
GENI Intl. Session: Research update from UvA.���

Cees de Laat

EU	

COMMIT	

UvA	

NWO	

PID/EFRO	

SURFnet	

NLESC	

TNO	

NWO/ncf	

GLIF 2011	
 Visualization courtesy of Bob Patterson, NCSA
Data collection by Maxine Brown.

We investigate: for	

complex networks!	

Complex eInfrastructure @ SC10	

LinkedIN for Infrastructure	

•  From semantic Web / Resource Description Framework.
•  The RDF uses XML as an interchange syntax.
•  Data is described by triplets (Friend of a Friend):

Object Subject
Predicate

Location	
 Device	
 Interface	
 Link	

name	
 description	
 locatedAt	
 hasInterface	

connectedTo	
 capacity	
 encodingType	
 encodingLabel	

Object
Subject

Subject
Object
Subject

Object
Subject

Object
Subject

Path between interfaces A1 and E1:	

 A1-A2-B1-B4-D4-D2-C3-C4-C1-C2-B2-B3-D3-D1-E2-E1 	

Ethernet layer	

A2	

A1	

B1	

B2	
 B3	

B4	
 D1	

D2	
D3	

D4	

C1	

C2	
 C3	

C4	

E1	

E2	

WDM layer	

1310	
 1550	

1550	
 1310	

Multi-layer Network PathFinding

Scaling: Combinatorial problem 	

Information Modeling

hasElements:(not
Node or
Exchange)

Node

hasElements:(not
Exchange)

Exchange

hostName
OS

Host

Service

pixelsX
pixelsY

DisplayService

capabilities
maxStreams

StreamService

totalDiskSpace
freeDiskSpace

StorageService*1

SAGEDisplayService

iRODSStorageService

NFSStorageService

SAGEStreamService

NTTStreamService

NTTDisplayService

Element
providesService

hasElements:
(Host)

Cluster
Description

Group

Identifier
Device

pixelsX
pixelsY

Projector

pixelsX
pixelsY

Display

*

1

hasElements

1
*

providedBy

Infrastructure Services

R.Koning, P.Grosso and C.de Laat
Using ontologies for resource description in the CineGrid Exchange
In: Future Generation Computer Systems (2010)

Define a common information model for infrastructures and services.
Base it on Semantic Web.

 J. van der Ham, F. Dijkstra, P. Grosso, R. van der Pol, A. Toonk, C. de Laat
A distributed topology information system for optical networks based on the
semantic web,
 In: Elsevier Journal on Optical Switching and Networking, Volume 5, Issues 2-3,
June 2008, Pages 85-93

I	 want	 to	

“Show	 Big	 Bug	 Bunny	 in	 4K	 on	 my	 Tiled	 Display	 using	
green	 Infrastructure”	

	
•  Big	 Bugs	 Bunny	 can	 be	 on	 mul?ple	 servers	 on	 the	 Internet.	
•  Movie	 may	 need	 processing	 /	 recoding	 to	 get	 to	 4K	 for	 Tiled	 Display.	
•  Needs	 determinis?c	 Green	 infrastructure	 for	 Quality	 of	 Experience.	
•  Consumer	 /	 Scien?st	 does	 not	 want	 to	 know	 the	 underlying	 details.	

è	 	 His	 refrigerator	 also	 just	 works.	

Cloud	
Compu?ng	

Service	 Plane	

eScience	 Middleware	
	

	 SAGE	
CGLX	

Cromium	

	 SAGE	 	 WebServ	 	 OGSA	 	 DIAS	
ByteIO	

PerfSonar	 NSI
	 NetConf	
SNMP	

OpenFlow	

	 GIR	
UR	

	 OCCI	
JSDL	
SAGA	

DIAS	
ByteIO	
	 iRODs	

Domain	
Apps	
	

Domain	
Apps	
	

Domain	
Apps	
	

Domain	
Apps	
	

+	 ML	 +	 reasoning	 (ProLog?)	 +	 Scheduling	 +	 …	

…	 	 	 …	

ECO-Scheduling	

In	 the	 Intercloud	 virtual	 servers	 and	 networks	 become	 soMware	

•  Virtual	 Internets	 adapt	 to	 the	
environment,	 grow	 to	 demand,	 iterate	
to	 specific	 designs	

•  Network	 support	 for	 applica?on	
specific	 interconnec?ons	 are	 merely	
opi?miza?ons:	 Openflow,	 ac?ve	
networks,	 cisco	 distributed	 switch	

•  But	 how	 to	 control	 the	 control	 loop?	

stable, optimized state), which are described by the reference. To implement changes
in the network, the control application translates decisions into instructions, such as
create, forward or drop packets specific to each NE involved in the application. This
means that the system needs to provide a distributed transaction monitor to keep
network manipulations that involve multiple NE consistent.

Fig. 2. The application framework to control networks contains a control loop.

In control theory, a measurement (AC Properties) from the system is subtracted
from a reference value, which leads to an error value as input for the control
application. In our framework, the measurements (AC Properties) that represent
network state may use different metrics compared to the controlled state (AC
Actions). For example, a controller may manipulate edge weights in shortest path
routing based on throughput information. Such a scenario is meaningful if the relation
between throughput and edge weights (!) is known or can be learnt and would be
useful to dynamically distribute traffic to avoid congestion, for example [34].

Applications exchange information (NCx,y) with NEs over a communication
network, possibly over the same network the application is controlling (in-band).
Even though application developers may have access to a separate management
network, the communication path between network and application complicates the
design and validation of the controller. Network properties, such as latency and
packet loss, limit the amount of information that can be exchanged or synchronized.
So, NE state information can become incomplete, inaccurate or aged. The application
developer has to understand the limits in information exchange of a given network,
i.e. observability, when designing the control application.

This section introduced the abstractions needed to provide the basic framework for
network control in the application domain. Next, the details related to interworking of
applications and networks that lead to a functional model are described.

4 Functional Components

The OSI reference model organizes the interworking of applications and networks in
seven layers [36]. The design principle of layering allows decomposition of a
complex problem, but application specific details may be lost in the process. If
network elements are virtualized in software, the application interface to the software
(NCs) can be fine-tuned to the specific problem domain. However, the fine-tuning

tion domain is that developers can use existing software,
such as libraries or other applications developed by do-
main experts. The assumption is that applications know
what network service is required and that applications
can implement the mechanisms to find the optimum net-
work service. We focus on the latter approach with this
assumption in mind.

Model

Controller

AC

Actions

AC

Properties

Reference

NE

Application

NC
x

NC
y

�

Figure 2: A closed-loop control model between applica-
tion and network.

An application has to collect (incomplete) network in-
formation, calculate an optimum network configuration
and adjust the network to reach the optimal adaptation
of network service (Figure 2). The application devel-
oper chooses application specific abstractions, such as
interactive visualization for a human controller (figure 3)
or existing domain-specific software as controller (fig-
ure 4), to update an internal network model (NC

x

) and
to manipulate network state (NC

y

). The internal net-
work model is updated by combining state information
from all or a subset of NEs (NC

x

). In principle, the
internal network model can also take into account non-
network related information, such as computing or host-
ing costs, energy usage and service level agreements.

A controller applies an optimizer or other algorithm
to find the actions (NC

y

) needed to adjust the network
behavior in such a way that it matches the application
needs (e.g. a stable, optimized state), which are de-
scribed by the reference. While state information, such
as neighbors, throughput and latency, from a collection
of NEs combine into global network state, actions to im-
pact network state need to translate into actions, such
as create, forward or drop a packet, specific to each
NE involved in the application. This means that actions
that involve multiple NE benefit from using a distributed
transaction monitor to keep network manipulations con-
sistent.

In control theory, the sensor (AC Properties) subtracts
the measurement from the reference value, which leads
to an error value as input for the controller. In our model,
however, the measurements (AC properties) that de-
scribe network state do not have to match the controlled

state (AC Actions). For example, a controller may ma-
nipulate edge weights in shortest path routing based on
throughput information. Such a scenario is meaningful
if the relation between throughput and edge weights (�)
is known or can be learnt. This example would be useful
for load balancing or routing traffic around undesirable
NEs.

4 Implications of the control loop
When discussing the implications of the control loop,
one should be aware that the complexity of the applica-
tion depends on the network environment. Depending
on the type of application, the AC properties and actions
are at the edges, e.g. do not control routers and switches,
in the data plane or in the control plane of the network.
The following classification of applications follows from
the location of application in the network environment:

Applications that integrate a network service im-
plement alternative addressing, routing or security,
which is optimal to the application. Such applications
have no control over the intermediate network, but form
an overlay of new network functions that map to the in-
terfaces of the underlay.

Applications that are the network service offer al-
ternative network interfaces to other applications, such
as MPLS or openflow [5, 18]. By implementing tech-
nologies in the network other applications have better
control over service levels. The network should support
traffic isolation and application management, i.e. oper-
ating system concepts, to support multiple applications.

Applications that manage a network service use the
hooks or configurable parameters of a network service to
optimize the workings of a network service. In existing
network management systems, the functions are exposed
to the network operator [19] in a centralized system. In
a centralized system, it is straightforward to create an
environment that enables applications to control network
services [20]. We look at the implementation of a typical
application.

4.1 Network model in the application
Any application that implements a controller operates
on a network model, which must be updated by NC

x

events or polling. An AC property getNeighor is enough
to discover the network topology from a controller, for
example with a depth-first search. The information is
then translated into an application-specific data struc-
ture, such as a graph model in Mathematica [21]. With
access to throughput (resulting in thptNetwork figure 4)
router configuration, it is trivial to develop a controller
that load balances router traffic by manipulating their
edge weights. This approach shows that developers can
write advanced, yet straightforward controllers using ex-
isting software.

Q & A
http://ext.delaat.net/	

Slides thanks to:	

•  Paola Grosso	

•  Sponsors see slide 1. J	

•  SNE Team & friends, see below	

	

I did not talk about:	

-  CineGrid, digital Cinema on CI	

-  Knowlegde complexity	

-  Security & privacy	

-  AAA	

-  …	

