
169S. Pearson and G. Yee (eds.), Privacy and Security for Cloud Computing,
Computer Communications and Networks, DOI 10.1007/978-1-4471-4189-1_5,
© Springer-Verlag London 2012

Abstract This chapter discusses conceptual issues, basic requirements and practical
suggestions for designing dynamically configured security infrastructure provisioned
on demand as part of the cloud-based infrastructure. This chapter describes general
use cases for provisioning cloud infrastructure services and the proposed architectural
framework that provides a basis for defining the security infrastructure requirements.
The proposed security services lifecycle management (SSLM) model addresses
specific on-demand infrastructure service provisioning security problems that can
be solved by introducing special security mechanisms to allow security services
synchronisation and their binding to the virtualisation platforms run-time environ-
ment. This chapter describes the proposed dynamically provisioned access control
infrastructure (DACI) architecture and defines the necessary security mechanisms
to ensure consistent security services operation in the provisioned virtual infrastruc-
ture. In particular, this chapter discusses the design and use of a security token service
for federated access control and security context management in the generically
multi-domain and multi-provider cloud environment.

Keywords  Access control • Cloud infrastructure • DACI • IaaS • Security • Trusted 
computing

Y. Demchenko (*) • C. Ngo • C. de Laat
University of Amsterdam, Amsterdam, The Netherlands

D.R. Lopez
Telefonica I+D, Madrid, Spain

A. Morales
RedIRIS, Madrid, Spain

J.A. García-Espín
I2CAT Foundation, Barcelona, Spain

Chapter 5
Security Infrastructure for Dynamically
Provisioned Cloud Infrastructure Services

Yuri Demchenko, Canh Ngo, Cees de Laat, Diego R. Lopez, Antonio Morales,
and Joan A. García-Espín

[AU1]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

170 Y. Demchenko et al.

5.1 Introduction

Cloud technologies [1, 2] are emerging as a new way of provisioning virtualised
computing and network infrastructure services on demand for collaborative projects
and groups. Security in provisioning virtual infrastructure services should address
two general aspects: supporting secure operation of the provisioning infrastructure
and provisioning a dynamic access control infrastructure as part of the provisioned
on-demand virtual infrastructure.

The current cloud security model is based on the assumption that the user/customer
should trust the cloud service provider (CSP). This is governed by the service level
agreement (SLA) that in general defines mutual provider and user expectations and
obligations. However, such an approach addresses only the first part of the problem
and does not scale well with the potential need to combine cloud-based services
from multiple providers when building complex infrastructures.

Cloud providers are investing significant efforts and costs into making their own
infrastructures secure and achieving compliance with the existing industry security
services management standards (e.g. Amazon Cloud recently achieved Payment
Card Industry Data Security Standard (PCI DSS) compliance certification and Microsoft
Azure Cloud claims compliance with ISO27001 security standards). However,
overall security of cloud-based applications and services will depend on two other
factors: security services implementation in user applications and binding between
virtualised services and cloud virtualisation platforms. Advanced security services
and fine-grained access control cannot be achieved without deeper integration with the
cloud virtualisation platform and incumbent security services, which in its turn can be
achieved with open and well-defined cloud IaaS platform architectures.

This chapter presents recent results of the ongoing research on developing
architecture and framework for dynamically provisioned security services as part
of the provisioned on-demand cloud-based infrastructure services. This chapter
extends earlier published works by authors with the recent results and implemen-
tation experiences.

This chapter analyses the basic use cases and proposes an abstract model for
on-demand infrastructure services provisioning. Section 5.3 provides a short
description of the architectural framework for on-demand infrastructure services
provisioning proposed in earlier authors’ work [3, 4]. It is used as a basis to define
the general security requirements to the security infrastructure. Section 5.4 discusses
conceptual issues, basic requirements, proposed architectural solutions, supporting
security mechanisms and practical suggestions for provisioning dynamically
configured access control services as part of the provisioned on-demand cloud-based
infrastructure services. This section summarises the earlier works by authors [5–7]
and describes the proposed dynamically provisioned access control infrastructure
(DACI). Section 5.5 describes the security token service that allows federated access
control to distributed multi-domain cloud resources.

Consistent security services design, deployment and operation require continuous
security context management during the whole security services lifecycle, which is

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1715 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

aligned to the main provisioned services lifecycle. The proposed security services
lifecycle management (SSLM) model addresses specific on-demand infrastructure
service provisioning security problems that can be solved by introducing a special
security mechanism to allow synchronisation of security services and their binding to
virtualisation platform and run-time environment. This chapter discusses how these
security mechanisms can be implemented by using Trusted Computing Group
Architecture (TCG Architecture) and the functionality of the Trusted Platform Module
(TPM) that is currently available in many computer platforms and supported by most
VM management platforms. Section 5.4.5 describes the proposed security bootstrap-
ping protocol that uses TPM functionality and can be integrated with DACI.

The practical implementation of DACI reveals a wide spectrum of problems
related to distributed access control, policy and related security context management.
This chapter discusses important security services and mechanisms that ensure
consistency of the provisioned security infrastructure and its integration with user
applications: authorisation tokens used for provisioning and authorisation session
management and for security context exchange between infrastructure services and
providers (Sect. 5.4.6) and the standard-based security token service as an important
mechanism for inter-domain access control and identity management (Sect. 5.5).

5.2 Background

5.2.1 Cloud Computing as an Emerging Provisioning
Model for Complex Infrastructure Services

Modern e-Science and high-technology industry require high-performance infrastruc-
ture to handle large volume of data and support complex scientific applications and
technological processes. Dynamicity of projects and collaborative group environment
require that such infrastructure is provisioned on demand and capable of dynamic
(re-) configuration. A large amount of currently available e-Science/research
infrastructures is currently available on the grid, which in the case of Europe are
coordinated by the European Grid Initiative (EGI) [8]. Future research infrastructures
will inevitably evolve in the direction of using cloud resources and will combine
both grid and cloud resources.

Currently large grid projects and cloud computing providers use their own
dedicated network infrastructure that can handle the required data throughput but
typically are over-provisioned. Their network infrastructure and security model are
commonly based on the traditional VPN model that spreads worldwide, creates
distributed environment for running their own services geographically distributed
(like Google and Amazon) and provides localised access for users and local providers.
Their service delivery business model and consequently security model are typically
based and governed by a service level agreement (SLA) that in general defines mutual
provider and user expectations and obligations.

[AU2] 66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

172 Y. Demchenko et al.

Recently, cloud technologies [1, 2, 9] are emerging as infrastructure services
for provisioning computing and storage resources and gradually evolving into the
general IT resources provisioning. Cloud computing can be considered as natural
evolution of the grid computing technologies to more open infrastructure-based
services. Cloud “elasticity”, as recognised by researchers and technology practitioners,
brings a positive paradigm shift in relation to the problem and the problem-solving
infrastructure from sizing a problem to infrastructure to sizing infrastructure to the
problem.

The current cloud services implement three basic service models: infrastructure
as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS).
There are many examples of the latter two models, PaaS and SaaS, that are typi-
cally built using existing SOA (service-oriented architecture) [10] and Web
Services or REST (representational state transfer) [11] technologies. However, the
IaaS model, if intended to provision user or operator manageable infrastructure
services, requires a new type of service delivery and operation framework that
should also include security infrastructure integration with the user or enterprise
legacy security infrastructure.

This chapter presents the ongoing research aimed at developing an architectural
framework that will address known problems in on-demand provisioning virtualised
infrastructure services that may include both computing resources (computers
and storage) and transport network. The solutions for pooling, virtualising and
provisioning computing resources are provided by current grid and cloud infrastruc-
tures. New solutions should allow the combination of IT and network resources,
supporting abstraction, composition and delivery for individual collaborating user
groups and applications.

5.2.2 General Use Case for Cloud-Based On-Demand
Infrastructure Services Provisioning

One general use case for on-demand cloud-based infrastructure services provision-
ing can be considered: large project-oriented scientific infrastructure provisioning
including dedicated transport network infrastructure. However, two different
perspectives in developing infrastructure services can be considered – users and
application developers’ perspective, on one side, and providers’ perspective, on
the other side. Users are interested in uniform and simple access to resources and
services that are exposed as cloud resources and can be easily integrated into the
scientific or business workflow. Infrastructure providers are interested in infrastructure
resource pooling and virtualisation to simplify their on-demand provisioning
and extend their service offering and business model to virtual infrastructure
provisioning.

Figure 5.1 illustrates the typical e-Science infrastructure that includes grid and
cloud-based computing and storage resources, instruments, control and monitoring

[AU3]

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

1735 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

system, visualisation system and users represented by user clients. The diagram also
reflects that there may be different types of connecting network links: high-speed
and low-speed which both can be permanent for the project or provisioned on
demand.

The figure also illustrates a typical use case when a high-performance infra-
structure is used by two or more cooperative users/researcher groups in different
locations. In order to fulfil their task (e.g. cooperative image processing and analysis),
they require a number of resources and services to process raw data on distributed
grid or cloud data centres, analyse intermediate data on specialist applications and
finally deliver the result data to the users/scientists. This use case includes all basic
components of the typical e-Science research process: data collection, initial data
mining and filtering, analysis with special scientific applications and finally presen-
tation and visualisation to the users.

With the growing complexity and dynamicity of collaborative projects and
applications, they will require access to network control and management functions
to optimise their performance and resources usage. Currently, transport network,
even if provided as VPN, is set up statically or can only be reconfigured by a network
engineer.

Fig. 5.1 Project-oriented collaborative infrastructure containing grid-based scientific instrument
managed by grid VO-A, 2 campuses A and B, and cloud-based infrastructure provisioned on
demand

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

174 Y. Demchenko et al.

5.3 Architectural Framework for Cloud IaaS Model

5.3.1 Abstract Model for On-Demand Infrastructure Services
Provisioning

Figure 5.2 below illustrates the abstraction of the typical project- or group-oriented
virtual infrastructure (VI) provisioning process that includes both computing
resources and supporting network that is commonly referred as infrastructure
services. The figure also shows the main actors involved in this process, such as
physical infrastructure provider (PIP), virtual infrastructure provider (VIP) and virtual
infrastructure operator (VIO).

The required supporting infrastructure services are depicted on the left side of
the picture and include functional components and services used to support normal
operation of all mentioned actors. The virtual infrastructure composition and
management (VICM) layer includes the logical abstraction layer and the VI/VR
adaptation layer facing correspondingly lower PIP and upper application layers.
VICM-related functionality is described below as related to the proposed composable
services architecture (CSA).

The proposed abstraction provides a basis and motivates the definition of archi-
tectural framework for cloud-based infrastructure services provisioning to support
the main cloud IaaS features such as on-demand provisioning, elasticity, scalability,
virtualisation, lifecycle management and combined compute and network resource

Fig. 5.2 Main actors, functional layers and processes in on-demand infrastructure services
provisioning

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

1755 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

provisioning. The proposed architectural framework comprises of the following
components discussed in this chapter:

Infrastructure services modelling framework (ISMF)• 
Composable services architecture (CSA)• 
Service delivery framework (SDF)• 
Dynamically provisioned security infrastructure that includes dynamically • 
provisioned access control infrastructure (DACI) and related security services
and mechanisms for inter-domain security context management

The proposed architecture is SOA (service-oriented architecture) [10] based and
uses the same basic operation principle as known and widely used SOA frameworks,
which also provides a direct mapping to the possible VICM implementation platforms
such as enterprise service bus (ESB) or OSGi framework [12, 13].

The infrastructure provisioning process, also referred to as service delivery
framework (SDF), is adopted from the TeleManagement Forum SDF [14, 15] with
necessary extensions to allow dynamic services provisioning. It includes the following
main stages: (1) infrastructure creation request sent to VIO or VIP that may include
both required resources and network infrastructure to support distributed target
user groups and/or consuming applications, (2) infrastructure planning and advance
reservation, (3) infrastructure deployment including services synchronisation and
initiation, (4) operation stage and (5) infrastructure decommissioning. The SDF
combines in one provisioning workflow all processes that are run by different
supporting systems and executed by different actors.

Physical resources (PR), including IT resources and network, are provided by
physical infrastructure providers (PIP). In order to be included into VI composition
and provisioning by the VIP, they need to be abstracted to logical resource (LR)
that will undergo a number of abstract transformations including possibly interac-
tive negotiation with the PIP. The composed VI needs to be deployed to the PIP
which will create virtualised physical resources (VPR) that may be a part, a pool or
a combination of the resources provided by PIP.

The deployment process includes distribution of common VI context, configuration
of VPR at PIP, advance reservation and scheduling and virtualised infrastructure
services synchronisation and initiation to make them available to application layer
consumers.

The proposed abstract models allow outsourcing the provisioned VI operation
to the VI operator (VIO) which is from the user/consumer point of view, provide
valuable services of the required resources consolidation – both IT and networks –
and take a burden of managing the provisioned services.

5.3.2 Dynamically Provisioned Cloud Security Infrastructure

The proposed architecture provides a basis and motivates development of the gen-
eralised framework for provisioning dynamic security infrastructure that includes

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

176 Y. Demchenko et al.

the dynamically provisioned access control infrastructure (DACI), security services
lifecycle management model (SSLM), common security services interface (CSSI)
and related security services and mechanisms to ensure the consistency of the dynami-
cally provisioned security services operation. The required security infrastructure
should provide a common framework for operating security services at VIP and
VIO layers and be integrated with the PIP and user legacy security services.

Figure 5.3 illustrates security and trust domain-related aspects in the infrastruc-
ture provisioning. It shows trust domains related to VIO, VIP and PIP that are
defined by the corresponding trust anchors (TA) denoted as TA1, TA2 and TA3. The
user (or requestor) trust domain is denoted as TA0 to indicate that the dynamically
provisioned security infrastructure is bound to the requestor’s security domain. The
dynamic security association (DSA) is created as a part of the provisioning VI.
It actually supports the VI security domain and is used to enable consistent opera-
tion of the VI security infrastructure.

5.3.3 Infrastructure Services Modelling Framework

The infrastructure services modelling framework (ISMF) provides a basis for
virtualisation and management of infrastructure resources, including description,

Fig. 5.3 Dynamic security association (DSA) to support security infrastructure provisioned on
demand as a part of the overall infrastructure

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

1775 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

discovery, modelling, composition and monitoring. In this chapter, we mainly focus
on the description of resources and the lifecycle of these resources. The described
model in this section is being developed in the GEYSERS project [16].

5.3.3.1 Resource Modelling

The two main descriptive elements of the ISMF are the infrastructure topology and
descriptions of resources in that topology. Besides these main ingredients, the ISMF
also allows for describing QoS attributes of resources, energy-related attributes and
attributes needed for access control.

The main requirement for the ISMF is that it should allow for describing physical
resources (PR) as well as virtual resources (VR). Describing physical aspects of a
resource means that a great level of detail in the description is required, while
describing a virtual resource may require a more abstract view. Furthermore, the
ISMF should allow for manipulation of resource descriptions such as partitioning
and aggregation. Resources on which manipulation takes place and resources that
are the outcome of manipulation are called logical resources (LR).

The ISMF is based on semantic Web technology. This means that the description
format will be based on the Web Ontology Language (OWL) [17]. This approach
ensures the ISMF is extensible and allows for easy abstraction of resources by
adding or omitting resource description elements. Furthermore, this approach has
enabled us to reuse the network description language [18] to describe infrastructure
topologies.

5.3.3.2 Virtual Resource Lifecycle

Figure 5.4 illustrates relations between different resource presentations during
the provisioning process stages that can also be defined as the virtual resource
lifecycle.

The physical resource information is published by a PIP to the registry service
serving VICM and VIP. This published information describes a PR. The published
LR information presented in the commonly adopted form (using common data or
semantic model) is then used by VICM/VIP composition service to create the
requested infrastructure using a combination of (instantiated) virtual resources and
interconnecting them with a network infrastructure. In its own turn, the network can
be composed of a few network segments run by different network providers.

It is important to mention that physical and virtual resources discussed here are
in fact complex software-enabled systems with their own operating systems and
security services. The VI provisioning process should support the smooth integra-
tion into the common federated VI security infrastructure by allowing the definition
of a common access control policy. Access decisions made at the VI level should be
trusted and validated at the PIP level. This can be achieved by creating dynamic
security associations during the provisioning process.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

178 Y. Demchenko et al.

5.3.4 Service Delivery Framework (SDF)

Service-oriented architecture (SOA) [10] allows for better integration between
business process definition with higher abstraction description languages and
dynamically composed services and provides a good basis for creating dynamically
composable services that should also rely on the well-defined services lifecycle
management (SLM) model. Most of existing SLM frameworks and definitions are
oriented on rather traditional human-driven services development and management.
Dynamically provisioned and reconfigured services will require rethinking of existing
models and proposing new security mechanisms at each stage of the typical provi-
sioning process.

The service delivery framework (SDF) [14] proposed by the TeleManagement
Forum (TMF) provides a common basis for defining software-enabled services [15]
lifecycle management framework that includes both the service delivery stages and
required supporting infrastructure services.

Fig. 5.4 Relation between different resource presentations in relation to different provisioning
stages (Refer to Fig. 5.3 for the initial VI presentation)

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

279

280

281

282

283

284

285

286

287

288

289

290

291

292

1795 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

5.3.4.1 SDF Workflow

Figure 5.5 illustrates the main service provisioning or delivery stages:

Service request (including SLA negotiation). The SLA can describe QoS and
security requirements of the negotiated infrastructure service along with information
that facilitates authentication of service requests from users. This stage also includes
generation of the global reservation ID (GRI) that will serve as a provisioning
session identifier and will bind all other stages and related security context.
Composition/reservation, which also includes reservation session binding
with GRI providing support for a complex reservation process in a potentially
multi-domain multi-provider environment. This stage may require access control
and SLA/policy enforcement.
Deployment, including services registration and synchronisation. Deployment
stage begins after all component resources have been reserved and includes
distributing the common composed service context (including security context)

Fig. 5.5 On-demand composable services provisioning workflow

293

294

295

296

297

298

299

300

301

302

303

304

305

306

180 Y. Demchenko et al.

and binding the reserved resources or services to the GRI as a common
provisioning session ID. The registration and synchronisation stage specifically
targets possible scenarios with the provisioned services migration or re-planning.
In a simple case, the registration stage binds the local resource or hosting platform
run-time process ID to the GRI as a provisioning session ID.
Operation (including monitoring). This is the main operational stage of the
provisioned on-demand composable services. Monitoring is an important func-
tionality of this stage to ensure service availability and secure operation, including
SLA enforcement.
Decommissioning stage ensures that all sessions are terminated, data are cleaned
up and session security context is recycled. The decommissioning stage can also
provide information to or initiate services usage accounting.

The two additional (sub-)stages can be initiated from the operation stage and/or
based on the running composed service or component services state, such as their
availability or failure:

Recomposition or replanning that should allow incremental infrastructure changes.
Recovery/migration can be initiated by both the user and the provider. This
process can use MD SLC to initiate full or partial resources re-synchronisation;
it may also require recomposition.

5.3.4.2 Infrastructure Services to Support SDF

Implementation of the proposed SDF requires a number of special infrastructure
support services (ISS) to support consistent (on-demand) provisioned services lifecycle
management (similar to the above-mentioned TMF SDF) that can be implemented
as a part of the CSA middleware.

The following services are essential to support consistent service lifecycle
management:

Service repository or service registry that supports services registration and • 
discovery
Service lifecycle metadata repository (MD SLC as shown on Fig. •  5.3) that keeps
the services metadata during the whole services lifecycle that include services
properties, services configuration information and services state
Service and resource monitor, an additional functionality that can be implemented • 
as a part of the CSA middleware and provides information about services and
resources state and usage

5.3.5 The Composable Services Architecture

The infrastructure as a service provisioning involves dynamics creation of an infrastructure
consisting of different types of resources together with necessary (infrastructure wide)

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1815 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

control and management planes, all provisioned on demand. The CSA proposed by
authors [3] provides a framework for the design and operation of the composite/
complex services provisioned on demand. It is based on the component services
virtualisation, which in its own turn is based on the logical abstraction of the (physical)
component services and their dynamic composition. Composite services may also
use the orchestration service provisioned as a CSA infrastructure service to operate
composite service-specific workflow.

Figure 5.6 shows the major functional components of the proposed CSA and
their interaction. The central part of the architecture is the CSA middleware that
should ensure smooth service operation during all stages of the composable services
lifecycle.

Composable services middleware (CSA-MW) provides a common interaction
environment for both (physical) component services and complex/composite
services, built of component services. Besides exchanging messages, CSA-MW also
contains/provides a set of basic/general infrastructure services required to support
reliable and secure (composite) services delivery and operation:

Service lifecycle metadata service (MD SLC) that stores the services metadata, • 
including the lifecycle stage, the service state and the provisioning session context.
Registry service that contains information about all component services and • 
dynamically created composite services. The registry should support automatic
services registration.
Logging service that can be also combined with the monitoring service.• 

Fig. 5.6 Composable service architecture and main functional components

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

182 Y. Demchenko et al.

Middleware security services that ensure secure operation of the CSA/• 
middleware.

Note that both logging and security services can be also provided as component
services that can be composed with other services in a regular way.

The CSA defines also a logical abstraction layer for component services and
resources, which is a necessary part in creating services pool and virtualisation.
Another functional layer is the services composition layer that allows presentation
of the composed/composite services as regular services to the consumer.

The control and management plane provides necessary functionality for managing
composed services during their normal operation. It may include orchestration
service to coordinate component services operation; in a simple case, it may be
standard workflow management system.

CSA defines a special adaptation layer to support dynamically provisioned
control and management plane interaction with the component services which, to be
included into the CSA infrastructure, must implement adaptation layer interfaces
that are capable of supporting major CSA provisioning stages, in particular, service
identification, services configuration and metadata including security context, and
provisioning session management.

5.3.6 GEMBus as a CSA Middleware Platform

GÉANT Multi-domain service bus (GEMBus) is being developed as a middleware
for composable services in the framework of GÉANT3 project [19, 20]. GEMBus
incorporates the SOA services management paradigm in on-demand service provi-
sioning. The GEMBus is built upon the industry accepted enterprise service bus
(ESB) [12] and will extend it with the necessary functional components and design
pattern to support multi-domain services and applications.

The goal of GEMBus is to establish seamless access to the network infrastructure
and the services deployed upon it, using direct collaboration between network and
applications, and therefore providing more complex community-oriented services
through their composition.

Figure 5.7 illustrates the suggested GEMBus architecture. GEMBus infrastructure
includes three main groups of functionalities:

GEMBus messaging infrastructure (GMI) that includes, first of all, messaging • 
backbone and other message handling supporting services such as message routing,
configuration services, secure messaging and event handler/interceptors.
The GMI is built on and extends the generic ESB functionality to support
dynamically configured multi-domain services as defined by GEMBus.
GEMBus infrastructure services that support reliable and secure composable • 
services operation and the whole services provisioning process. These include
such services as composition; orchestration; security, in particular, security token
service; and the also important lifecycle metadata service, which are provided by
the GEMBus environment/framework itself.

[AU4]

[AU5]

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

1835 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

Component services, although typically provided by independent parties, need to • 
implement special GEMBus adaptors or use special “plug-in sockets” that allow
their integration into the GEMBus/CSA infrastructure.

The following issues have been identified to enable GEMBus operation in the
multi-domain heterogeneous service provisioning environment:

Service registries supporting service registration and discovery. Registries are • 
considered as an important component to allow cross-domain heterogeneous services
integration and metadata management during the whole services lifecycle.
Security, access control and logging should provide consistent services and security • 
context management during the whole provisioned services lifecycle.
Service composition and orchestration models and mechanisms should allow • 
integration with the higher-level scientific or business workflow.
Messaging infrastructure should support both SOAP-based and RESTful (con-• 
forming to representational state transfer (REST) architecture) services [11].

The GEMBus and GMI, in particular, are built on the top of the standard Apache/
Fuse messaging infrastructure that includes the following components [21, 22]:

Fuse Message Broker (Apache ActiveMQ) messaging processor• 
Fuse Mediation Router (Apache Camel) normalised message router• 

The GEMBus services and applications can be deployed on the standard Fuse or
Apache ESB servers as component services that can be integrated with the standard
OSGi [13] and Spring [23] compliant service development frameworks and
platforms such as Fuse Services Framework/Apache CXF and Fuse ESB/Apache
ServiceMix.

Fig. 5.7 GEMBus infrastructure, including component services, service template, infrastructure
services and core message-processing services

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

184 Y. Demchenko et al.

Figure 5.8 illustrates two examples of the composite services that are composed
of four component services. In the second case, the composite service contains
a special front-end service that is created of the corresponding service template that
should be available for specific kind of applications. Examples of such service tem-
plates can be a user terminal (or rich user client) or a visualisation service. Requiring
the GEMBus framework or toolkit to provide a number of typical service templates
will provide more flexibility in delivery/provisioning composite services.

5.4 Cloud IaaS Security Infrastructure

5.4.1 General Requirements to Dynamically Provisioned
Security Services

On-demand provisioning of cloud infrastructure services drives paradigm change
in security design and operation. Considering evolutional relations between grids
and clouds, it is interesting to compare their security models. This is also important
from the point of view that future e-Science infrastructures will integrate both grid-
based core e-Science infrastructure and cloud-based infrastructures provisioned on

Fig. 5.8 Example of a composite service composed of services: service 1, service 2, service 3 and
service 4

[AU6]

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

1855 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

demand. Grid security architecture is primarily based on the virtual organisations
(VO) that are created by the cooperating organisations that share resources
(which however remain in their ownership) based on mutual agreement between
VO members and common VO security policy. In grids, VO actually acts as a fed-
eration of the users and resources that enables federated access control based on the
federated trust and security model [24, 25]. In general, the VO-based environment
is considered as trusted.

In the clouds, data are sent to and processed in the environment that is not under
the user or data owner control and potentially can be compromised either by cloud
insiders or by other users sharing the same resource. Data/information must be
secured during all processing stages – upload, process, store and stream/visualise.
Policies and security requirements must be bound to the data, and there should be
corresponding security mechanisms in place to enforce these policies.

The following problems/challenges arise from the cloud IaaS environment analysis
for security services/infrastructure design:

Data protection both stored and “on-wire” that includes, besides the traditional • 
confidentiality, integrity, access control services and also data lifecycle management
and synchronisation
Access control infrastructure virtualisation and dynamic provisioning, including • 
dynamic/automated policy composition or generation
Security services lifecycle management, in particular, service-related metadata • 
and properties, and their binding to the main services
Security sessions and related security context management during the whole • 
security services lifecycle, including binding security context to the provisioning
session and virtualisation platform
Trust and key management in provisioned on-demand security infrastructure and • 
support of the dynamic security associations (DSA) that should provide fully
verifiable chain of trust from the user client/platform to the virtual resource and
the virtualisation platform
SLA management, including initial SLA negotiation and further SLA enforcement • 
at the planning and operation stages

The security solutions and supporting infrastructure to support the data integrity
and data processing security should provide the following functionalities:

Secure data transfer that possibly should be enforced with the data activation • 
mechanism
Protection of data stored on the cloud platform• 
Restore from the process failure that entails problems related to secure job/appli-• 
cation session and data restoration

The security solutions and supporting infrastructure should support consistent
security session management:

Special session for data transfer that should also support data partitioning and • 
run-time activation and synchronisation

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

186 Y. Demchenko et al.

Session synchronisation mechanisms that should protect the integrity of the • 
remote run-time environment
Secure session failover that should rely on the session synchronisation mechanism • 
when restoring the session

Wider cloud adoption by industry and their integration with advanced infrastructure
services will require implementing manageable security services and mechanisms
for the remote control of the cloud operational environment integrity by users.

5.4.2 Security Services Lifecycle Management Model (SSLM)

Most of the existing security lifecycle management frameworks, such as defined in
the NIST Special Publication 800-14 “Generally Accepted Principles and Practices
in Systems Security” [26], provide a good basis for security services development
and management, but they still reflect the traditional approach to services and
systems design driven by engineers. The defined security services lifecycle includes
the following typical phases: initiation, development/acquisition, implementation,
operation/maintenance and disposal.

Figure 5.9 illustrates the proposed security services lifecycle management
(SSLM) model [5] that reflects security services operation in generically distributed
multi-domain environment and their binding to the provisioned services and/or
infrastructure. The SSLM includes the following stages:

Service •  request and generation of the GRI that will serve as a provisioning session
identifier (SessionID) and will bind all other stages and related security context
[6, 7]. The request stage may also include SLA negotiation which will become a
part of the binding agreement to start on-demand service provisioning.

•  Reservation stage and reservation session binding with GRI (also a part of the
general SDF/SLM) that provides support for complex reservation process
including required access control and policy enforcement.

•  Deployment stage (including Bootstrapping) begins after all component resources
have been reserved and includes distribution of the security context and binding

Fig. 5.9 The proposed security services lifecycle management model

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

1875 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

the provisioned virtualised resources and hosting platform to the GRI as a
provisioning session ID.

•  Registration and synchronisation stage (including run-time binding) that allows
the whole virtual infrastructure to start synchronously and specifically targets
possible scenarios with the provisioned services migration or failover. In a simple
case, the registration stage binds the local resource or hosting platform run-time
process ID to the GRI as a provisioning session ID.
During •  operation stage, the security services provide access control to the provi-
sioned services and maintain the service access or usage session.

•  Decommissioning stage ensures that all sessions are terminated, data are cleaned
up and session security context is recycled.

The proposed SSLM model is compatible with the above-described SDF and
extends the existing SLM frameworks with the additional stages “registration and
synchronisation” that specifically target such security issues as the provisioned services/
resources restoration (in the framework of the active provisioning session) and pro-
vide a mechanism for remote data protection by binding them to the session context.

Table 5.1 explains what main processes/actions take place during the different
SLM/SSLM stages and what general and security mechanisms are used:

SLA – used at the stage of the service request placing and can also include SLA • 
negotiation process.
Workflow is typically used at the operation stage as service orchestration mecha-• 
nism and can be originated from the design/reservation stage.
Metadata are created and used during the whole service lifecycle and, together • 
with security services, actually ensure the integrity of the SLM/SSLM.
Dynamic security associations support the integrity of the provisioned resources • 
and are bound to the security sessions.

SLM/SDF
stages

Request Planning
Reservation

Deployment Operation Decommis-
sioning

SSLM
Process/
Activity

SLA
Negotiation

Serv/Rsr
Compose
Reserve

Configure
Bootstrap
Synchron

Orchestration
/ Session
Management

Logoff
Accounting

Supporting Mechanisms (M – mandatory, O - optional)

SLA M O
Workflow O M
Metadata M M M M
Dynamic
Security
Association

O M M

AuthZ SecCtx
Management

M M M

Logging O O M M

Table 5.1 Relation between SSLM/SLM stages and supporting general and security mechanisms

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

t1.1

188 Y. Demchenko et al.

Authorisation session context supports integrity of the authorisation sessions • 
during reservation, deployment and operation stages.
Logging can be actually used at each stage and essentially important during the • 
last 2 stages – operation and decommissioning.

The proposed SSLM model extends the existing SLM frameworks with the
additional stages “reservation session binding” and “registration and synchronisa-
tion” which especially target such scenarios as the provisioned services/resources
restoration, re-planning or migration (in the framework of the active provisioning
session) and provide a mechanism for remote data protection by binding them to
the session context. Important role in these processes belongs to the consistent
security context management and dynamic security associations that should be
supported by dynamic trust anchors binding and special bootstrapping procedure
or protocol. However, it is perceived that implementing such functionality will
require the service hosting platform that supports Trusted Computing Group
Architecture (TCG Architecture) [27, 28].

5.4.3 Dynamically Provisioned Access Control
Infrastructure (DACI)

Developing a consistent framework for dynamically provisioned security services
requires deep analysis of all underlying processes and interactions. Many processes
typically used in traditional security services need to be abstracted, decomposed
and formalised. First of all, it is related to the security services setup, configuration
and security context management that in many present solutions/frameworks is pro-
vided manually, during the service installation or configured out-of-band.

The general security framework for on-demand provisioned infrastructure ser-
vices should address two general aspects: (1) supporting secure operation of the
provisioning infrastructure which is typically provided by the providers’ authentica-
tion and authorisation infrastructure (AAI) supported also by the federated identity
management services (FIdM) and (2) provisioning a dynamic access control infra-
structure as part of the provisioned on-demand virtual infrastructure. The first task
is primarily focused on the security context exchanged between involved services,
resources and access control services. The virtualised DACI must be bootstrapped
to the provisioned on-demand VI and VIP/VIO trust domains as entities participat-
ing in the handling initial request for VI and legally and securely bound to the VI
users. Such security bootstrapping can be done at the deployment stage.

Virtual access control infrastructure setup and operation is based on the above-
mentioned DSA that will link the VI dynamic trust anchor(s) with the main actors
and/or entities participating in the VI provisioning – VIP and the requestor or target
user organisation (if they are different). As discussed above, the creation of such
DSA for the given VI can be done during the reservation and deployment stage.
The reservation stage will allow the distribution of the initial provisioning session

[AU7]

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1895 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

context and collection of the security context (e.g. public key certificates) from
all participating infrastructure components. The deployment stage can securely
distribute either shared cryptographic keys or another type of security credentials
that will allow validating information exchange and apply access control to VI
users, actors and services.

Figure 5.10 illustrates in detail the interaction between main actors and access
control services during the reservation stage and includes also other stages of provi-
sioned infrastructure lifecycle. The request to create VI (RequestVI) initiates a
request to VIP that will be evaluated by VIP-AAI against access control policy,
which will next be followed by VIP request to PIP for required or selected physical
resources PRs, which in its own turn will be evaluated by PIP-AAI. It is an SDF and
SSLM requirement that starting from the initial RequestVI all communication and
access control evaluations should be bound to the provisioning session identifier
GRI. The chain of requests from the user to VIO, VIP and PIP can also carry cor-
responding trust anchors TA0…TA2, for example, in a form of public key certificate
(PKC) [29] or WS-Trust security tokens [30].

DACI is created at the deployment stage and controls access to and use of the VI
resources; it uses dynamically created security association of the users and resources.
The DACI bootstrapping can be done either by fully preconfiguring trust relations
between VIP-AAI and DACI or by using special bootstrapping registration proce-
dure similar to those used in TCG Architecture [22].To ensure unambiguous session
context and the identification of all involved entities and resources, the following
types of identifiers are used:

Global reservation ID (GRI) – generated at the beginning of the VI provisioning, • 
stored at VIO and returned to user as identification of the provisioning session
and the provisioned VI

[AU8]

Fig. 5.10 Security context management during VI provisioning and operation

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

190 Y. Demchenko et al.

VI-GRI – generated by VIP as an internal reservation session ID, which can be • 
also refolded GRI, depending on the VIP provisioning model
Local reservation ID (LRI) that can be generated by PIP or VIP to provide • 
identification PR-LRI and VR-LRI of the committed or created PR@PIP and
VR@VIP

5.4.4 Dynamic Security Associations Management

5.4.4.1 Trust Relations

Figure 5.11 describes relations between entities in the cloud infrastructure services
provisioned on demand. PIPs own virtualised physical devices to offer virtual
resources (VRs). VIPs are intermediate providers to compose and aggregate VRs
from multiple PIPs into the virtual infrastructures (VIs), which are subscribed by
VIOs. The end-users then may consume VRs in the VI associated with VIOs’
identifier. The involved actors form the cloud supply-chain service model from
low-level providers (PIPs) to intermediate providers (VIPs), subscribers (VIOs)
and end-users.

Providing trust between parties is basic for security services. This model has two
types of trust relationships. The first one is static or direct trust between two direct
parties based on SLA agreements. The second one is the dynamic trust, the trust

Fig. 5.11 Trust relationships in multi-provider cloud environment

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

1915 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

relation established during provisioning stages between indirect parties (i.e. VIO
and PIPs, VI-end-users and VIPs). These relationships are dynamic because they
are established and released during the VI provisioning phases.

According to various models in distributed systems including public key
cryptography models (e.g. PKI or PGP) and recommendation-based models, trust
relationships are assumed not transitive [31]. For example, if A trusts B and B trusts
C, it cannot conclude that A trusts C. In some specific conditions, the trust could be
transitive [30] and A could trust C. In our approach, we select the transitive trust
between parties as specified in [30] with a set of conditions, for example, with
VI-end-users, VIO and VIP, VIO trusts VIP and recommends the trust to VI-end-users.
VI-end-users then trust VIO as the recommender for trust relationships and could
judge VIO’s recommendations. With the above cloud supply-chain service model,
they form recommendation paths or trust paths from PIP to VIP, VIO and VI-end-users.
This dynamic trust model can follow one of the following categories. The first one
is evidence-based model where entities establish a trust relationship based on evi-
dence, such as cryptographic keys. The other one is recommendation-based model
[32]. For clouds, we propose to use the evidence-based model because direct/static
trust relations are enforced by SLA along with specific cryptographic parameters
that can be provided as a provisioning session security context. Dynamic trust relations
are established based on direct trust relations and other assumptions as specified
above to satisfy conditional transitive trust.

5.4.4.2 Establishing Dynamic Trust Relationships

A trust relationship between two entities is described by a security association
(SA). It contains agreed security attributes between parties. The SA could include
cryptographic parameters (certificate, keys, algorithms, etc.) to make sure one end-
point assure about other one on its trustworthiness.

The direct/static trust relations described in the previous section are known as the
static security association (SSA), while the dynamic trust relations can be defined as
the dynamic security association (DSA). In the reference model, SSAs include SSA
(VI-user, VIO), SSA (VIO, VIP) and SSA (VIP, PIP). Set of DSAs include DSA
(VI-end-user, VIP), DSA (VI-end-user, PIP) and DSA (VIO, PIP).

Generic steps to establish dynamic trust relationship are as follows:

Conditions: SSA (A, B), SSA (B, C)
Goal: Establish the DSA (A, C)
Procedures:

 1. A asks B to establish trust to C.
 2. B retrieves its SA list to find SSA (B, A) and SSA (B, C). It then generates a new

SA. This SA is sent back to A and C by protecting with SSA (B, A) and SSA (B,
C), respectively.

 3. A receives the generated SA. By verifying the SSA (B, A) protector, it adds the
new generated SA to its SA list as the DSA (A, C).

[AU9]

[AU10]

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

192 Y. Demchenko et al.

 4. C receives the generated SA and verifies it with SSA (C, B). Since it is valid,
C adds the new SA, known as DSA (C, A), to its SA list.

For specific mechanisms such as PKI, PGP or SAML [33], the procedure needs to
be modified to generate SA dynamically and sent to both indirect parties A and
C. Further development of these mechanisms will require additional research.

5.4.5 Security Infrastructure Bootstrapping Protocol

This section describes the proposed security bootstrapping protocol that was
proposed in authors’ papers [25] and [7] and currently being implemented in the
framework of the GEYSERS project [16].

DACI trust model relies on a number of trust anchors residing at PIP, VIP and
VIO and rooted in the VI provisioning request or SLA between user/customer and
VI/cloud provider (in our model, VIP or VIO). However, to protect it from compro-
mise (e.g. by cloning) and make it integrity protected, it needs to be bootstrapped
to the virtualisation platform run-time environment. The proposed bootstrapping
protocol is using a Trusted Computing Platform Architecture (TCG Architecture)
and Trusted Platform Module (TPM) which can provide a trustworthy platform
from which secure systems may be built. They can provide a static root of trust to
allow booting a system to a known and trusted state by taking measurements and
verifying each piece of software before it is executed [34].

In order to create a trusted computing environment, it is necessary to build an
unbroken chain of trust from the most fundamental hardware (such as the BIOS and
firmware) through to the operating system and virtualisation platform that hosts
virtualised services and the DACI itself. The TPM can be configured to take mea-
surements of each software component before it is executed. Only if the signature is
valid will the system proceed. Software needs to be specifically designed to take
advantage of these capabilities; as an example, such solutions and firmware are
provided by Intel [35] and VMware [36].

The initial TPM-based platform initiation uses a special method for remote TPM
attestation called direct anonymous attestation (DAA) [37] that actually requires a third-
party role (the issuer) [26] that can be a part of cloud provider security infrastructure.

In order to authenticate the TPM-enabled system, the service provider would
provide a signed package that contains relevant TPM public keys, system keys and
valid trusted states for those machines. Next, a special Vanguard application is sent
to a remote machine via the SCP protocol as an initial stage in the required service
deployment. It determines the safety of the remote machine before more sensitive
information or software is transferred to it. As part of the bootstrapping process a
Vanguard application verifies the identity and state of the remote machine based on
the fingerprint provided in the security package.

After verification, a trusted platform session token can be generated based on
GRI or LRI that is then sealed by the TPM. It is included as a part of the general VI
or DACI security context and can only be decrypted by the same TPM and only

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

1935 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

when in the same state [38]. This prevents the session from being decrypted on
another machine and in effect binds the session to the machine in a trusted state.
In order to defeat a cloning attack, an encryption key or other metadata can also be
sealed to a TPM. When used to encrypt disk images, this prevents the images from
being decrypted on another untrusted machine.

5.4.6 Security Context Management in DACI

Although DACI operates at the operation stage of the SSLM/SLM, its security
context is bound to the overall provisioning process starting from initial stage of the
service request and SLA negotiation that will provide a trust anchor TA0 to user/
application security domain with which the DACI will interact during the operation
stage. The RequestVI initiates the provisioning session inside of which we can also
distinguish two other types of sessions: reservation session and access session,
which however can use that same access control policy and security context man-
agement model and consequently can use the same format and type of the session
credentials. In the discussed DACI, we use the authorisation token (AuthzToken)
mechanism initially proposed in the GAAA-NRP framework and used for authori-
sation session context management in multi-domain network resource provisioning
[39, 40]. Tokens as session credentials are abstract constructs that refer to the related
session context stored in the provisioned resources or services. The token should
carry session identifier, in our case GRI or VI-GRI.

When requesting VI services or resources at the operation stage, the requestor
needs to include the reservation session credentials together with the requested
resource or service description which in its own turn should include or be bound to the
provisioned VI identifier in a form of GRI or VI-GRI. The DACI context handling
service should provide resolution and mapping between the provided identifiers and
those maintained by the VIP and PIP, in our case VR-LRI or PR-LRI. If session
credentials are not sufficient, for example, in case delegation or conditional policy
decision is required, all session context information must be extracted from AuthzToken
and the normalised policy decision request will be sent to the DACI policy decision
point (PDP) which will evaluate the request against the applied access control policy.

In the discussed DACI architecture, the tokens are used both for access control
and signalling at different SSLM/SDF stages as a flexible mechanism for communi-
cating and signalling security context between administrative and security domains
(that may represent PIP or individual physical resources). Inherited from GAAA-
NRP, the DACI uses two types of tokens:

Access tokens that are used as AuthZ/access session credentials and refer to the • 
stored reservation context.
Pilot tokens that provide flexible functionality for managing the AuthZ session • 
during the reservation stage and the whole provisioning process. Few types of
the pilot token are defined that can communicate different domain-related con-
text information during the services or resources reservation stage.

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

194 Y. Demchenko et al.

Figure 5.12 illustrates the common data model of both access token and pilot
token. Although the tokens share a common data model, they are different in the
operational model and in the way they are generated and processed. When pro-
cessed by the AuthZ service components, they can be distinguished by the token
type attribute which is optional for access token and mandatory for pilot token.

(a) High-level access and pilot token data model

AuthzToken

tokentype

TokenID

SessionID

Issuer

AAA:TokenValue

AAA:Conditions

AAA:ConditionsType

AAA:DecisionType

AAA:DomainsType

Result

Resourceld

AAA:Obligations

AAA:DomainAAA:Domain

AAA:Decision

AAA:AuthzTokenType

attributes

attributes

attributes

–

–

–

–

–

–

–

–

–

NotBefore

NotOnOrAfter

+

+

Fig. 5.12 Common access and pilot token data model (a) and example of the XML token (b)

<AAA:AuthzToken
xmlns:AAA=”http://www.aaauthreach.org/ns/AAA”

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

748

749

750

751

752

753

754

755

1955 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

 Issuer=”http://testbed.ist-
phosphorus.eu/phosphorus/aaa/TVS/token-pilot”

 SessionId=”0912182e7f9c7d156028e77e3d6b460de8e4
937c”

TokenId=”a99b91e70307bdd329c9a0aec18bb4a3”
type=”pilot-type3”>
<AAA:TokenValue>3923c7ecb979e7078ab8745191a7b25348cdc
b48</AAA:TokenValue>
 <AAA:Conditions NotBefore=”2008-07-25T09:38:39.890Z”

 NotOnOrAfter=”2008-07-26T09:38:39.890Z”/>
 <AAA:DomainsContext>
<AAA:Domain domainId=”http://testbed.ist-

phosphorus.eu/viola”>
 <AAA:AuthzToken Issuer=”http://testbed.ist-

phosphorus.eu/viola/aaa/TVS/token-pilot”

SessionId=”b0b6202d7bd7fb7b591b5de29950d21fdb8bf375”
 TokenId=”e7c88fad8cff42d7faaa961b96411ae6”>
 <AAA:TokenValue>f09194bbddeef95bc4acb187f71b0bb20b2d

0b44</AAA:TokenValue>
<AAA:Conditions NotBefore=”2008-07-
18T21:55:15.296Z”
 NotOnOrAfter=”2008-07-18T21:55:15.296Z”/>
</AAA:AuthzToken>
<AAA:KeyInfo>http://testbed.ist-

phosphorus.eu/viola/_public_key_</AAA:KeyInfo>
 </AAA:Domain>
 </AAA:DomainsContext>
</AAA:AuthzToken>

(b) Example XML token type 3 containing domain-related context that may
include the pilot token and key information from the previous domain

Access tokens contain three mandatory elements: the SessionId attribute that holds
the GRI, the TokenId attribute that holds a unique token ID attribute and is used for
token identification and authentication and the TokenValue element. The optional
elements include: the condition element that may contain two time validity attributes
notBefore and notOnOrAfter, the decision element that holds two attributes ResourceId
and result, and optional element obligations that may hold policy obligations returned
by the PDP. Pilot tokens may contain another optional domains element that serves as
a container for collecting and distributing domain-related security context.

For the purpose of authenticating token origin, the pilot token value is calculated
of the concatenated strings “DomainId, GRI, TokenId”. This approach provides a
simple protection mechanism against pilot token duplication or replay during the
same reservation/authorisation session. The following expressions are used to
calculate the TokenValue for the access token and pilot token:
TokenValue = HMAC(concat(DomainId, GRI, TokenId),

TokenKey)

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

196 Y. Demchenko et al.

In the current implementation [40], the TokenKey is generated from the GRI and
a common shared secret value among all trusted domains. It means that only these
domains can generate valid tokens and correspondingly verify the authenticity of
the received tokens. The shared secret can be distributed as a part of the DSA
creation. It is also suggested that all participating resources and/or cache domains
receive tokens and check their uniqueness.

5.5 Security Token Service for Federated Access Control
to Provisioned Cloud Infrastructure

Consistent access control to the provisioned cloud infrastructure services requires
security mechanisms that should allow federated access control and identity manage-
ment to potentially multi-domain and multi-provider cloud resources from the user
organisational or residential domains. Such functionality is generically provided by
the GEMBus security token service (STS) that complies with the related WS-Security
standards such as WS-Trust and WS-Federation [30, 41]. The STS is a mechanism
that conveys security context information between services that may reside in differ-
ent security and administrative domains. STS can issue and validate security tokens
and support service identity federation and federated identity delegation.

Figure 5.13 depicts an example of the messages exchanged when a user
attempts to access a service using tokens to secure the connection. First, the ser-
vice consumer initialises and sends an authentication request to STS. The STS
then validates the consumer credentials and issues a security token to it. With the
token, the consumer sends a request message including the token to the producer.
The consumer sends the token to STS to check its validity. After running its validation
process, the STS sends a response with the status of the token to the producer, which
processes it and replies to the consumer.

[AU11]

1. R
ST

3. R
STR + Token

7. RSTR (status)

5. RST (Token)

2. Validate
credentials

6. Validate
Token

STS

4. Request (Token)

8. Response

Service

Fig. 5.13 STS operation in federated access control to multi-domain resources

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

1975 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

The two different architectural elements are defined for token issuance and vali-
dation: the ticket translation service (TTS) responsible for generating valid tokens
according to the received credentials, renewing and converting security tokens, and
authorisation service (AS) that performs token validation and can retrieve additional
attributes or policies from other sources to perform the validation.

The GEMBus STS can be used in both cases as part of the provider access
control infrastructure or provisioned and deployed as part of the delivered cloud
infrastructure that is managed by user where GEMBus is used as a platform for
on-demand services provisioning and management.

5.5.1 STS Functionality and Standard Compliance

Security mechanisms must comply with requirements that may conflict with secu-
rity, privacy and simplicity of use. It is important that the security protocols deal
with user attributes and related information in an appropriate manner, taking the
conservative disclosure of attributes and abiding to user privacy policies whenever
possible. It is also important that these directives are enforced by all entities, both in
the infrastructure itself and in the participant services, dealing with user data in a
consistent manner. From the point of view of services, it is very important to protect
information by ensuring the identity of consumers who use the services. The most
adequate manner to satisfy these requirements relies on the use of a token that allows
the transfer of security data along the exchanged messages.

The mechanisms needed to provide secure communications within the GEMBus
architecture base their operation on the STS. This service, described in WS-Trust,
makes it possible to issue and validate security tokens. The GEMBus STS supports
the WS-Trust interoperability profile defined by the EMI, and support for other
profiles can be easily added.

Web Services Security (WS-Security) is a communication protocol that provides
the means for applying security to Web Services. It is part of the WS-* family of Web
service specifications published by OASIS. It is a flexible and feature-rich extension
to SOAP to apply security to Web Services. The protocol specifies how integrity and
confidentiality can be enforced on messages. It allows the communication of various
security token formats, such as SAML [33], Kerberos [42] and X.509 [29], though
the protocol is able to accommodate practically any kind of token format. Its main
focus is the use of XML Signature [43] and XML Encryption [44] to provide
end-to-end security. The protocol is officially called WSS and associated with other
specifications like WS-Trust, WS-SecureConversation [45] and WS-Policy [46].

WS-Trust provides extensions to WS-Security, specifically dealing with issuing,
renewing and validating security tokens, as well as how to establish, assess (the
presence of) and broker trust relationships between participants in a secure message
exchange. WS-Trust defines:

The concept of a STS: A Web service that issues security tokens as defined in • 
the WS-Security specification

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

198 Y. Demchenko et al.

The formats of the messages used to request security tokens and the responses • 
to those messages
Mechanisms for key exchange• 

5.5.2 STS Operational Models

In what relates to establishing the identity of a requesting party, it is important to
take into account that not only the identity of the entity performing the actual
request must be established. Being able to identify the original requestor (the one
the requesting party is acting on behalf of) is crucial as well. In this respect, we can
reduce the possible situations to two basic models: star model and chain model,
suggesting possibility of more complex combination of both (see Fig. 5.14).

In the star model (Fig. 5.14a), the final user identifies at a client endpoint, which
acts as consumer of the requested services on behalf of them by connecting to the
appropriate service producer endpoints. Therefore, a single statement (or its transla-
tions into the required formats thereof) can be used to identify the consumer and the
original requesting user. The figure illustrates this architecture, in the case of using
SOAP for transport requests and an SAML token to express security statements.

In the chain model (Fig. 5.14b), the final user identifies at a consumer endpoint,
which sends an initial request on behalf of them requesting a service to a first service
producer endpoint, which then forwards the request to a second producer endpoint,
and this to a third one, and thus successively. Therefore, the initial statement (built by
the original consumer endpoint) needs to be forwarded as requests are passed from
one service endpoint to the next in the chain. The statement must contain information
about the original user and the initial consumer endpoint and should contain informa-
tion about the service endpoints the request has been forwarded through.

(a) Star operational model
(b) Chain model
The AS in the figures above refers to a service taking care of validating the security

statements received within a certain request. It relies on the use of security tokens
along with requests to transfer relevant identity statements plus the availability of
a service (provided by the infrastructure itself) able to verify the validity of the
security tokens. If a common token format is used or, conversely, a service able to
generate appropriate tokens by translating among equivalent ones is available, there
are two distinct phases in securing service access in the general case:

 1. Token request and generation, that it is up to the local mechanism that the user
decides to employ, as long as a minimal set of requirements on level of assurance
(in several aspects: identity assessment, required credentials, strength of the link
to the individual, etc.) is fulfilled

 2. The validation of the token received by the requested service, probably using
some of the statements inside the token to retrieve additional attributes from
trusted sources and/or to request an access decision from a policy decision point

[AU12]

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

1995 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

In conclusion, the GEMBus security architecture requires:

A common token format to guarantee interoperability at the security level• 
A service able to act as the source of such tokens and provide a way to translate • 
other token formats into the common format
A service able to validate security tokens and to provide authorisation decisions• 

User / Host

Credentials
IdP

Attiribute
Stores

<Protocol>

Token

Resource
Request

+
Token

Response

Resource Resource Resource

Response

<soap + saml>

<soap + saml>

<soap + saml><soap + saml>

<saml>
<saml>

<saml>

Token Response

<soap + saml>

Token Response

(Potentially Multiple)
Attribute

Authorities
<soap + saml>

Token

AS AS AS

Fig. 5.14 STS operational models: (a) star; (b) chain

User / Host

Credentials
IdP

Attiribute
Stores

<Protocol>

Token

Resource
Request

+
Token

Resource
Request

+
Token

Resource
Request

+
Token

Response Response

Resource Resource Resource

Response

<soap + saml>

<soap + saml>

<soap + saml><soap + saml>

<saml>
<saml>

<saml>

Token Response

<soap + saml>

Token Response

(Potentially Multiple)
Attribute

Authorities

<soap + saml>
Token

AS AS AS

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

907

908

909

910

911

200 Y. Demchenko et al.

In accordance to these requirements and as said above, two different architectural
elements are defined for token issuance and validation in the GEMBus STS. The
ticket translation service (TTS) is responsible for generating, renewing and trans-
forming valid tokens in the system, while the authorisation service (AS) performs
token validation.

The TTS mostly relies on external identity providers that must verify the identity
of the requester based on valid identification material. To support a large amount of
services, the application of different authentication methods must be ensured.
This must include the support of currently standardised authentication methods as
well as methods incorporated in the future. In particular, GEMBus has imbedded
support for the eduGAIN identity federation services [47], eduPKI [48], TERENA
Certificate Service (TCS) [49] and other International Grid Trust Federation
(IGTF) [50] accredited identity infrastructures.

The AS is responsible for checking the validity of the presented tokens. In this
case, the requester is usually a service that has received a token along with a request
message and needs to check the validity of the token before providing a response.
Checks carried out on the token can be related to issue date, expiration date or
signature(s). This process can also be associated with more complex processes of
authorisation that imply attribute request and check security policies. If the token is
valid, the AS provides an affirmative answer to the service.

5.5.3 STS Token Formats

The WS-Security specification allows a variety of signature formats, encryption
algorithms and multiple trust domains. It is open to various security token models,
such as X.509 certificates, userid/password pairs, SAML assertions and custom-
defined tokens.

The GEMBus TTS supports the transformations among different token formats,
according to service descriptions as stored in the GEMBus registry by means of the
appropriate profile identifiers. Nevertheless, the canonical GEMBus security token
(applicable by default in all GEMBus-supported exchanges) is the relayed-trust
SAML assertion originally defined within the GN2 project [45] to provide identity
information in scenarios where a service is acting on behalf of a user identified
through an identity federation.

The SAML construct used in this case is able to convey information about the
user accessing the producer. It fulfils two essential constraints:

It is bound to the consumer by the original identity provider (IdP) that identified • 
the requesting user, so it is possible to check that the information it contains
about the user has been legally obtained.
It is bound to the producer by the consumer, so a potentially malicious pro-• 
ducer cannot use this information to further impersonate either the consumer
or the user.

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

2015 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

To comply with these two requirements, the token consists of an SAML assertion
expressing data related to the user authentication with:

A valid audience restricted to the producer(s) it is addressed to, through an SAML • 
condition element containing an identifier uniquely associated with them
A statement expressing that this specific method of relayed trust must be used to • 
evaluate the assertion, through a specific value in the SAML construct identifying
the subject confirmation method
The identity assertion(s) received from the IdP as evidence for this confirmation • 
process, as part of the SAML element SubjectConfirmationData

A sample SAML assertion following the above procedures for a consumer with
the identifier:
urn:geant:edugain:component:perfsonarclient:NetflowCli

ent10082
Acting on behalf of a user identified at the IdP:
urn:geant:edugain:be:uninett:idp1
And connecting to a consumer identified by:
urn:geant:edugain:component:perfsonarresource:netflow.

uninett.no/data
Should have an SAML 2.0 content as the one displayed below (some line breaks

and indentation added to improve readability):

<?xml version=”1.0” encoding=”UTF-8”?>
<Assertion
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
 xsi:schemaLocation=”urn:oasis:names:tc:SAML:2.0:asse

rtion”
 Version=”2.0” ID=”100001”
 IssueInstant=”2006-12-03T10:00:00Z”>
 <Issuer>
 urn:geant:gembus:security:sts:gemsts
 </Issuer>

<!-- An audience restriction, that will restrict this
security token to be valid for one single resource only.
-->
 <Conditions>
 <AudienceRestriction>
 <Audience>
 urn:geant:edugain:component:perfsonarresource:
 netflow.uninett.no/data
 </Audience>

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

202 Y. Demchenko et al.

 </AudienceRestriction>
 </Conditions>

 <Subject>
 <NameID>aksjc7e736452829we8</NameID>
 <SubjectConfirmation
 Meth-od=”urn:geant:edugain:reference:relayed-trust”>
 <SubjectConfirmationData>
 <Assertion
 xmlns=”urn:oasis:names:tc:SAML:2.0:assertion”
 xmlns:xsi=”http://www.w3.org/2006/XMLSchema-
instance”
 Version=”2.0” ID=”_200001”
 IssueInstant=”2006-12-03T10:00:00Z”>
 <Issuer>
 urn:geant:edugain:be:uninett:idp1
 </Issuer>

<!-- This inner assertion is limited to only be valid for
the client performing the WebSSO authentication. This
inner assertion cannot be reused or used at all by others
than the NetflowClient10082 instance. But NetflowClient10082
can use it as an evidence when used inside an assertion
issued by NetflowClient10082 using the relayed-trust
confirmationMethod. -->

 <Conditions>
 <AudienceRestriction>
 <Audience>
 urn:geant:edugain:component:perfsonarclient:
 NetflowClient10082
 </Audience>
 </AudienceRestriction>
 </Conditions>

<!-- This is the inner Subject and authNstatement prov-
ing the authentication itself.
These elements and attributes must be identical in the

inner and outer assertion:
 - Assertion/Subject/NameID
 - Assertion/AuthnStatement@AuthenticationMethod

The inner assertion confirmation Method must be
 urn:oasis:names:tc:SAML:1.0:cm:bearer. -->
 <Subject>

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

2035 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

 <NameID>aksjc7e736452829we8</NameID>
 <SubjectConfirmation Meth-
od=”urn:oasis:names:tc:SAML:2.0:cm:bearer”/>
 </Subject>
 <AuthnStatement AuthnInstant=”2006-12-
03T10:00:00Z”>
 <AuthnContext>
 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>

<!-- Enveloped Signature for SubjectConfirmation -->
<Signature>
<!-- Signed by the IdP -->
 <SignedInfo>
 <CanonicalizationMethod Algorithm=”…”/>
 <SignatureMethod Algorithm=”…”/>
 <Reference>
 <DigestMethod Algorithm=”…”/>
 <DigestValue/>
 </Reference>
 </SignedInfo>
 <SignatureValue/>
</Signature>
</Assertion>
</SubjectConfirmationData>
</SubjectConfirmation>
</Subject>

<Signature>
<!-- Signed by TTS -->
 <SignedInfo>
 <CanonicalizationMethod Algorithm=”…”/>
 <SignatureMethod Algorithm=”…”/>
 <Reference>
 <DigestMethod Algorithm=”..”/>
 <DigestValue/>
 </Reference>
 </SignedInfo>
 <SignatureValue/>
 </Signature>
</Assertion>

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

204 Y. Demchenko et al.

5.5.4 TTS and AS

The ticket translation service (TTS) is responsible for issuing, renewing and con-
verting security tokens, responding to consumer requests for issuing, renewing or
converting security tokens for services that require it.

Each of these operations can only be done by the TTS, unlike token validation
that can be offloaded in certain cases from the security service, the own service or
at the framework integration elements such as interceptors, message routers or
binding components, especially when session tokens (as described below) are used
to simplify interactions.

The main TTS operations are:

Issuing: To obtain a security token from an identity credentials (identity token)• 
Renewing: To renew an issued security token• 
Converting: To convert a security token type to another security token type• 

The TTS operation is as follows:

 1. The consumer obtains an identity token (SAML assertion, grid proxy certificate
token, etc.) from an identity infrastructure. Typically, the consumer requires
users to send such a token in order to provide access.

 2. The consumer sends a request for issuance, renewal or conversion to the TTS using
either the identity token (issuance) or a security token (renewal or conversion).

 3. The STS validates the consumer’s token (using security policies) and sends a
security token to the consumer.

The authorisation service (AS) is responsible for supporting the token validation
functions, responding to requests for validating tokens of consumers and services
that require it.

The token validation process can be performed by the AS itself or act as a proxy
redirecting the validation process to the external service that generated it. For exter-
nal validation, the authorisation service may query an external service or IdP and
forwards the response to the consumer. When the authorisation service itself per-
forms validation, the process must verify the information contained in the token
checking the issuer, issue and expiration date, signatures, etc. In addition to the
token, the authorisation service can perform a more complex authorisation process,
retrieving attributes related to the token subject and consulting a policy decision
point (PDP) for authorisation decisions.

As described in the previous section, the architecture proposed by GEMBus is
based on message exchanges performed by different services that can be connected in
many ways. Since the ESB is the main integration mechanism provided by GEMBus
and it can also act as a container, it is possible to develop and deploy a service directly
on the bus. But it is more interesting to exercise its integration capabilities, such as
interceptors, message routers and binding components. Whether deployed inside the
bus or running as an external service, the STS can be used in a service composition to
transparently provide its capabilities, using the above-mentioned mechanisms.

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

2055 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

Figure 5.15 illustrates a scenario in which a security token service extended with
support for session tokens is integrated in the GEMBus architecture. In this exam-
ple, the consumer obtains an identity token (e.g. an SAML assertion) from an iden-
tity infrastructure. Then it sends an authentication request to the STS using the
identity token. The STS validates the consumer identity token and issues a security
token (ST) to the consumer. With the new token, the consumer sends a request mes-
sage to the provider that is intercepted by an element that extracts the ST and sends
a token validation request to the STS. The AS module validates the consumer token
and issues a response with a validated security token with an optional session token
(SeT). Finally, the interceptor passes the message to the provider. It processes the
consumer request and sends the response message to the consumer.

5.5.5 Session Management

Session management is the process of keeping track of consumer activity across
different levels of interaction with the producer.

Assuming that each message to a service is attached with a token that the service
must validate at the authorisation service, this will very likely mean a high workload
for the security services and additional delays in service provision. The objective of
managing GEMBus sessions is to speed up the security system performance with-
out compromising security goals.

There are several mechanisms to strengthen the validation of the tokens based on
the idea of sessions: It is possible to include a new type of token called session token
that is returned to the requester after successful validation in the AS. The main feature
of this type of token is rapid validation at the expense of lower security features

IdT
Identity Infrastructure

ST
VST

SeT
(JSON)

ST

Consumer Provider

IdT: Identity Token
ST: Security Token
VST: Validated Security Token
SeT: Session Token
TTS: Ticket Translation Service
AS: Authorization Service
A / I: Adaptors / Interceptors

IdT

IdT

A / I A / I

ESB

ST
STS

TTS AS

Fig. 5.15 STS extended operation with support of the session tokens

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

206 Y. Demchenko et al.

compared to a normal token, though this can be alleviated (if not solved) by reducing
its lifetime. When the requester makes a new request for validation to the AS, it can
include the two tokens or just the session token. When the AS receives the query, it
first checks the session token and, if it is valid, it can respond directly to expedite the
process. The GEMBus STS employs a lightweight yet powerful session token format
based on JWT, much faster to parse and validate. There are plans to extend this
format to make them fully valid security tokens.

Another type of optimisation can be applied to the token validation mechanism
done by the AS by making the AS temporarily store a reference to each validated token.
Within a given validity period, whenever the AS receives a request for the same token,
it does not make a full revalidation. The idea is close to the use of a cache, providing a
performance enhancement similar to the use of session tokens, and with the additional
advantage of not involving changes in the requesters that make use of the AS.

A JWT session token example looks like this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJhdWQiOiJ1c
m46Z2VhbnQ6ZWR1Z2Fpbjpjb21wb25lbnQ6cGVyZnNvbmFycmVzb3
VyY2U6bmV0Zmxvdy51bmluZXR0Lm5vXC9kYXRhIiwiaX_
NzIjoidXJuOmdlYW50OmVkdWdhaW46Y29tcG9uZW50OnBlcmZzb
25hcmNsaWVudDpOZXRmbG93Q2xpZW50MTAwODIiLCJpYXQiOjEzM-
jA0MDQ0MDk2MzAsImF0dHIiOnt9LCJleHAiOjEzMjA0MDgw
MDk3MTR9.UGl_PoSyd45QqY7m4IoQj9rDdIt3IvXfHRYSa27I1
JbKacI6bDTLewn_0JUuUjeKJoEwQ0MX9KmnT2M1ZD1lRhFGPFhhXm
5MyHNPSC7v9ruzXqk89M8MWbJwpo9elIh8aG4gPGcpGIIuHJ2VLHHDI
IstnX4Z83XfTjg4RHzLkWCRzwzbb4hkIvx6vAPNcGhcC5CfERa
opI6qiDJzpNE_StaU_BI0POUa_3BZU0mVoV4gc_fV_gJipCHXER0z
8rrRBqDuS1Alw2hxBmM2adMTQz9Zk0FlW_74WLMVVHysjltk7Vn4oEc
phXNl54wg1A8sKk6uaIZaH6oI1-f_oDtfA

This token is divided in three parts (header, claims and signature), all of them
base64 encoded. The header and claims contain the following information: [AU13]

<?xml version=”1.0” encoding=”UTF-8”?>
//JWT Header
{
 “typ”: “JWT”,
 “alg”: “RS256”
}
//JWT Claims
{
 “aud”:

“urn:geant:edugain:component:perfsonarresource:netflow.unine
tt.no\/data”,
 “iss”: “urn:geant:gembus:security:sts:gemsts”,
 “iat”: 1320404409630,
 “attr”: {},
 “exp”: 1320408009714
} </Issuer>

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

2075 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

where
typ – type of token, normally JWT
alg – algorithm used to sign and verify, in this case, RSA with SHA256
aud – represents the audience restriction
iss – token issuer
iat – issue instant
exp – expiration time
attr – attributes contained in the token.
The token can contain more claims such as nbf (not before condition) and cus-

tom claims. The signature represents the base64-encoded header and claims parts
concatenated by a dot.

5.6 Future Research Directions

This chapter presents the ongoing research on developing architecture and framework
for dynamically provisioned security services as part of the provisioned on-demand
infrastructure services. The presented results provide a good basis for further research
in the few important directions that should lead to the problem solution including
architecture, information models, required security services, mechanisms and protocols
and implementation platform.

Consistent security services implementation and operation require well-defined
general infrastructure definition and design, which is considered by authors as a
necessary part of the further research on cloud security architecture. Currently exist-
ing cloud architecture frameworks are primarily oriented toward business-oriented
applications and service delivery from the cloud provider to the user. Internal cloud
implementation by cloud providers remains behind the “cloud curtain” what imposes
also limitations on the quality of services control and security of the provisioned
cloud environment. Virtualisation technologies used in clouds bring services design
and related security problems to a new level and actually allow decoupling of
the functional services infrastructure from the physical infrastructure and platform.
To achieve the same level of the security assurance in virtual infrastructure as in
physical infrastructure, many currently adopted security models need to be revisited
and re-factored to support new requirements originating from the distributed
virtualised environment in clouds.

The following main topics are identified as further research topics related to both
general cloud architecture and cloud security architecture:

Defining new relational models in the provisioning of cloud-based infrastructure • 
services that should reflect different ownership, administration and use relation
between main actors in the current cloud services provisioning process such as
provider, operator, broker, carrier, customer (enterprise) and user
Extending the composable services architecture to reflect different virtualisation • 
techniques for compute, storage and network components of the provisioned
virtualised infrastructure, defining CSA control and management functionality

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

208 Y. Demchenko et al.

Extending the GEMBus middleware platform to support full functionality of the • 
cloud PaaS model for SOA-based services, in particular, creation of the dynami-
cally configured infrastructure security services that can be used by user applica-
tion in the provisioned on-demand services
Extending the infrastructure services modelling framework to include security-• 
related attributes into the services composition and management information
base
Extending dynamic access control infrastructure, currently defined for infra-• 
structure level access control, to integrate it with the user access control using
federated user campus or enterprise identity and account
Further definition and development of the DACI trust management model and • 
virtual infrastructure bootstrapping protocol

5.7 Conclusion

The primary focus of this chapter is the security infrastructure for cloud-based
infrastructure services provisioned on demand that in fact should be a part of the
overall cloud infrastructure provisioned on demand. The proposed solutions should
allow moving current enterprise security infrastructure that currently requires large
amount of manual configuration and setup to fully functional virtualised infrastruc-
ture service.

To provide the background for defining security infrastructure, the authors provide
an overview and short description of the proposed architectural framework for on-
demand provisioned cloud-based infrastructure services that includes such compo-
nents as the infrastructure services modelling framework (ISMF), the composable
services architecture (CSA) and the service delivery framework (SDF).

This chapter discusses conceptual issues, basic requirements and practical
suggestions for provisioning dynamically configured security infrastructure ser-
vices. This chapter describes the proposed dynamically provisioned access control
infrastructure (DACI) architecture and defines the necessary security mechanisms
to ensure consistent security services operation in the provisioned virtual infrastruc-
ture. Practical implementation of DACI reveals a wide spectrum of problems related
to the distributed access control, policy, trust management and related security con-
text management. In particular, this chapter discusses the use of the security token
service for federated inter-domain access control and identity management, autho-
risation tokens for security context exchange during provisioning session in multi-
domain and multi-provider environment.

Consistent security services design, deployment and operation require continuous
security context management during the whole security services lifecycle, which
must be aligned to the main provisioned services lifecycle. The proposed security
services lifecycle management (SSLM) model addresses security problems specific
for on-demand infrastructure service provisioning that can be solved by introducing
special security mechanisms to allow security services synchronisation and their

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

2095 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

binding to the virtualisation platform and run-time environment. This chapter
discusses how these security mechanisms can be implemented by using the TCG
Architecture and functionality of Trusted Platform Module that are currently avail-
able in almost all computer platforms and supported by most of VM management
platforms. This chapter also describes the proposed security infrastructure bootstrap-
ping protocol that uses TPM functionality and can be integrated with DACI.

The proposed DACI and its component functionalities are currently being devel-
oped and implemented in the framework of the two EU projects GEYSERS and
GEANT3.

Acknowledgement This work is supported by the FP7 EU-funded project GEANT3 (FP7-
ICT-238875) and the FP7 EU-funded integrated project the Generalised Architecture for Dynamic
Infrastructure Services (GEYSERS, FP7-ICT-248657).

References

 1. NIST SP 800-145: The NIST definition of cloud computing. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf. Accessed 29 Jan 2012

 2. NIST SP 500-292: Cloud computing reference architecture, v1.0. http://collaborate.nist.gov/
twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_
SP_500-292_-_090611.pdf. Accessed 29 Jan 2012

 3. Demchenko, Y., Mavrin, A., de Laat, C.: Defining generic architecture for cloud infrastructure
as a service provisioning model. In: Proceedings CLOSER2011 Conference, Nordwijk,
Netherlands, 7–9 May 2011. SciTePress (2011). ISBN 978-989-8425-52-2

 4. Demchenko, Y., van der Ham, J., Ghijsen, M., Cristea. M., Yakovenko, V., de Laat, C.:
On-demand provisioning of cloud and grid based infrastructure services for collaborative proj-
ects and groups. In: Proceedings of the 2011 International Conference on Collaboration
Technologies and Systems (CTS 2011), Philadelphia, PA, USA, 23–27 May 2011

 5. Demchenko, Y., de Laat, C., Lopez, D.R., Garcia-Espin, J.A.: Security services lifecycle man-
agement in on-demand infrastructure services provisioning. In: Proceedings of the IEEE
Second International Conference on Cloud Computing Technology and Science, Indianapolis,
IN, USA, pp. 644–650 (2010)

 6. Demchenko, Y., Ngo, C., de Laat, C., Wlodarczyk, T., Rong, C., Ziegler, W.: Security infra-
structure for on-demand provisioned cloud infrastructure services. In: Proceedings of the 3rd
IEEE Conference on Cloud Computing Technologies and Science (CloudCom2011), Athens,
Greece, 29 Nov–1 Dec 2011 (2011). ISBN 978-0-7695-4622-3

 7. Ngo, C., Membrey, P., Demchenko, Y., de Laat, C.: Security framework for virtualised infra-
structure services provisioned on-demand. In: Proceedings of the 3rd IEEE Conference on
Cloud Computing Technologies and Science (CloudCom2011), Athens, Greece, 29 Nov–1
Dec 2011 (2011). ISBN 978-0-7695-4622-3

 8. European Grid Infrastructure (EGI). https://www.egi.eu/. Accessed 9 Nov 2011
 9. NIST-SP 500-291: NIST cloud computing standards roadmap. http://www.nist.gov/customcf/

get_pdf.cfm?pub_id=909024. Accessed 29 Jan 2012
 10. OASIS reference architecture foundation for service oriented architecture 1.0, Committee

Draft 2, 14 Oct 2009. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf (2009).
Accessed 9 Nov 2011

 11. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web Services:
Making the Right Architectural Decision, 17th International World Wide Web Conference
(WWW2008), Beijing, China (2008)

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
https://www.egi.eu/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909024
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909024
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

210 Y. Demchenko et al.

 12. Chappell, D.: Enterprise Service Bus. O’Reilly, Beijing/Cambridge (2004)
 13. OSGi service platform release 4, version 4.2. http://www.osgi.org/Download/Release4V42.

Accessed 9 Nov 2011
 14. TMF service delivery framework. http://www.tmforum.org/servicedeliveryframework/4664/

home.html. Accessed 9 Nov 2011
 15. TMF software enabled services management solution. At http://www.tmforum.org/

BestPracticesStandards/SoftwareEnabledServices/4664/Home.html. Accessed 9 Nov 2011
 16. Generalised architecture for dynamic infrastructure services (GEYSERS Project). http://www.

geysers.eu/. Accessed 9 Nov 2011
 17. OWL 2 web ontology language. http://www.w3.org/TR/owl2-overview/. Accessed 9 Nov 2011
 18. van der Ham, J., Dijkstra, F., Grosso, P., van der Pol, R., Toonk, A., de Laat, C.: A distributed

topology information system for optical networks based on the semantic web. Elsevier J. Opt.
Switch. Netw. 5(2–3), 85–93 (2008)

 19. GEANT project. http://www.geant.net/pages/home.aspx. Accessed 9 Nov 2011
 20. GEMBus architecture, GEANT3 project report deliverable DJ3.3.2, Jan 2011
 21. Fuse ESB: OSGi based ESB. http://fusesource.com/products/enterpriseservicemix/#documen

tation. Accessed 9 Nov 2011
 22. Apache ServiceMix an open source ESB. http://servicemix.apache.org/home.html. Accessed 9

Nov 2011
 23. Spring security. Reference documentation. http://static.springsource.org/spring-security/site/

docs/3.1.x/reference/springsecurity-single.html. Accessed 9 Nov 2011
 24. Demchenko, Y., de Laat, C., Koeroo, O., Groep, D.: Re-thinking grid security architecture. In:

Proceedings of the IEEE Fourth eScience 2008 Conference, Indianapolis, USA, 7–12 Dec
2008, pp. 79–86. IEEE Computer Society Publishing, Los Alamitos (2008). ISBN 978-0-
7695-3535-7/ISBN 978-1-4244-3380-3

 25. Foster, I., Kishimoto, H., Savva, A., Berry, D., Grimshaw, A., Horn, B., Maciel, F., Siebenlist,
F., Subramaniam, R., Treadwell, J., Von Reich, J.: GFD.80 The Open Grid Services
Architecture, Version 1.5. Open Grid Forum, 5 Sept 2006

 26. NIST SP 800-14: Generally accepted principles and practices for securing information tech-
nology systems. National Institute of Standards and Technology. September 1996. http://csrc.
nist.gov/publications/nistpubs/800-27/sp800-27.pdf (1996). Accessed 29 Jan 2012

 27. TCG Infrastructure Working Group reference architecture for interoperability. Specification
ver. 1.0. 16 June 2005. http://www.trustedcomputinggroup.org/specs/IWG/IWG_Architecture_
v1_0_r1.pdf (2005). Accessed 9 Nov 2011

 28. Demchenko, Y., Gommans, L., de Laat, C.: Extending user-controlled security domain with
TPM/TCG in grid-based virtual collaborative environment. In: Proceedings of the International
Symposium on Collaborative Technologies and Systems, Orlando, FL, USA, 2007, pp.
57–65

 29. RFC5280 Internet X.509 public key infrastructure certificate and certificate revocation list
(CRL) Profile. May 2008. http://www.ietf.org/rfc//rfc5280 (2008). Accessed 9 Nov 2011

 30. Web services trust language (WS-Trust). ftp://www6.software.ibm.com/software/developer/
library/ws-trust.pdf. Accessed 9 Nov 2011

 31. Li, H., Singhal, M.: Trust management in distributed systems. Computer 40(2), 45–53 (2007)
 32. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: Proceedings of the 1997 Workshop

on New Security Paradigms – NSPW’97, Langdale, Cumbria, UK, pp. 48–60 (1997)
 33. Assertions and protocols for the OASIS security assertion markup language (SAML) V2.0,

OASIS Standard, 15 March 2005. http://docs.oasis-open.org/security/saml/v2.0/saml-core-
2.0-os.pdf (2005). Accessed 9 Nov 2011

 34. Fisher, D., McCune, J.M., Andrews, A.D.: Trust and Trusted Computing Platforms. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2011)

 35. Intel hardware technologies to secure clouds. http://www.intel.com/content/www/us/en/enter-
prise-security/processors-with-built-in-cloud-security.html. Accessed 9 Nov 2011

 36. Intel cloud builders guide for enhancing server platform security with VMWare. http://www.intel.
com/Assets/PDF/general/icb_ra_cloud_computing_VMware_TCP.pdf. Accessed 9 Nov 2011

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

http://www.osgi.org/Download/Release4V42
http://www.tmforum.org/servicedeliveryframework/4664/home.html
http://www.tmforum.org/servicedeliveryframework/4664/home.html
http://www.tmforum.org/BestPracticesStandards/SoftwareEnabledServices/4664/Home.html
http://www.tmforum.org/BestPracticesStandards/SoftwareEnabledServices/4664/Home.html
http://www.geysers.eu/
http://www.geysers.eu/
http://www.w3.org/TR/owl2-overview/
http://www.geant.net/pages/home.aspx
http://fusesource.com/products/enterpriseservicemix/#documentation
http://fusesource.com/products/enterpriseservicemix/#documentation
http://servicemix.apache.org/home.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf
http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf
http://www.trustedcomputinggroup.org/specs/IWG/IWG_Architecture_v1_0_r1.pdf
http://www.trustedcomputinggroup.org/specs/IWG/IWG_Architecture_v1_0_r1.pdf
http://www.ietf.org/rfc//rfc5280
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.intel.com/content/www/us/en/enterprise-security/processors-with-built-in-cloud-security.html
http://www.intel.com/content/www/us/en/enterprise-security/processors-with-built-in-cloud-security.html
http://www.intel.com/Assets/PDF/general/icb_ra_cloud_computing_VMware_TCP.pdf
http://www.intel.com/Assets/PDF/general/icb_ra_cloud_computing_VMware_TCP.pdf

2115 Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services

 37. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the
11th ACM Conference on Computer and Communications Security – CCS’04, Washington
DC, p. 132 (2004)

 38. Parno, B.: The Trusted Platform Module (TPM) and Sealed Storage (2007)
 39. Demchenko, Y., Wan, A., Cristea, M., de Laat, C.: Authorisation infrastructure for on-demand

network resource provisioning. In: Proceedings of the 9th IEEE/ACM International Conference
on Grid Computing (Grid 2008), Tsukuba, Japan, 29 Sept–1 Oct 2008, pp. 95–103 (2008).
ISBN 978-1-4244-2579-2

 40. GAAA Toolkit pluggable components and XACML policy profile for ONRP. Phosphorus
Project Deliverable D4.3.1, 30 September 2008. http://www.ist-phosphorus.eu/files/deliver-
ables/Phosphorus-deliverable-D4.3.1.pdf. Accessed 9 Nov 2011

 41. Web services federation language (WS-Federation), version 1.0, 8 July 2003. http://msdn.
microsoft.com/ws/2003/07/ws-federation/ (2003). Accessed 9 Nov 2011

 42. RFC4120 The Kerberos network authentication service (V5). http://www.ietf.org/rfc/rfc4120.
txt. Accessed 9 Nov 2011

 43. XML-signature syntax and processing. W3C recommendation, 10 June 2008. http://www.
w3.org/TR/xmldsig-core/. Accessed 9 Nov 2011

 44. XML encryption XML encryption syntax and processing. W3C recommendation, 10 December
2002. http://www.w3.org/TR/xmlenc-core/ (2002). Accessed 9 Nov 2011

 45. Web services secure conversation language (WS-SecureConversation). http://msdn.microsoft.
com/library/en-us/dnglobspec/html/ws-secureconversation.asp. Accessed 9 Nov 2011

 46. Web services policy framework (WSPolicy), version 1.2, March 2006. http://specs.xmlsoap.
org/ws/2004/09/policy/ws-policy.pdf. Accessed 9 Nov 2011

 47. eduGAIN – GEANT federated authentication and authorisation infrastructure. http://www.
geant.net/service/edugain/pages/home.aspx. Accessed 9 Nov 2011

 48. EduPKI GEANT PKI service. https://www.edupki.org/. Accessed 9 Nov 2011
 49. TERENA Certificate Service (TCS). http://www.terena.org/activities/tcs/. Accessed 9 Nov

2011
 50. The International Grid Trust Federation. http://www.igtf.net/. Accessed 9 Nov 2011

[AU14]

 Recommended Reading

For interested readers, it is recommended to become familiar with the general
background information related to both cloud technologies and basic security
models and standards. In particular, the following additional literature can be
recommended.

First of all, it is recommended to read NIST standards on cloud computing and
virtualisation technologies in which up-to-date list is available at the NIST Cloud
Program webpage (http://www.nist.gov/itl/cloud/):

NIST SP 800-145, “A NIST definition of cloud computing”. http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf

NIST SP 500-292, Cloud Computing Reference Architecture, v1.0. http://
c o l labora te .n is t .gov/ twiki -c loud-comput ing/pub/CloudComput ing/
ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf

DRAFT NIST SP 800-146, Cloud Computing Synopsis and Recommendations.
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf

Draft SP 800-144 Guidelines on Security and Privacy in Public Cloud Computing.
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

http://www.ist-phosphorus.eu/files/deliverables/Phosphorus-deliverable-D4.3.1.pdf
http://www.ist-phosphorus.eu/files/deliverables/Phosphorus-deliverable-D4.3.1.pdf
http://msdn.microsoft.com/ws/2003/07/ws-federation/
http://msdn.microsoft.com/ws/2003/07/ws-federation/
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-secureconversation.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-secureconversation.asp
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://www.geant.net/service/edugain/pages/home.aspx
http://www.geant.net/service/edugain/pages/home.aspx
https://www.edupki.org/
http://www.terena.org/activities/tcs/
http://www.igtf.net/
http://www.nist.gov/itl/cloud/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_SP_500-292_-_090611.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf

212 Y. Demchenko et al.

DRAFT NIST SP 800-293, US Government Cloud Computing Technology
Roadmap, Volume I, Release 1.0. http://www.nist.gov/itl/cloud/upload/SP_500_293_
volumeI-2.pdf

NIST SP500-291 NIST Cloud Computing Standards Roadmap. http://collaborate.
nist.gov/twiki-cloud-computing/pub/CloudComputing/StandardsRoadmap/NIST_
SP_500-291_Jul5A.pdf

SP 800-125 Guide to Security for Full Virtualisation Technologies.
http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf
For the background security, read the following literature:
These RFCs on the generic AAA Authorisation framework provide a general

context for developing authorisation infrastructure for on-demand provisioned
services and access control infrastructure:

RFC2903 Generic AAA Architecture Experimental RFC 2903, Internet
Engineering Task Force, August 2000. ftp://ftp.isi.edu/in-notes/rfc2903.txt

RFC 2904 AAA Authorization Framework. Internet Engineering Task Force,
August 2000.ftp://ftp.isi.edu/in-notes/rfc2904.txt

Cloud computing technologies with their distributed virtualised computing envi-
ronment motivate revisiting foundational security concepts and models and rethink-
ing existing security models and solutions. The following foundation publications
on computer security (proposed for mainframe-based computing model) can be
recommended:

Anderson, J.: Computer Security Technology Planning Study. ESD-TR-73-51,
ESD/AFSC, Hanscom AFB, Bedford, MA 01731 (Oct. 1972) [NTIS AD-758 206].
http://csrc.nist.gov/publications/history/ande72.pdf

Bell. DE., La Padula, L.: Secure Computer System: Unified Exposition and
Multics Interpretation. ESD-TR-75-306, ESD/AFSC, Hanscom AFB, Bedford, MA
01731 (1975) [DTIC AD-A023588]. http://csrc.nist.gov/publications/history/
bell76.pdf

Biba K.J.: Integrity Considerations for Secure Computer Systems. MTR-3153,
The Mitre Corporation, Apr 1977

Anderson, R., Stajano, F., Lee, J:. Security Policies. http://www.cl.cam.ac.
uk/~rja14/Papers/security-policies.pdf

http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/StandardsRoadmap/NIST_SP_500-291_Jul5A.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/StandardsRoadmap/NIST_SP_500-291_Jul5A.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/StandardsRoadmap/NIST_SP_500-291_Jul5A.pdf
http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf
ftp://ftp.isi.edu/in-notes/rfc2903.txt
ftp://ftp.isi.edu/in-notes/rfc2904.txt
http://csrc.nist.gov/publications/history/ande72.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/security-policies.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/security-policies.pdf

Author Queries
Chapter No.: 5 0001545000

Query Details Required Author’s Response

AU1 Please confirm corresponding author and provide email id for
the author.

AU2 Please check if edit to the sentence starting “The proposed
security…” is ok.

AU3 Please check if edit to the sentence starting: “Cloud “elasticity”,
as recognised…” is ok.

AU4 Please check if edit to the sentence starting: “The CSA
defines…” is ok.

AU5 Please check if edit to the sentence starting “It may include…”
is okay.

AU6 Please check if edit to Fig. 5.8 caption is ok.

AU7 Please check if edit to the sentence starting: “The general
security framework…” is ok.

AU8 Please check if edit to the sentence starting “To ensure
unambiguous…” is ok.

AU9 Please check if edit to the sentence starting “For clouds, we…”
is ok.

AU10 Please check the sentence starting “The SA could…” for
sense.

AU11 Please check if edit to the sentence starting: “It is also
suggested…” is ok.

AU12 Please check if the text “(a) Star operational model and (b)
Chain model” can be deleted from here.

AU13 Please check if edit to the sentence starting “The header and…”
is okay.

AU14 Please provide complete details for the reference [38].

