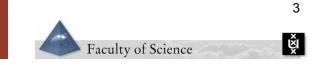
CineGrid GRID & Networking

Cees de Laat

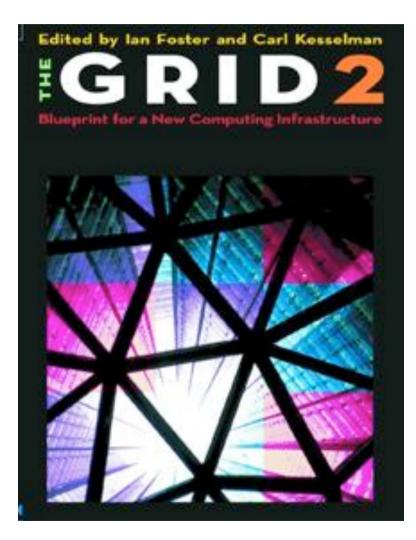
University of Amsterdam

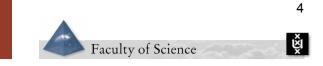
With grid slides thanks to David Groep (NIKHEF)



CineGrid Mission

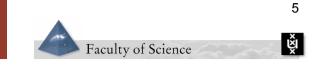
To build an interdisciplinary community that is focused on the research, development, and demonstration of networked collaborative tools to enable the production, use and exchange of very-high-quality digital media over photonic networks. http://www.cinegrid.org/




DE UNIVERSITEIT VAN AMSTERDAM 💆 UVA

The Grid

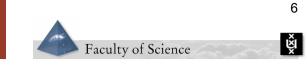
- Grid `coined' in 1997 by
 - Carl Kesselman (ISI/USC) and
 - Ian Foster (ANL)
- builds on a tradition of distributed computing
 - 1969: Creaper & Reaper
 - 1978: RPC concept
 - 1985: Condor
 - 1991: CORBA
 - 1991: DCE/DFS



Exploding Data

Collected data in science (and industry) grows exponentially:

The Bible	5	MByte
X-ray image	5	MByte/day
Functional MRI	1	GByte/day
Bio-informatics databases	500	GByte each
Refereed journal papers	1	TByte/yr
Satellite world imagery	5	TByte/yr
US LoC contents	20	TByte
Internet Archive 1996-2002	100	TByte
Particle Physics today	1	PByte/yr
LHC era physics	20	PByte/yr


The Grid label

Many distributed computing middlewares are now called "grid"

- Oracle 10g
- BOINC (formerly SETI@home)
- Sun Grid Engine
- Unicore
- Globus Toolkit 4
- gLite
- ...

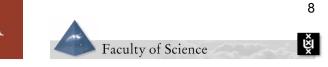
And then there is middleware to build grids that is not usually branded as such

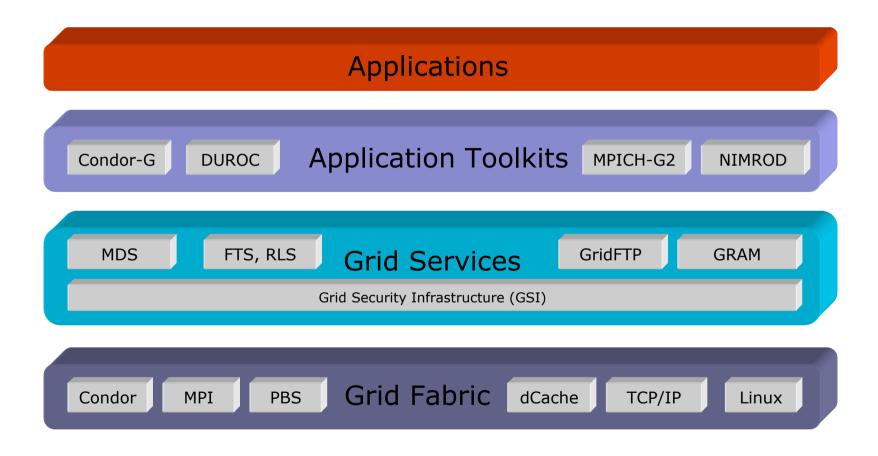
- Condor
- ...

But they are not all that `griddy'

- **Oracle 10***g* = database on a cluster with node function changes
- BOINC (formerly SETI@home) = single application client/server
- Sun Grid Engine = cluster batch system
- Unicore
- Globus Toolkit 4
- gLite
- ...

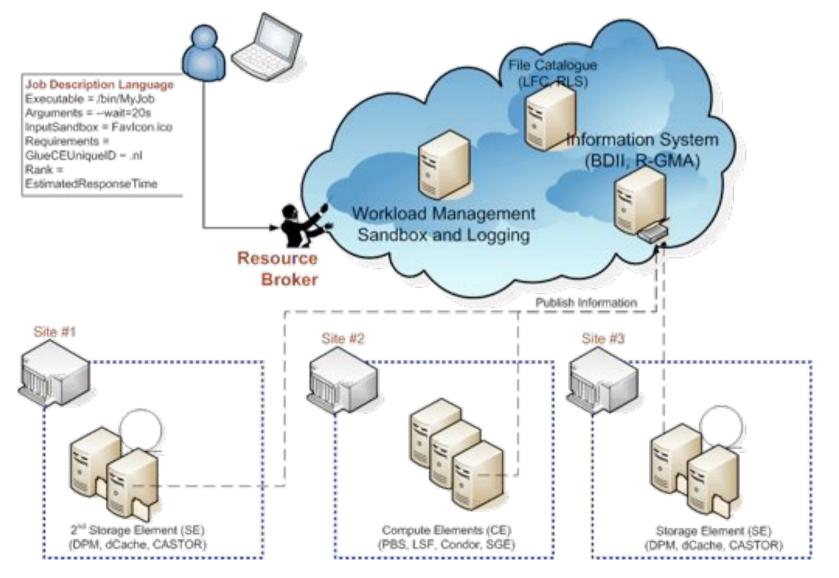
- Condor
- ...


De Universiteit van Amsterdam 🙀 UvA


Grid Middleware

- Software that enables Grid
 - term deliberately vague, like the term Grid itself
 - but, from experience, one needs at least these services
 - resource discovery
 - resource scheduling
 - uniform compute access
 - uniform data access (to both files and structured data)
 - asynchronous information sources
 - authentication, delegation and secure communications
 - identity management
 - system management and system access
 - and these services should have a standard, common, interface
- In general, 'middleware' is used to describe the layer between network and application

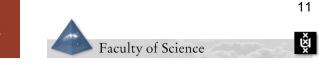
Ň



Grid Middleware and their position

Typical Grid Topology

Ň


Faculty of Science

Job Description Language

This is JDL that the user might send to the Resource Broker

Executable	<pre>= "catfiles.sh";</pre>
StdOutput	<pre>= "catted.out";</pre>
StdError	= "std.err";
Arguments	= "EssentialJobData.txt
	<pre>LogicalJobs.jdl /etc/motd";</pre>
InputSandbox	<pre>= {"/home/davidg/tmp/jobs/LogicalJobs.jdl",</pre>
	"/home/davidg/tmp/jobs/catfiles.sh" };
OutputSandBox	<pre>= {"catted.out", "std.err"};</pre>
InputData	= "LF:EssentialJobData.txt";
ReplicaCatalog	=
"lda	ap://rls.edg.org/lc=WPSIX,dc=cnrs,dc=fr";
DataAccessProtocol	L = "gsiftp";
RetryCount	= 2;

How to you see what's in the Grid?

Broker matches the user's request with the site

- `information supermarket' matchmaking (using Condor Matchmaking)
- uses the information published by the site

Grid Information system

'the only information a user ever gets about a site'

- So: should be reliable, consistent and complete
- Standard schema (GLUE) to describe sites, queues, storage (complex schema semantics)
- Currently presented as an LDAP directory

Courdiance name=local Courdiance na	Îge Êqt Aem Êgt jêdb		
	mds-wo-namentocal mds-wo-namenPDC mds-wo-namenPDC mds-wo-namenPDC mds-wo-namenORE OlueSEUniqueDegrid35 lai.n2p3.9 OlueSeniceUniqueDegrid37.lai.n2p3.9 OlueSeniceUniqueDegrid37.lai.n2p3.9 OlueSeniceUniqueDegrid30.lai.n2p3.9 OlueSeniceUni	DisastacUniquetD DisastacUniquetD DisastacUniquetD DisastacUniquetP DisastacUniqueterno	ORIF mailto: grid support@grif fr TER 2 INDP3-CC 2.2 DMPNIA-LAL-LPNHE=IPNO-LLR,Region ite de France 2 http://www.grif.tr OlueEte GueSte OlueEte GueSte OlueEte GueSte OlueEtermaVersion 1 mailto: grid support@grif fr mailto: grid support@grif fr mailto: grid support@grif fr GueSteUniqueID=GRIF OlueELuteUniqueID=ipnts2001.in2p3.tr ORIF GRIF

De Universiteit van Amsterdam 🙀 UvA

Attributes set per Site

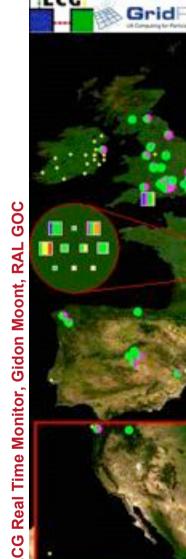
Site information

- SiteSysAdminContact: mailto: grid-admin@example.org
- SiteSecurityContact: mailto: security@example.org

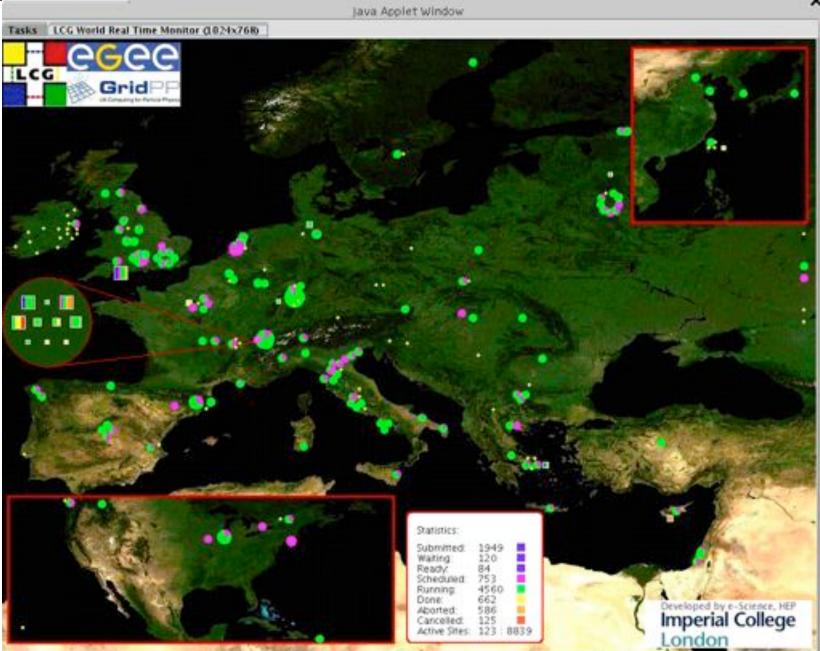
Cluster info

GlueSubClusterUniqueID=gridgate.cs.tcd.ie

HostApplicationSoftwareRunTimeEnvironment: LCG-2_6_0 HostApplicationSoftwareRunTimeEnvironment: VO-atlas-release-10.0.4 HostBenchmarkSI00: 1300 GlueHostNetworkAdapterInboundIP: FALSE GlueHostNetworkAdapterOutboundIP: TRUE GlueHostOperatingSystemName: RHEL GlueHostOperatingSystemRelease: 3.5 GlueHostOperatingSystemVersion: 3

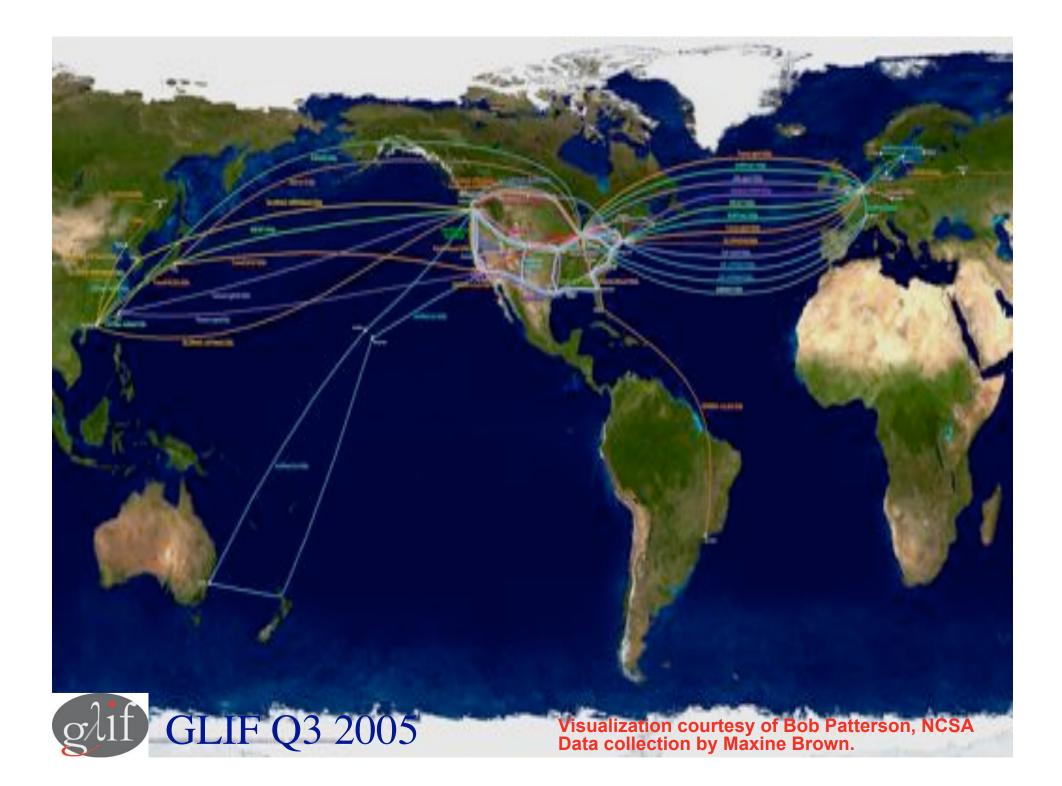

GlueCEStateEstimatedResponseTime: 519 GlueCEStateRunningJobs: 175 GlueCEStateTotalJobs: 248

Storage: similar info (paths, max number of files, quota, retention, ...)


ŝ

Faculty of Science

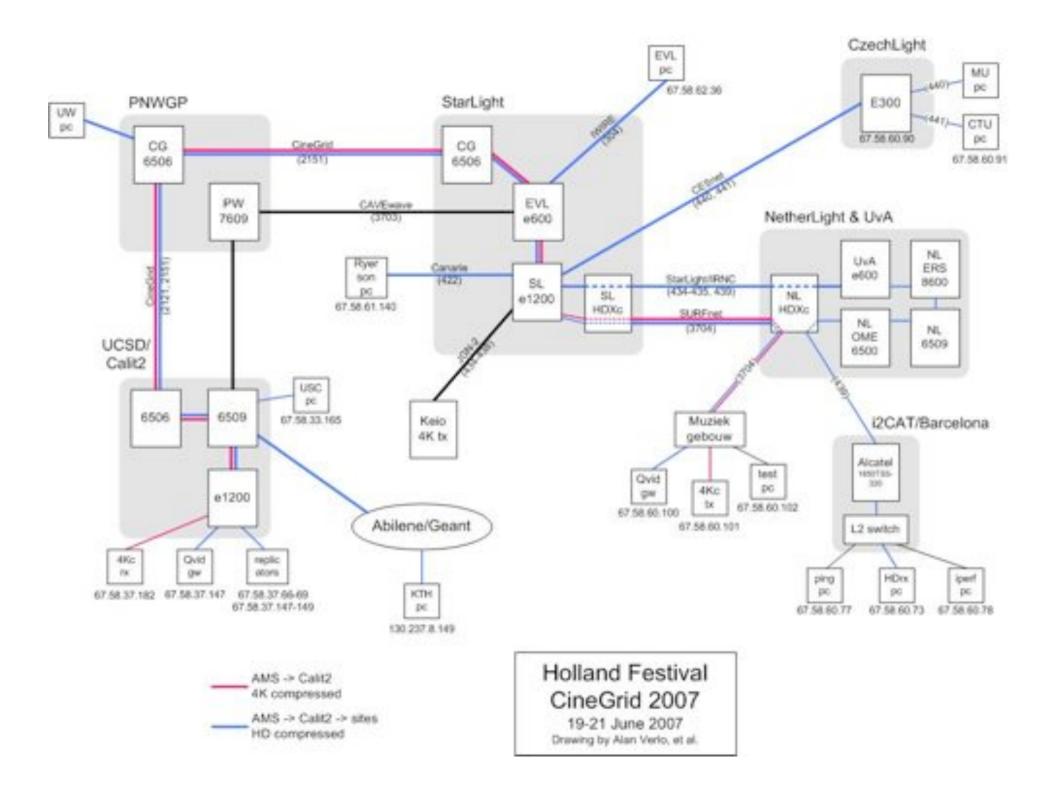
Grid in operation



Ň

Format - Numbers - Bits (examples!)

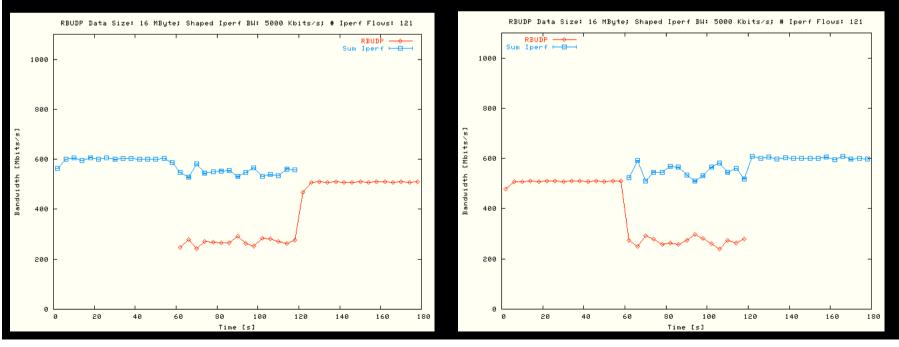
Format	X	Y	Rate	Color	Frame	Frame	Flow	Stream
				bits/pix	pix	MByte	MByt/s	Gbit/s
720p	1280	720	60	24	921600	2.8	170	1.3
HD								
1080p	1920	1080	30	24	2073600	6.2	190	1.5
HD								
2k	2048	1080	24	36	2211840	10	240	1.2
			48				480	2.4
SHD	3840	2160	30	24	8294400	25	750	6.0
4k	4096	2160	24	36	8847360	40	960	7.6


Note: this is excluding sound! Note: these are raw uncompressed data rates!

What is a LightPath

- A LightPath is a circuit like connection that connects end systems to each other. This uses usually the same infrastructure as the Internet, but a LightPath gets dedicated resources next to Internet.
- A LightPath can be a combination of:
 - A color in a fiber (Lambda)
 - Sonet/sdh circuit in a sonet infrastructure
 - Vlans and dedicated ports in an ethernet switch
 - Etc.
- Aim is to get predictable and knowable connection characteristics

				Cas3/table/net_data.ht				Q+ Google			
pour + My In	des + Bur	Company 4 - 11	nasirch + CCI	HTT * Apple To *					dt.		
			(C Sum (See	er (Troughad) (Reg. (ICP) (Ref.)	Scot ine (rec) (cc) (c	 best 7 days b 12 30 01 	1) 30 mm. []			
				Pine AB	(ma) from / to nodel)	N des Mars el II.	1405.120				
				1 100 100	Skipped tests: UvA-Z						
Date	Time	>> VU 083	<< VU 083	>> VU 085	ex VUICES		** LIACS 127	>> UnA 236	4× UyA-236	>> UNA-239	<< 15A-239
31/05/2007	12:30:01	1		1380/1382/1410	1.380 / 1.383 / 1.420		1	12 3			
31/05/2007	12:00:01			1380/1385/1410	1.380/1.384/1.450						
31/05/2007	11:30:01	1	3	1380/1383/1410	1380/1382/1390						
31/05/2007	11:00:02	1		1380/1382/1410	1.380 / 1.382 / 1.400	2					
31.05/2007	10:30:01			1380/1383/1390	1.380/1.382/1.390			1			
31/05/2007	10.00.01			1.380 / 1.382 / 1.410	1.380 / 1.383 / 1.410			1			
31/05/2007	09:30:01	-		1.380 / 1.384 / 1.410	1.380 / 1.382 / 1.400			_			
31/05/2007	10.00.90			1380/1382/1410	1.380 / 1.383 / 1.400						
31/05/2007	08:30:02			1380/1383/1410	1.380 / 1.382 / 1.400				erv (cons	stant
31/05/2007	08-00-01			1380/1383/1410	1.380 / 1.383 / 1.410			C.S.	- J	• • ===	stant ctab
31/05/2007	07:30:02			1380/1382/1390	1.380 / 1.381 / 1.390						
31/05/2007	07:00:01		1	1.380 / 1.382 / 1.410	1.380 / 1.383 / 1.400		1	an	ia pi	real	clab.
31/05/2007	06:30:01			1380/1385/1410	1.380/1.382/1.390						
31/05/2007	06.00.01	-		1380/1382/1410	1.380/1.382/1.420						1.
31/05/2007	05:30:01	1		1380/1382/1400	1.380 / 1.382 / 1.410	2		8 3	1		3
31/05/2007	05:00:01			1380/1382/1410	1.380/1.382/1.390						<u>[]</u>
31/05/2007	04:30:01			1380/1381/1390	1.380 / 1.381 / 1.390			8			
31/05/2007	10:00:40	-			1.380 / 1.384 / 1.410						
31/05/2007	03:30.02		1	1380/1384/1410	1.380 / 1.382 / 1.400			1			
31/05/2007	03:00:02			1380/1382/1410	1.380 / 1.382 / 1.400						
31/05/2007	02:30:01	-	1	1380/1382/1400	1.380 / 1.382 / 1.400						
31/05/2007	02:00:01			1.380 / 1.383 / 1.410	1.380 / 1.384 / 1.410						
31/05/2007	01:30:01		1	1.380 / 1.382 / 1.410	1.380/1.382/1.390						


Internet Transport Protocols

• IP = Internet Protocol

- Connectionless packet transport service
- Datagrams of max 64 kByte that can be fragmented down the way
- Packets can get lost, duplicated or out of order!
- TCP/IP = Transmission Control Protocol
 - Reliable byte-stream over potentially unreliable packet service
 - Connection oriented, exactly once and in order, end to end duplex
- UDP = User Datagram Protocol
 - Packet service up to 64 kByte
 - Connectionless, unidirectional, L2 switches may start flooding
 - Unreliable delivery, can get out of order, duplicated, lost

Issues & protocols

- When using UDP watch for bottleneck!
- About 10 other non standard protocols
- FAST TCP
 - Modified receiver algorithms
- RBUDP
 - Runs on top of UDP, simple back-off and retransmission scheme

Windows and buffering for rel

- Round Trip Time (rtt) is time it take to ser get the answer back (unix tool ping)
- That is the shortest time the sender other end
- Sender can only discard old data
- Lightspeed in fiber = 200000 km
- 100 km = 200 km round **u**
 - Amsterdam Geneve
 - Amsterdam Chicago 🤞
 - Amsterdam San Digg
 - Amsterdam Tokyo
 - Amsterdam Sydney

ms respective re

 $NL = 6 \text{ ms}^2$

now

Dreskeler

Dreda

≈ 300 ms

Den Boack

Titburg

ocols

Buffer space

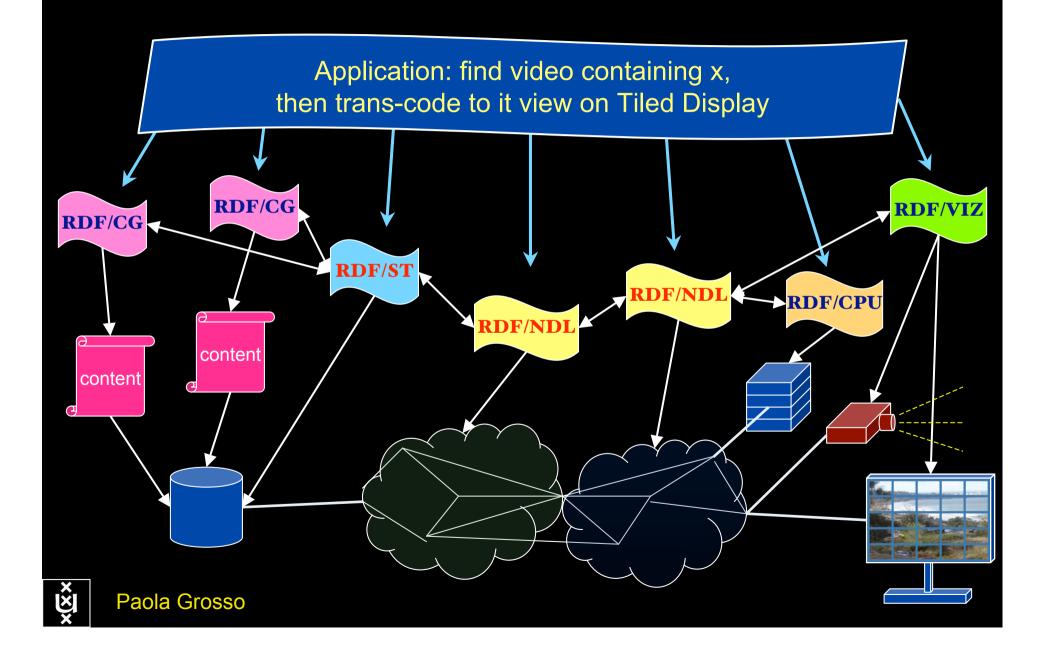
Window = RTT * BW

RTT	100 Mbit/s	1 Gbit/s	10 Gbit/s
1	12.5 kB	125 kB	1.25 MB
2	25 kB	250 kB	2.5 MB
5	62.5 kB	615 kB	6.15 MB
10	125 kB	1.25 MB	12.5 MB
20	250 kB	2.5 MB	25 MB
50	625 kB	6.25 MB	62.5 MB
100	1.25 MB	12.5 MB	125 MB
200	2.5 MB	25 MB	250 MB
500	6.25 MB	62.5 MB	625 MB
1000	12.5 MB	125 MB	1250 MB

TCP Tuning (if not auto-tuning)

- 1 Gbit/s on 160 ms RTT (= Amsterdam San Diego) :
 - sysctl -w kern.ipc.maxsockbuf=50000000
 - sysctl -w net.inet.tcp.sendspace=21000000
 - sysctl -w net.inet.tcp.recvspace=21000000
 - sysctl -w net.inet.udp.maxdgram=57344
 - sysctl -w net.inet.udp.recvspace=74848
 - sysctl -w net.local.stream.sendspace=32768
 - sysctl -w net.local.stream.recvspace=32768
 - sysctl -w kern.ipc.somaxconn=512
 - sysctl -w net.inet.tcp.mssdflt=1460
 - sysctl -w net.inet.tcp.delayed_ack=2
 - sysctl -w net.inet.tcp.rfc1323=1
 - sysctl -w net.inet.tcp.rfc1644=1
 - sysctl -w net.inet.tcp.newreno=1

End System Issues


- Ethernet card interface to computer bus system
 - PCI-X
 - 32/64 bit 66/133/266 MHZ -> about 8 Gbit/s max in 133 MHZ mode
 - PCI-Express
 - 2.5 Gbit/s per lane, 4, 8, 16 lanes
- Memory organization
- CPU cache
 - Effect when things go out of cache (small windows, etc.)
- CPU core
 - Takes 1 core to handle network (affinity may help)
- Disk raid subsystem
 - raid0 twice as fast as raid5
 - One disk does typically 40 MB/s write, 60 MB/s read

Amsterdam CineGrid S/F node

RDF describing Infrastructure

Questions ?

www.cinegrid.org www.cinegrid.nl www.supertube.org www.science.uva.nl/~delaat

