Operation (including monitoring). This is the main operational stage of the 
provisioned on-demand composable services. Monitoring is an important func-
tionality of this stage to ensure service availability and secure operation, including 
SLA enforcement.
Decommissioning stage ensures that all sessions are terminated, data are cleaned 
up and session security context is recycled. The decommissioning stage can also 
provide information to or initiate services usage accounting.

The two additional (sub-)stages can be initiated from the operation stage and/or 
based on the running composed service or component services state, such as their 
availability or failure:

Recomposition or replanning that should allow incremental infrastructure changes.
Recovery/migration can be initiated by both the user and the provider. This 
process can use MD SLC to initiate full or partial resources re-synchronisation; 
it may also require recomposition.

5.3.4.2  Infrastructure Services to Support SDF

Implementation of the proposed SDF requires a number of special infrastructure 
support services (ISS) to support consistent (on-demand) provisioned services lifecycle 
management (similar to the above-mentioned TMF SDF) that can be implemented 
as a part of the CSA middleware.

The following services are essential to support consistent service lifecycle 
management:

Service repository or service registry that supports services registration and • 
discovery
Service lifecycle metadata repository (MD SLC as shown on Fig. •  5.3) that keeps 
the services metadata during the whole services lifecycle that include services 
properties, services configuration information and services state
Service and resource monitor, an additional functionality that can be implemented • 
as a part of the CSA middleware and provides information about services and 
resources state and usage

5.3.5  The Composable Services Architecture

The infrastructure as a service provisioning involves dynamics creation of an infrastructure 
consisting of different types of resources together with necessary (infrastructure wide) 
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control and management planes, all provisioned on demand. The CSA proposed by 
authors [3] provides a framework for the design and operation of the composite/
complex services provisioned on demand. It is based on the component services 
virtualisation, which in its own turn is based on the logical abstraction of the (physical) 
component services and their dynamic composition. Composite services may also 
use the orchestration service provisioned as a CSA infrastructure service to operate 
composite service-specific workflow.

Figure 5.6 shows the major functional components of the proposed CSA and 
their interaction. The central part of the architecture is the CSA middleware that 
should ensure smooth service operation during all stages of the composable services 
lifecycle.

Composable services middleware (CSA-MW) provides a common interaction 
environment for both (physical) component services and complex/composite 
services, built of component services. Besides exchanging messages, CSA-MW also 
contains/provides a set of basic/general infrastructure services required to support 
reliable and secure (composite) services delivery and operation:

Service lifecycle metadata service (MD SLC) that stores the services metadata, • 
including the lifecycle stage, the service state and the provisioning session context.
Registry service that contains information about all component services and • 
dynamically created composite services. The registry should support automatic 
services registration.
Logging service that can be also combined with the monitoring service.• 

Fig. 5.6 Composable service architecture and main functional components
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Middleware security services that ensure secure operation of the CSA/• 
middleware.

Note that both logging and security services can be also provided as component 
services that can be composed with other services in a regular way.

The CSA defines also a logical abstraction layer for component services and 
resources, which is a necessary part in creating services pool and virtualisation. 
Another functional layer is the services composition layer that allows presentation 
of the composed/composite services as regular services to the consumer.

The control and management plane provides necessary functionality for managing 
composed services during their normal operation. It may include orchestration 
service to coordinate component services operation; in a simple case, it may be 
standard workflow management system.

CSA defines a special adaptation layer to support dynamically provisioned 
control and management plane interaction with the component services which, to be 
included into the CSA infrastructure, must implement adaptation layer interfaces 
that are capable of supporting major CSA provisioning stages, in particular, service 
identification, services configuration and metadata including security context, and 
provisioning session management.

5.3.6  GEMBus as a CSA Middleware Platform

GÉANT Multi-domain service bus (GEMBus) is being developed as a middleware 
for composable services in the framework of GÉANT3 project [19, 20]. GEMBus 
incorporates the SOA services management paradigm in on-demand service provi-
sioning. The GEMBus is built upon the industry accepted enterprise service bus 
(ESB) [12] and will extend it with the necessary functional components and design 
pattern to support multi-domain services and applications.

The goal of GEMBus is to establish seamless access to the network infrastructure 
and the services deployed upon it, using direct collaboration between network and 
applications, and therefore providing more complex community-oriented services 
through their composition.

Figure 5.7 illustrates the suggested GEMBus architecture. GEMBus infrastructure 
includes three main groups of functionalities:

GEMBus messaging infrastructure (GMI) that includes, first of all, messaging • 
backbone and other message handling supporting services such as message routing, 
configuration services, secure messaging and event handler/interceptors. 
The GMI is built on and extends the generic ESB functionality to support 
dynamically configured multi-domain services as defined by GEMBus.
GEMBus infrastructure services that support reliable and secure composable • 
services operation and the whole services provisioning process. These include 
such services as composition; orchestration; security, in particular, security token 
service; and the also important lifecycle metadata service, which are provided by 
the GEMBus environment/framework itself.
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Component services, although typically provided by independent parties, need to • 
implement special GEMBus adaptors or use special “plug-in sockets” that allow 
their integration into the GEMBus/CSA infrastructure.

The following issues have been identified to enable GEMBus operation in the 
multi-domain heterogeneous service provisioning environment:

Service registries supporting service registration and discovery. Registries are • 
considered as an important component to allow cross-domain heterogeneous services 
integration and metadata management during the whole services lifecycle.
Security, access control and logging should provide consistent services and security • 
context management during the whole provisioned services lifecycle.
Service composition and orchestration models and mechanisms should allow • 
integration with the higher-level scientific or business workflow.
Messaging infrastructure should support both SOAP-based and RESTful (con-• 
forming to representational state transfer (REST) architecture) services [11].

The GEMBus and GMI, in particular, are built on the top of the standard Apache/
Fuse messaging infrastructure that includes the following components [21, 22]:

Fuse Message Broker (Apache ActiveMQ) messaging processor• 
Fuse Mediation Router (Apache Camel) normalised message router• 

The GEMBus services and applications can be deployed on the standard Fuse or 
Apache ESB servers as component services that can be integrated with the standard 
OSGi [13] and Spring [23] compliant service development frameworks and 
platforms such as Fuse Services Framework/Apache CXF and Fuse ESB/Apache 
ServiceMix.

Fig. 5.7 GEMBus infrastructure, including component services, service template, infrastructure 
services and core message-processing services
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Figure 5.8 illustrates two examples of the composite services that are composed 
of four component services. In the second case, the composite service contains 
a special front-end service that is created of the corresponding service template that 
should be available for specific kind of applications. Examples of such service tem-
plates can be a user terminal (or rich user client) or a visualisation service. Requiring 
the GEMBus framework or toolkit to provide a number of typical service templates 
will provide more flexibility in delivery/provisioning composite services.

5.4  Cloud IaaS Security Infrastructure

5.4.1  General Requirements to Dynamically Provisioned  
Security Services

On-demand provisioning of cloud infrastructure services drives paradigm change 
in security design and operation. Considering evolutional relations between grids 
and clouds, it is interesting to compare their security models. This is also important 
from the point of view that future e-Science infrastructures will integrate both grid-
based core e-Science infrastructure and cloud-based infrastructures provisioned on 

Fig. 5.8 Example of a composite service composed of services: service 1, service 2, service 3 and 
service 4
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demand. Grid security architecture is primarily based on the virtual organisations 
(VO) that are created by the cooperating organisations that share resources 
(which however remain in their ownership) based on mutual agreement between 
VO members and common VO security policy. In grids, VO actually acts as a fed-
eration of the users and resources that enables federated access control based on the 
federated trust and security model [24, 25]. In general, the VO-based environment 
is considered as trusted.

In the clouds, data are sent to and processed in the environment that is not under 
the user or data owner control and potentially can be compromised either by cloud 
insiders or by other users sharing the same resource. Data/information must be 
secured during all processing stages – upload, process, store and stream/visualise. 
Policies and security requirements must be bound to the data, and there should be 
corresponding security mechanisms in place to enforce these policies.

The following problems/challenges arise from the cloud IaaS environment analysis 
for security services/infrastructure design:

Data protection both stored and “on-wire” that includes, besides the traditional • 
confidentiality, integrity, access control services and also data lifecycle management 
and synchronisation
Access control infrastructure virtualisation and dynamic provisioning, including • 
dynamic/automated policy composition or generation
Security services lifecycle management, in particular, service-related metadata • 
and properties, and their binding to the main services
Security sessions and related security context management during the whole • 
security services lifecycle, including binding security context to the provisioning 
session and virtualisation platform
Trust and key management in provisioned on-demand security infrastructure and • 
support of the dynamic security associations (DSA) that should provide fully 
verifiable chain of trust from the user client/platform to the virtual resource and 
the virtualisation platform
SLA management, including initial SLA negotiation and further SLA enforcement • 
at the planning and operation stages

The security solutions and supporting infrastructure to support the data integrity 
and data processing security should provide the following functionalities:

Secure data transfer that possibly should be enforced with the data activation • 
mechanism
Protection of data stored on the cloud platform• 
Restore from the process failure that entails problems related to secure job/appli-• 
cation session and data restoration

The security solutions and supporting infrastructure should support consistent 
security session management:

Special session for data transfer that should also support data partitioning and • 
run-time activation and synchronisation
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Session synchronisation mechanisms that should protect the integrity of the • 
remote run-time environment
Secure session failover that should rely on the session synchronisation mechanism • 
when restoring the session

Wider cloud adoption by industry and their integration with advanced infrastructure 
services will require implementing manageable security services and mechanisms 
for the remote control of the cloud operational environment integrity by users.

5.4.2  Security Services Lifecycle Management Model (SSLM)

Most of the existing security lifecycle management frameworks, such as defined in 
the NIST Special Publication 800-14 “Generally Accepted Principles and Practices 
in Systems Security” [26], provide a good basis for security services development 
and management, but they still reflect the traditional approach to services and 
systems design driven by engineers. The defined security services lifecycle includes 
the following typical phases: initiation, development/acquisition, implementation, 
operation/maintenance and disposal.

Figure 5.9 illustrates the proposed security services lifecycle management 
(SSLM) model [5] that reflects security services operation in generically distributed 
multi-domain environment and their binding to the provisioned services and/or 
infrastructure. The SSLM includes the following stages:

Service •  request and generation of the GRI that will serve as a provisioning session 
identifier (SessionID) and will bind all other stages and related security context 
[6, 7]. The request stage may also include SLA negotiation which will become a 
part of the binding agreement to start on-demand service provisioning.

•  Reservation stage and reservation session binding with GRI (also a part of the 
general SDF/SLM) that provides support for complex reservation process 
including required access control and policy enforcement.

•  Deployment stage (including Bootstrapping) begins after all component resources 
have been reserved and includes distribution of the security context and binding 

Fig. 5.9 The proposed security services lifecycle management model
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the provisioned virtualised resources and hosting platform to the GRI as a 
provisioning session ID.

•  Registration and synchronisation stage (including run-time binding) that allows 
the whole virtual infrastructure to start synchronously and specifically targets 
possible scenarios with the provisioned services migration or failover. In a simple 
case, the registration stage binds the local resource or hosting platform run-time 
process ID to the GRI as a provisioning session ID.
During •  operation stage, the security services provide access control to the provi-
sioned services and maintain the service access or usage session.

•  Decommissioning stage ensures that all sessions are terminated, data are cleaned 
up and session security context is recycled.

The proposed SSLM model is compatible with the above-described SDF and 
extends the existing SLM frameworks with the additional stages “registration and 
synchronisation” that specifically target such security issues as the provisioned services/
resources restoration (in the framework of the active provisioning session) and pro-
vide a mechanism for remote data protection by binding them to the session context.

Table 5.1 explains what main processes/actions take place during the different 
SLM/SSLM stages and what general and security mechanisms are used:

SLA – used at the stage of the service request placing and can also include SLA • 
negotiation process.
Workflow is typically used at the operation stage as service orchestration mecha-• 
nism and can be originated from the design/reservation stage.
Metadata are created and used during the whole service lifecycle and, together • 
with security services, actually ensure the integrity of the SLM/SSLM.
Dynamic security associations support the integrity of the provisioned resources • 
and are bound to the security sessions.

SLM/SDF 
stages

Request Planning 
Reservation

Deployment Operation Decommis-
sioning

SSLM 
Process/ 
Activity

SLA 
Negotiation

Serv/Rsr 
Compose 
Reserve

Configure
Bootstrap
Synchron

Orchestration
/ Session 
Management

Logoff 
Accounting

Supporting Mechanisms (M – mandatory, O - optional)

SLA M O
Workflow O M
Metadata M M M M
Dynamic 
Security 
Association

O M M

AuthZ SecCtx 
Management

M M M

Logging O O M M

Table 5.1 Relation between SSLM/SLM stages and supporting general and security mechanisms
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Authorisation session context supports integrity of the authorisation sessions • 
during reservation, deployment and operation stages.
Logging can be actually used at each stage and essentially important during the • 
last 2 stages – operation and decommissioning.

The proposed SSLM model extends the existing SLM frameworks with the 
additional stages “reservation session binding” and “registration and synchronisa-
tion” which especially target such scenarios as the provisioned services/resources 
restoration, re-planning or migration (in the framework of the active provisioning 
session) and provide a mechanism for remote data protection by binding them to 
the session context. Important role in these processes belongs to the consistent 
security context management and dynamic security associations that should be 
supported by dynamic trust anchors binding and special bootstrapping procedure 
or protocol. However, it is perceived that implementing such functionality will 
require the service hosting platform that supports Trusted Computing Group 
Architecture (TCG Architecture) [27, 28].

5.4.3  Dynamically Provisioned Access Control  
Infrastructure (DACI)

Developing a consistent framework for dynamically provisioned security services 
requires deep analysis of all underlying processes and interactions. Many processes 
typically used in traditional security services need to be abstracted, decomposed 
and formalised. First of all, it is related to the security services setup, configuration 
and security context management that in many present solutions/frameworks is pro-
vided manually, during the service installation or configured out-of-band.

The general security framework for on-demand provisioned infrastructure ser-
vices should address two general aspects: (1) supporting secure operation of the 
provisioning infrastructure which is typically provided by the providers’ authentica-
tion and authorisation infrastructure (AAI) supported also by the federated identity 
management services (FIdM) and (2) provisioning a dynamic access control infra-
structure as part of the provisioned on-demand virtual infrastructure. The first task 
is primarily focused on the security context exchanged between involved services, 
resources and access control services. The virtualised DACI must be bootstrapped 
to the provisioned on-demand VI and VIP/VIO trust domains as entities participat-
ing in the handling initial request for VI and legally and securely bound to the VI 
users. Such security bootstrapping can be done at the deployment stage.

Virtual access control infrastructure setup and operation is based on the above-
mentioned DSA that will link the VI dynamic trust anchor(s) with the main actors 
and/or entities participating in the VI provisioning – VIP and the requestor or target 
user organisation (if they are different). As discussed above, the creation of such 
DSA for the given VI can be done during the reservation and deployment stage. 
The reservation stage will allow the distribution of the initial provisioning session 

[AU7]

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580



1895 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

context and collection of the security context (e.g. public key certificates) from 
all participating infrastructure components. The deployment stage can securely 
distribute either shared cryptographic keys or another type of security credentials 
that will allow validating information exchange and apply access control to VI 
users, actors and services.

Figure 5.10 illustrates in detail the interaction between main actors and access 
control services during the reservation stage and includes also other stages of provi-
sioned infrastructure lifecycle. The request to create VI (RequestVI) initiates a 
request to VIP that will be evaluated by VIP-AAI against access control policy, 
which will next be followed by VIP request to PIP for required or selected physical 
resources PRs, which in its own turn will be evaluated by PIP-AAI. It is an SDF and 
SSLM requirement that starting from the initial RequestVI all communication and 
access control evaluations should be bound to the provisioning session identifier 
GRI. The chain of requests from the user to VIO, VIP and PIP can also carry cor-
responding trust anchors TA0…TA2, for example, in a form of public key certificate 
(PKC) [29] or WS-Trust security tokens [30].

DACI is created at the deployment stage and controls access to and use of the VI 
resources; it uses dynamically created security association of the users and resources. 
The DACI bootstrapping can be done either by fully preconfiguring trust relations 
between VIP-AAI and DACI or by using special bootstrapping registration proce-
dure similar to those used in TCG Architecture [22].To ensure unambiguous session 
context and the identification of all involved entities and resources, the following 
types of identifiers are used:

Global reservation ID (GRI) – generated at the beginning of the VI provisioning, • 
stored at VIO and returned to user as identification of the provisioning session 
and the provisioned VI

[AU8]

Fig. 5.10 Security context management during VI provisioning and operation
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VI-GRI – generated by VIP as an internal reservation session ID, which can be • 
also refolded GRI, depending on the VIP provisioning model
Local reservation ID (LRI) that can be generated by PIP or VIP to provide • 
identification PR-LRI and VR-LRI of the committed or created PR@PIP and 
VR@VIP

5.4.4  Dynamic Security Associations Management

5.4.4.1  Trust Relations

Figure 5.11 describes relations between entities in the cloud infrastructure services 
provisioned on demand. PIPs own virtualised physical devices to offer virtual 
resources (VRs). VIPs are intermediate providers to compose and aggregate VRs 
from multiple PIPs into the virtual infrastructures (VIs), which are subscribed by 
VIOs. The end-users then may consume VRs in the VI associated with VIOs’ 
identifier. The involved actors form the cloud supply-chain service model from 
low-level providers (PIPs) to intermediate providers (VIPs), subscribers (VIOs) 
and end-users.

Providing trust between parties is basic for security services. This model has two 
types of trust relationships. The first one is static or direct trust between two direct 
parties based on SLA agreements. The second one is the dynamic trust, the trust 

Fig. 5.11 Trust relationships in multi-provider cloud environment
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relation established during provisioning stages between indirect parties (i.e. VIO 
and PIPs, VI-end-users and VIPs). These relationships are dynamic because they 
are established and released during the VI provisioning phases.

According to various models in distributed systems including public key 
cryptography models (e.g. PKI or PGP) and recommendation-based models, trust 
relationships are assumed not transitive [31]. For example, if A trusts B and B trusts 
C, it cannot conclude that A trusts C. In some specific conditions, the trust could be 
transitive [30] and A could trust C. In our approach, we select the transitive trust 
between parties as specified in [30] with a set of conditions, for example, with 
VI-end-users, VIO and VIP, VIO trusts VIP and recommends the trust to VI-end-users. 
VI-end-users then trust VIO as the recommender for trust relationships and could 
judge VIO’s recommendations. With the above cloud supply-chain service model, 
they form recommendation paths or trust paths from PIP to VIP, VIO and VI-end-users. 
This dynamic trust model can follow one of the following categories. The first one 
is evidence-based model where entities establish a trust relationship based on evi-
dence, such as cryptographic keys. The other one is recommendation-based model 
[32]. For clouds, we propose to use the evidence-based model because direct/static 
trust relations are enforced by SLA along with specific cryptographic parameters 
that can be provided as a provisioning session security context. Dynamic trust relations 
are established based on direct trust relations and other assumptions as specified 
above to satisfy conditional transitive trust.

5.4.4.2  Establishing Dynamic Trust Relationships

A trust relationship between two entities is described by a security association 
(SA). It contains agreed security attributes between parties. The SA could include 
cryptographic parameters (certificate, keys, algorithms, etc.) to make sure one end-
point assure about other one on its trustworthiness.

The direct/static trust relations described in the previous section are known as the 
static security association (SSA), while the dynamic trust relations can be defined as 
the dynamic security association (DSA). In the reference model, SSAs include SSA 
(VI-user, VIO), SSA (VIO, VIP) and SSA (VIP, PIP). Set of DSAs include DSA 
(VI-end-user, VIP), DSA (VI-end-user, PIP) and DSA (VIO, PIP).

Generic steps to establish dynamic trust relationship are as follows:

Conditions: SSA (A, B), SSA (B, C)
Goal: Establish the DSA (A, C)
Procedures:

 1. A asks B to establish trust to C.
 2. B retrieves its SA list to find SSA (B, A) and SSA (B, C). It then generates a new 

SA. This SA is sent back to A and C by protecting with SSA (B, A) and SSA (B, 
C), respectively.

 3. A receives the generated SA. By verifying the SSA (B, A) protector, it adds the 
new generated SA to its SA list as the DSA (A, C).
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 4. C receives the generated SA and verifies it with SSA (C, B). Since it is valid, 
C adds the new SA, known as DSA (C, A), to its SA list.

For specific mechanisms such as PKI, PGP or SAML [33], the procedure needs to 
be modified to generate SA dynamically and sent to both indirect parties A and 
C. Further development of these mechanisms will require additional research.

5.4.5  Security Infrastructure Bootstrapping Protocol

This section describes the proposed security bootstrapping protocol that was 
proposed in authors’ papers [25] and [7] and currently being implemented in the 
framework of the GEYSERS project [16].

DACI trust model relies on a number of trust anchors residing at PIP, VIP and 
VIO and rooted in the VI provisioning request or SLA between user/customer and 
VI/cloud provider (in our model, VIP or VIO). However, to protect it from compro-
mise (e.g. by cloning) and make it integrity protected, it needs to be bootstrapped 
to the virtualisation platform run-time environment. The proposed bootstrapping 
protocol is using a Trusted Computing Platform Architecture (TCG Architecture) 
and Trusted Platform Module (TPM) which can provide a trustworthy platform 
from which secure systems may be built. They can provide a static root of trust to 
allow booting a system to a known and trusted state by taking measurements and 
verifying each piece of software before it is executed [34].

In order to create a trusted computing environment, it is necessary to build an 
unbroken chain of trust from the most fundamental hardware (such as the BIOS and 
firmware) through to the operating system and virtualisation platform that hosts 
virtualised services and the DACI itself. The TPM can be configured to take mea-
surements of each software component before it is executed. Only if the signature is 
valid will the system proceed. Software needs to be specifically designed to take 
advantage of these capabilities; as an example, such solutions and firmware are 
provided by Intel [35] and VMware [36].

The initial TPM-based platform initiation uses a special method for remote TPM 
attestation called direct anonymous attestation (DAA) [37] that actually requires a third-
party role (the issuer) [26] that can be a part of cloud provider security infrastructure.

In order to authenticate the TPM-enabled system, the service provider would 
provide a signed package that contains relevant TPM public keys, system keys and 
valid trusted states for those machines. Next, a special Vanguard application is sent 
to a remote machine via the SCP protocol as an initial stage in the required service 
deployment. It determines the safety of the remote machine before more sensitive 
information or software is transferred to it. As part of the bootstrapping process a 
Vanguard application verifies the identity and state of the remote machine based on 
the fingerprint provided in the security package.

After verification, a trusted platform session token can be generated based on 
GRI or LRI that is then sealed by the TPM. It is included as a part of the general VI 
or DACI security context and can only be decrypted by the same TPM and only 
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when in the same state [38]. This prevents the session from being decrypted on 
another machine and in effect binds the session to the machine in a trusted state. 
In order to defeat a cloning attack, an encryption key or other metadata can also be 
sealed to a TPM. When used to encrypt disk images, this prevents the images from 
being decrypted on another untrusted machine.

5.4.6  Security Context Management in DACI

Although DACI operates at the operation stage of the SSLM/SLM, its security 
context is bound to the overall provisioning process starting from initial stage of the 
service request and SLA negotiation that will provide a trust anchor TA0 to user/
application security domain with which the DACI will interact during the operation 
stage. The RequestVI initiates the provisioning session inside of which we can also 
distinguish two other types of sessions: reservation session and access session, 
which however can use that same access control policy and security context man-
agement model and consequently can use the same format and type of the session 
credentials. In the discussed DACI, we use the authorisation token (AuthzToken) 
mechanism initially proposed in the GAAA-NRP framework and used for authori-
sation session context management in multi-domain network resource provisioning 
[39, 40]. Tokens as session credentials are abstract constructs that refer to the related 
session context stored in the provisioned resources or services. The token should 
carry session identifier, in our case GRI or VI-GRI.

When requesting VI services or resources at the operation stage, the requestor 
needs to include the reservation session credentials together with the requested 
resource or service description which in its own turn should include or be bound to the 
provisioned VI identifier in a form of GRI or VI-GRI. The DACI context handling 
service should provide resolution and mapping between the provided identifiers and 
those maintained by the VIP and PIP, in our case VR-LRI or PR-LRI. If session 
credentials are not sufficient, for example, in case delegation or conditional policy 
decision is required, all session context information must be extracted from AuthzToken 
and the normalised policy decision request will be sent to the DACI policy decision 
point (PDP) which will evaluate the request against the applied access control policy.

In the discussed DACI architecture, the tokens are used both for access control 
and signalling at different SSLM/SDF stages as a flexible mechanism for communi-
cating and signalling security context between administrative and security domains 
(that may represent PIP or individual physical resources). Inherited from GAAA-
NRP, the DACI uses two types of tokens:

Access tokens that are used as AuthZ/access session credentials and refer to the • 
stored reservation context.
Pilot tokens that provide flexible functionality for managing the AuthZ session • 
during the reservation stage and the whole provisioning process. Few types of 
the pilot token are defined that can communicate different domain-related con-
text information during the services or resources reservation stage.
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Figure 5.12 illustrates the common data model of both access token and pilot 
token. Although the tokens share a common data model, they are different in the 
operational model and in the way they are generated and processed. When pro-
cessed by the AuthZ service components, they can be distinguished by the token 
type attribute which is optional for access token and mandatory for pilot token.

(a) High-level access and pilot token data model

AuthzToken

tokentype

TokenID

SessionID

Issuer

AAA:TokenValue

AAA:Conditions

AAA:ConditionsType

AAA:DecisionType

AAA:DomainsType

Result

Resourceld

AAA:Obligations

AAA:DomainAAA:Domain

AAA:Decision

AAA:AuthzTokenType

attributes

attributes

attributes

–

–

–

–

–

–

–

–

–

NotBefore

NotOnOrAfter

+

+

Fig. 5.12 Common access and pilot token data model (a) and example of the XML token (b)

<AAA:AuthzToken  
xmlns:AAA=”http://www.aaauthreach.org/ns/AAA”
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 Issuer=”http://testbed.ist- 
phosphorus.eu/phosphorus/aaa/TVS/token-pilot”

 SessionId=”0912182e7f9c7d156028e77e3d6b460de8e4
937c”

TokenId=”a99b91e70307bdd329c9a0aec18bb4a3” 
type=”pilot-type3”>
<AAA:TokenValue>3923c7ecb979e7078ab8745191a7b25348cdc
b48</AAA:TokenValue>
 <AAA:Conditions NotBefore=”2008-07-25T09:38:39.890Z”

 NotOnOrAfter=”2008-07-26T09:38:39.890Z”/>
 <AAA:DomainsContext>
<AAA:Domain   domainId=”http://testbed.ist- 

phosphorus.eu/viola”>
 <AAA:AuthzToken  Issuer=”http://testbed.ist- 

phosphorus.eu/viola/aaa/TVS/token-pilot”

SessionId=”b0b6202d7bd7fb7b591b5de29950d21fdb8bf375”
    TokenId=”e7c88fad8cff42d7faaa961b96411ae6”>
 <AAA:TokenValue>f09194bbddeef95bc4acb187f71b0bb20b2d

0b44</AAA:TokenValue>
<AAA:Conditions    NotBefore=”2008-07-
18T21:55:15.296Z”
      NotOnOrAfter=”2008-07-18T21:55:15.296Z”/>
</AAA:AuthzToken>
<AAA:KeyInfo>http://testbed.ist- 

phosphorus.eu/viola/_public_key_</AAA:KeyInfo>
  </AAA:Domain>
 </AAA:DomainsContext>
</AAA:AuthzToken>

(b) Example XML token type 3 containing domain-related context that may 
include the pilot token and key information from the previous domain

Access tokens contain three mandatory elements: the SessionId attribute that holds 
the GRI, the TokenId attribute that holds a unique token ID attribute and is used for 
token identification and authentication and the TokenValue element. The optional 
elements include: the condition element that may contain two time validity attributes 
notBefore and notOnOrAfter, the decision element that holds two attributes ResourceId 
and result, and optional element obligations that may hold policy obligations returned 
by the PDP. Pilot tokens may contain another optional domains element that serves as 
a container for collecting and distributing domain-related security context.

For the purpose of authenticating token origin, the pilot token value is calculated 
of the concatenated strings “DomainId, GRI, TokenId”. This approach provides a 
simple protection mechanism against pilot token duplication or replay during the 
same reservation/authorisation session. The following expressions are used to 
calculate the TokenValue for the access token and pilot token:
TokenValue = HMAC(concat(DomainId, GRI, TokenId), 

TokenKey)
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In the current implementation [40], the TokenKey is generated from the GRI and 
a common shared secret value among all trusted domains. It means that only these 
domains can generate valid tokens and correspondingly verify the authenticity of 
the received tokens. The shared secret can be distributed as a part of the DSA 
creation. It is also suggested that all participating resources and/or cache domains 
receive tokens and check their uniqueness.

5.5  Security Token Service for Federated Access Control  
to Provisioned Cloud Infrastructure

Consistent access control to the provisioned cloud infrastructure services requires 
security mechanisms that should allow federated access control and identity manage-
ment to potentially multi-domain and multi-provider cloud resources from the user 
organisational or residential domains. Such functionality is generically provided by 
the GEMBus security token service (STS) that complies with the related WS-Security 
standards such as WS-Trust and WS-Federation [30, 41]. The STS is a mechanism 
that conveys security context information between services that may reside in differ-
ent security and administrative domains. STS can issue and validate security tokens 
and support service identity federation and federated identity delegation.

Figure 5.13 depicts an example of the messages exchanged when a user 
attempts to access a service using tokens to secure the connection. First, the ser-
vice consumer initialises and sends an authentication request to STS. The STS 
then validates the consumer credentials and issues a security token to it. With the 
token, the consumer sends a request message including the token to the producer. 
The consumer sends the token to STS to check its validity. After running its validation 
process, the STS sends a response with the status of the token to the producer, which 
processes it and replies to the consumer.

[AU11]

1. R
ST

3. R
STR + Token

7. RSTR (status)

5. RST (Token)

2. Validate
credentials

6. Validate
Token

STS

4. Request (Token)

8. Response

Service

Fig. 5.13 STS operation in federated access control to multi-domain resources
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The two different architectural elements are defined for token issuance and vali-
dation: the ticket translation service (TTS) responsible for generating valid tokens 
according to the received credentials, renewing and converting security tokens, and 
authorisation service (AS) that performs token validation and can retrieve additional 
attributes or policies from other sources to perform the validation.

The GEMBus STS can be used in both cases as part of the provider access 
control infrastructure or provisioned and deployed as part of the delivered cloud 
infrastructure that is managed by user where GEMBus is used as a platform for 
on-demand services provisioning and management.

5.5.1  STS Functionality and Standard Compliance

Security mechanisms must comply with requirements that may conflict with secu-
rity, privacy and simplicity of use. It is important that the security protocols deal 
with user attributes and related information in an appropriate manner, taking the 
conservative disclosure of attributes and abiding to user privacy policies whenever 
possible. It is also important that these directives are enforced by all entities, both in 
the infrastructure itself and in the participant services, dealing with user data in a 
consistent manner. From the point of view of services, it is very important to protect 
information by ensuring the identity of consumers who use the services. The most 
adequate manner to satisfy these requirements relies on the use of a token that allows 
the transfer of security data along the exchanged messages.

The mechanisms needed to provide secure communications within the GEMBus 
architecture base their operation on the STS. This service, described in WS-Trust, 
makes it possible to issue and validate security tokens. The GEMBus STS supports 
the WS-Trust interoperability profile defined by the EMI, and support for other 
profiles can be easily added.

Web Services Security (WS-Security) is a communication protocol that provides 
the means for applying security to Web Services. It is part of the WS-* family of Web 
service specifications published by OASIS. It is a flexible and feature-rich extension 
to SOAP to apply security to Web Services. The protocol specifies how integrity and 
confidentiality can be enforced on messages. It allows the communication of various 
security token formats, such as SAML [33], Kerberos [42] and X.509 [29], though 
the protocol is able to accommodate practically any kind of token format. Its main 
focus is the use of XML Signature [43] and XML Encryption [44] to provide 
end-to-end security. The protocol is officially called WSS and associated with other 
specifications like WS-Trust, WS-SecureConversation [45] and WS-Policy [46].

WS-Trust provides extensions to WS-Security, specifically dealing with issuing, 
renewing and validating security tokens, as well as how to establish, assess (the 
presence of) and broker trust relationships between participants in a secure message 
exchange. WS-Trust defines:

The concept of a STS: A Web service that issues security tokens as defined in • 
the WS-Security specification
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The formats of the messages used to request security tokens and the responses • 
to those messages
Mechanisms for key exchange• 

5.5.2  STS Operational Models

In what relates to establishing the identity of a requesting party, it is important to 
take into account that not only the identity of the entity performing the actual 
request must be established. Being able to identify the original requestor (the one 
the requesting party is acting on behalf of) is crucial as well. In this respect, we can 
reduce the possible situations to two basic models: star model and chain model, 
suggesting possibility of more complex combination of both (see Fig. 5.14).

In the star model (Fig. 5.14a), the final user identifies at a client endpoint, which 
acts as consumer of the requested services on behalf of them by connecting to the 
appropriate service producer endpoints. Therefore, a single statement (or its transla-
tions into the required formats thereof) can be used to identify the consumer and the 
original requesting user. The figure illustrates this architecture, in the case of using 
SOAP for transport requests and an SAML token to express security statements.

In the chain model (Fig. 5.14b), the final user identifies at a consumer endpoint, 
which sends an initial request on behalf of them requesting a service to a first service 
producer endpoint, which then forwards the request to a second producer endpoint, 
and this to a third one, and thus successively. Therefore, the initial statement (built by 
the original consumer endpoint) needs to be forwarded as requests are passed from 
one service endpoint to the next in the chain. The statement must contain information 
about the original user and the initial consumer endpoint and should contain informa-
tion about the service endpoints the request has been forwarded through.

(a) Star operational model
(b) Chain model
The AS in the figures above refers to a service taking care of validating the security 

statements received within a certain request. It relies on the use of security tokens 
along with requests to transfer relevant identity statements plus the availability of 
a service (provided by the infrastructure itself) able to verify the validity of the 
security tokens. If a common token format is used or, conversely, a service able to 
generate appropriate tokens by translating among equivalent ones is available, there 
are two distinct phases in securing service access in the general case:

 1. Token request and generation, that it is up to the local mechanism that the user 
decides to employ, as long as a minimal set of requirements on level of assurance 
(in several aspects: identity assessment, required credentials, strength of the link 
to the individual, etc.) is fulfilled

 2. The validation of the token received by the requested service, probably using 
some of the statements inside the token to retrieve additional attributes from 
trusted sources and/or to request an access decision from a policy decision point

[AU12]
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In conclusion, the GEMBus security architecture requires:

A common token format to guarantee interoperability at the security level• 
A service able to act as the source of such tokens and provide a way to translate • 
other token formats into the common format
A service able to validate security tokens and to provide authorisation decisions• 
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Fig. 5.14 STS operational models: (a) star; (b) chain
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In accordance to these requirements and as said above, two different architectural 
elements are defined for token issuance and validation in the GEMBus STS. The 
ticket translation service (TTS) is responsible for generating, renewing and trans-
forming valid tokens in the system, while the authorisation service (AS) performs 
token validation.

The TTS mostly relies on external identity providers that must verify the identity 
of the requester based on valid identification material. To support a large amount of 
services, the application of different authentication methods must be ensured. 
This must include the support of currently standardised authentication methods as 
well as methods incorporated in the future. In particular, GEMBus has imbedded 
support for the eduGAIN identity federation services [47], eduPKI [48], TERENA 
Certificate Service (TCS) [49] and other International Grid Trust Federation 
(IGTF) [50] accredited identity infrastructures.

The AS is responsible for checking the validity of the presented tokens. In this 
case, the requester is usually a service that has received a token along with a request 
message and needs to check the validity of the token before providing a response. 
Checks carried out on the token can be related to issue date, expiration date or 
signature(s). This process can also be associated with more complex processes of 
authorisation that imply attribute request and check security policies. If the token is 
valid, the AS provides an affirmative answer to the service.

5.5.3  STS Token Formats

The WS-Security specification allows a variety of signature formats, encryption 
algorithms and multiple trust domains. It is open to various security token models, 
such as X.509 certificates, userid/password pairs, SAML assertions and custom-
defined tokens.

The GEMBus TTS supports the transformations among different token formats, 
according to service descriptions as stored in the GEMBus registry by means of the 
appropriate profile identifiers. Nevertheless, the canonical GEMBus security token 
(applicable by default in all GEMBus-supported exchanges) is the relayed-trust 
SAML assertion originally defined within the GN2 project [45] to provide identity 
information in scenarios where a service is acting on behalf of a user identified 
through an identity federation.

The SAML construct used in this case is able to convey information about the 
user accessing the producer. It fulfils two essential constraints:

It is bound to the consumer by the original identity provider (IdP) that identified • 
the requesting user, so it is possible to check that the information it contains 
about the user has been legally obtained.
It is bound to the producer by the consumer, so a potentially malicious pro-• 
ducer cannot use this information to further impersonate either the consumer 
or the user.
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To comply with these two requirements, the token consists of an SAML assertion 
expressing data related to the user authentication with:

A valid audience restricted to the producer(s) it is addressed to, through an SAML • 
condition element containing an identifier uniquely associated with them
A statement expressing that this specific method of relayed trust must be used to • 
evaluate the assertion, through a specific value in the SAML construct identifying 
the subject confirmation method
The identity assertion(s) received from the IdP as evidence for this confirmation • 
process, as part of the SAML element SubjectConfirmationData

A sample SAML assertion following the above procedures for a consumer with 
the identifier:
urn:geant:edugain:component:perfsonarclient:NetflowCli

ent10082
Acting on behalf of a user identified at the IdP:
urn:geant:edugain:be:uninett:idp1
And connecting to a consumer identified by:
urn:geant:edugain:component:perfsonarresource:netflow.

uninett.no/data
Should have an SAML 2.0 content as the one displayed below (some line breaks 

and indentation added to improve readability):

<?xml version=”1.0” encoding=”UTF-8”?>
<Assertion
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
 xsi:schemaLocation=”urn:oasis:names:tc:SAML:2.0:asse

rtion”
 Version=”2.0” ID=”100001”
 IssueInstant=”2006-12-03T10:00:00Z”>
 <Issuer>
 urn:geant:gembus:security:sts:gemsts
 </Issuer>

<!-- An audience restriction, that will restrict this 
security token to be valid for one single resource only. 
-->
 <Conditions>
 <AudienceRestriction>
 <Audience>
 urn:geant:edugain:component:perfsonarresource:
 netflow.uninett.no/data
 </Audience>
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 </AudienceRestriction>
 </Conditions>

 <Subject>
 <NameID>aksjc7e736452829we8</NameID>
 <SubjectConfirmation
 Meth-od=”urn:geant:edugain:reference:relayed-trust”>
 <SubjectConfirmationData>
 <Assertion
 xmlns=”urn:oasis:names:tc:SAML:2.0:assertion”
 xmlns:xsi=”http://www.w3.org/2006/XMLSchema-
instance”
 Version=”2.0” ID=”_200001”
 IssueInstant=”2006-12-03T10:00:00Z”>
 <Issuer>
 urn:geant:edugain:be:uninett:idp1
 </Issuer>

<!-- This inner assertion is limited to only be valid for 
the client performing the WebSSO authentication. This 
inner assertion cannot be reused or used at all by others 
than the NetflowClient10082 instance. But NetflowClient10082 
can use it as an evidence when used inside an assertion 
issued by NetflowClient10082 using the relayed-trust 
confirmationMethod. -->

 <Conditions>
 <AudienceRestriction>
 <Audience>
 urn:geant:edugain:component:perfsonarclient:
 NetflowClient10082
 </Audience>
 </AudienceRestriction>
 </Conditions>

<!-- This is the inner Subject and authNstatement prov-
ing the authentication itself.
These elements and attributes must be identical in the 

inner and outer assertion:
 - Assertion/Subject/NameID
 - Assertion/AuthnStatement@AuthenticationMethod

The inner assertion confirmation Method must be
 urn:oasis:names:tc:SAML:1.0:cm:bearer. -->
 <Subject>
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 <NameID>aksjc7e736452829we8</NameID>
 <SubjectConfirmation Meth- 
od=”urn:oasis:names:tc:SAML:2.0:cm:bearer”/>
 </Subject>
 <AuthnStatement AuthnInstant=”2006-12- 
03T10:00:00Z”>
 <AuthnContext>
 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>

<!-- Enveloped Signature for SubjectConfirmation -->
<Signature>
<!-- Signed by the IdP -->
 <SignedInfo>
 <CanonicalizationMethod Algorithm=”…”/>
 <SignatureMethod Algorithm=”…”/>
 <Reference>
 <DigestMethod Algorithm=”…”/>
 <DigestValue/>
 </Reference>
 </SignedInfo>
 <SignatureValue/>
</Signature>
</Assertion>
</SubjectConfirmationData>
</SubjectConfirmation>
</Subject>

<Signature>
<!-- Signed by TTS -->
 <SignedInfo>
 <CanonicalizationMethod Algorithm=”…”/>
 <SignatureMethod Algorithm=”…”/>
 <Reference>
 <DigestMethod Algorithm=”..”/>
 <DigestValue/>
 </Reference>
 </SignedInfo>
 <SignatureValue/>
 </Signature>
</Assertion>
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5.5.4  TTS and AS

The ticket translation service (TTS) is responsible for issuing, renewing and con-
verting security tokens, responding to consumer requests for issuing, renewing or 
converting security tokens for services that require it.

Each of these operations can only be done by the TTS, unlike token validation 
that can be offloaded in certain cases from the security service, the own service or 
at the framework integration elements such as interceptors, message routers or 
binding components, especially when session tokens (as described below) are used 
to simplify interactions.

The main TTS operations are:

Issuing: To obtain a security token from an identity credentials (identity token)• 
Renewing: To renew an issued security token• 
Converting: To convert a security token type to another security token type• 

The TTS operation is as follows:

 1. The consumer obtains an identity token (SAML assertion, grid proxy certificate 
token, etc.) from an identity infrastructure. Typically, the consumer requires 
users to send such a token in order to provide access.

 2. The consumer sends a request for issuance, renewal or conversion to the TTS using 
either the identity token (issuance) or a security token (renewal or conversion).

 3. The STS validates the consumer’s token (using security policies) and sends a 
security token to the consumer.

The authorisation service (AS) is responsible for supporting the token validation 
functions, responding to requests for validating tokens of consumers and services 
that require it.

The token validation process can be performed by the AS itself or act as a proxy 
redirecting the validation process to the external service that generated it. For exter-
nal validation, the authorisation service may query an external service or IdP and 
forwards the response to the consumer. When the authorisation service itself per-
forms validation, the process must verify the information contained in the token 
checking the issuer, issue and expiration date, signatures, etc. In addition to the 
token, the authorisation service can perform a more complex authorisation process, 
retrieving attributes related to the token subject and consulting a policy decision 
point (PDP) for authorisation decisions.

As described in the previous section, the architecture proposed by GEMBus is 
based on message exchanges performed by different services that can be connected in 
many ways. Since the ESB is the main integration mechanism provided by GEMBus 
and it can also act as a container, it is possible to develop and deploy a service directly 
on the bus. But it is more interesting to exercise its integration capabilities, such as 
interceptors, message routers and binding components. Whether deployed inside the 
bus or running as an external service, the STS can be used in a service composition to 
transparently provide its capabilities, using the above-mentioned mechanisms.
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Figure 5.15 illustrates a scenario in which a security token service extended with 
support for session tokens is integrated in the GEMBus architecture. In this exam-
ple, the consumer obtains an identity token (e.g. an SAML assertion) from an iden-
tity infrastructure. Then it sends an authentication request to the STS using the 
identity token. The STS validates the consumer identity token and issues a security 
token (ST) to the consumer. With the new token, the consumer sends a request mes-
sage to the provider that is intercepted by an element that extracts the ST and sends 
a token validation request to the STS. The AS module validates the consumer token 
and issues a response with a validated security token with an optional session token 
(SeT). Finally, the interceptor passes the message to the provider. It processes the 
consumer request and sends the response message to the consumer.

5.5.5  Session Management

Session management is the process of keeping track of consumer activity across 
different levels of interaction with the producer.

Assuming that each message to a service is attached with a token that the service 
must validate at the authorisation service, this will very likely mean a high workload 
for the security services and additional delays in service provision. The objective of 
managing GEMBus sessions is to speed up the security system performance with-
out compromising security goals.

There are several mechanisms to strengthen the validation of the tokens based on 
the idea of sessions: It is possible to include a new type of token called session token 
that is returned to the requester after successful validation in the AS. The main feature 
of this type of token is rapid validation at the expense of lower security features 
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Fig. 5.15 STS extended operation with support of the session tokens
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compared to a normal token, though this can be alleviated (if not solved) by reducing 
its lifetime. When the requester makes a new request for validation to the AS, it can 
include the two tokens or just the session token. When the AS receives the query, it 
first checks the session token and, if it is valid, it can respond directly to expedite the 
process. The GEMBus STS employs a lightweight yet powerful session token format 
based on JWT, much faster to parse and validate. There are plans to extend this 
format to make them fully valid security tokens.

Another type of optimisation can be applied to the token validation mechanism 
done by the AS by making the AS temporarily store a reference to each validated token. 
Within a given validity period, whenever the AS receives a request for the same token, 
it does not make a full revalidation. The idea is close to the use of a cache, providing a 
performance enhancement similar to the use of session tokens, and with the additional 
advantage of not involving changes in the requesters that make use of the AS.

A JWT session token example looks like this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJhdWQiOiJ1c 
m46Z2VhbnQ6ZWR1Z2Fpbjpjb21wb25lbnQ6cGVyZnNvbmFycmVzb3 
VyY2U6bmV0Zmxvdy51bmluZXR0Lm5vXC9kYXRhIiwiaX_
NzIjoidXJuOmdlYW50OmVkdWdhaW46Y29tcG9uZW50OnBlcmZzb 
25hcmNsaWVudDpOZXRmbG93Q2xpZW50MTAwODIiLCJpYXQiOjEzM-
jA0MDQ0MDk2MzAsImF0dHIiOnt9LCJleHAiOjEzMjA0MDgw 
MDk3MTR9.UGl_PoSyd45QqY7m4IoQj9rDdIt3IvXfHRYSa27I1 
JbKacI6bDTLewn_0JUuUjeKJoEwQ0MX9KmnT2M1ZD1lRhFGPFhhXm 
5MyHNPSC7v9ruzXqk89M8MWbJwpo9elIh8aG4gPGcpGIIuHJ2VLHHDI 
IstnX4Z83XfTjg4RHzLkWCRzwzbb4hkIvx6vAPNcGhcC5CfERa 
opI6qiDJzpNE_StaU_BI0POUa_3BZU0mVoV4gc_fV_gJipCHXER0z 
8rrRBqDuS1Alw2hxBmM2adMTQz9Zk0FlW_74WLMVVHysjltk7Vn4oEc
phXNl54wg1A8sKk6uaIZaH6oI1-f_oDtfA

This token is divided in three parts (header, claims and signature), all of them 
base64 encoded. The header and claims contain the following information: [AU13]

<?xml version=”1.0” encoding=”UTF-8”?>
//JWT Header
{
 “typ”: “JWT”,
 “alg”: “RS256”
}
//JWT Claims
{
 “aud”:

“urn:geant:edugain:component:perfsonarresource:netflow.unine 
tt.no\/data”,
 “iss”: “urn:geant:gembus:security:sts:gemsts”,
 “iat”: 1320404409630,
 “attr”: {},
 “exp”: 1320408009714
} </Issuer>
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where
typ – type of token, normally JWT
alg – algorithm used to sign and verify, in this case, RSA with SHA256
aud – represents the audience restriction
iss – token issuer
iat – issue instant
exp – expiration time
attr – attributes contained in the token.
The token can contain more claims such as nbf (not before condition) and cus-

tom claims. The signature represents the base64-encoded header and claims parts 
concatenated by a dot.

5.6  Future Research Directions

This chapter presents the ongoing research on developing architecture and framework 
for dynamically provisioned security services as part of the provisioned on-demand 
infrastructure services. The presented results provide a good basis for further research 
in the few important directions that should lead to the problem solution including 
architecture, information models, required security services, mechanisms and protocols 
and implementation platform.

Consistent security services implementation and operation require well-defined 
general infrastructure definition and design, which is considered by authors as a 
necessary part of the further research on cloud security architecture. Currently exist-
ing cloud architecture frameworks are primarily oriented toward business-oriented 
applications and service delivery from the cloud provider to the user. Internal cloud 
implementation by cloud providers remains behind the “cloud curtain” what imposes 
also limitations on the quality of services control and security of the provisioned 
cloud environment. Virtualisation technologies used in clouds bring services design 
and related security problems to a new level and actually allow decoupling of 
the functional services infrastructure from the physical infrastructure and platform. 
To achieve the same level of the security assurance in virtual infrastructure as in 
physical infrastructure, many currently adopted security models need to be revisited 
and re-factored to support new requirements originating from the distributed 
virtualised environment in clouds.

The following main topics are identified as further research topics related to both 
general cloud architecture and cloud security architecture:

Defining new relational models in the provisioning of cloud-based infrastructure • 
services that should reflect different ownership, administration and use relation 
between main actors in the current cloud services provisioning process such as 
provider, operator, broker, carrier, customer (enterprise) and user
Extending the composable services architecture to reflect different virtualisation • 
techniques for compute, storage and network components of the provisioned 
virtualised infrastructure, defining CSA control and management functionality
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Extending the GEMBus middleware platform to support full functionality of the • 
cloud PaaS model for SOA-based services, in particular, creation of the dynami-
cally configured infrastructure security services that can be used by user applica-
tion in the provisioned on-demand services
Extending the infrastructure services modelling framework to include security-• 
related attributes into the services composition and management information 
base
Extending dynamic access control infrastructure, currently defined for infra-• 
structure level access control, to integrate it with the user access control using 
federated user campus or enterprise identity and account
Further definition and development of the DACI trust management model and • 
virtual infrastructure bootstrapping protocol

5.7  Conclusion

The primary focus of this chapter is the security infrastructure for cloud-based 
infrastructure services provisioned on demand that in fact should be a part of the 
overall cloud infrastructure provisioned on demand. The proposed solutions should 
allow moving current enterprise security infrastructure that currently requires large 
amount of manual configuration and setup to fully functional virtualised infrastruc-
ture service.

To provide the background for defining security infrastructure, the authors provide 
an overview and short description of the proposed architectural framework for on-
demand provisioned cloud-based infrastructure services that includes such compo-
nents as the infrastructure services modelling framework (ISMF), the composable 
services architecture (CSA) and the service delivery framework (SDF).

This chapter discusses conceptual issues, basic requirements and practical 
suggestions for provisioning dynamically configured security infrastructure ser-
vices. This chapter describes the proposed dynamically provisioned access control 
infrastructure (DACI) architecture and defines the necessary security mechanisms 
to ensure consistent security services operation in the provisioned virtual infrastruc-
ture. Practical implementation of DACI reveals a wide spectrum of problems related 
to the distributed access control, policy, trust management and related security con-
text management. In particular, this chapter discusses the use of the security token 
service for federated inter-domain access control and identity management, autho-
risation tokens for security context exchange during provisioning session in multi-
domain and multi-provider environment.

Consistent security services design, deployment and operation require continuous 
security context management during the whole security services lifecycle, which 
must be aligned to the main provisioned services lifecycle. The proposed security 
services lifecycle management (SSLM) model addresses security problems specific 
for on-demand infrastructure service provisioning that can be solved by introducing 
special security mechanisms to allow security services synchronisation and their 
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binding to the virtualisation platform and run-time environment. This chapter 
discusses how these security mechanisms can be implemented by using the TCG 
Architecture and functionality of Trusted Platform Module that are currently avail-
able in almost all computer platforms and supported by most of VM management 
platforms. This chapter also describes the proposed security infrastructure bootstrap-
ping protocol that uses TPM functionality and can be integrated with DACI.

The proposed DACI and its component functionalities are currently being devel-
oped and implemented in the framework of the two EU projects GEYSERS and 
GEANT3.
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[AU14]

 Recommended Reading

For interested readers, it is recommended to become familiar with the general 
background information related to both cloud technologies and basic security 
models and standards. In particular, the following additional literature can be 
recommended.

First of all, it is recommended to read NIST standards on cloud computing and 
virtualisation technologies in which up-to-date list is available at the NIST Cloud 
Program webpage (http://www.nist.gov/itl/cloud/):

NIST SP 800-145, “A NIST definition of cloud computing”. http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf

NIST SP 500-292, Cloud Computing Reference Architecture, v1.0. http://
c o l labora te .n is t .gov/ twiki -c loud-comput ing/pub/CloudComput ing/
ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

DRAFT NIST SP 800-146, Cloud Computing Synopsis and Recommendations. 
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf

Draft SP 800-144 Guidelines on Security and Privacy in Public Cloud Computing. 
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
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DRAFT NIST SP 800-293, US Government Cloud Computing Technology 
Roadmap, Volume I, Release 1.0. http://www.nist.gov/itl/cloud/upload/SP_500_293_
volumeI-2.pdf

NIST SP500-291 NIST Cloud Computing Standards Roadmap. http://collaborate.
nist.gov/twiki-cloud-computing/pub/CloudComputing/StandardsRoadmap/NIST_
SP_500-291_Jul5A.pdf

SP 800-125 Guide to Security for Full Virtualisation Technologies.
http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf
For the background security, read the following literature:
These RFCs on the generic AAA Authorisation framework provide a general 

context for developing authorisation infrastructure for on-demand provisioned 
services and access control infrastructure:

RFC2903 Generic AAA Architecture Experimental RFC 2903, Internet 
Engineering Task Force, August 2000. ftp://ftp.isi.edu/in-notes/rfc2903.txt

RFC 2904 AAA Authorization Framework. Internet Engineering Task Force, 
August 2000.ftp://ftp.isi.edu/in-notes/rfc2904.txt

Cloud computing technologies with their distributed virtualised computing envi-
ronment motivate revisiting foundational security concepts and models and rethink-
ing existing security models and solutions. The following foundation publications 
on computer security (proposed for mainframe-based computing model) can be 
recommended:

Anderson, J.: Computer Security Technology Planning Study. ESD-TR-73-51, 
ESD/AFSC, Hanscom AFB, Bedford, MA 01731 (Oct. 1972) [NTIS AD-758 206]. 
http://csrc.nist.gov/publications/history/ande72.pdf

Bell. DE., La Padula, L.: Secure Computer System: Unified Exposition and 
Multics Interpretation. ESD-TR-75-306, ESD/AFSC, Hanscom AFB, Bedford, MA 
01731 (1975) [DTIC AD-A023588]. http://csrc.nist.gov/publications/history/
bell76.pdf

Biba K.J.: Integrity Considerations for Secure Computer Systems. MTR-3153, 
The Mitre Corporation, Apr 1977

Anderson, R., Stajano, F., Lee, J:. Security Policies. http://www.cl.cam.ac.
uk/~rja14/Papers/security-policies.pdf

http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
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