

WP3 March 24, 2004

Cees de Laat, UvA, The Netherlands

DataTAG is a project funded by the European Commission under contract IST-2001-32459

Final EU Review - 24/03/2004

v Wait 15 minutes

Final EU DataTAG Review, 24 March 2004

WP3 objectives

v Task 3.1. Performance validation

- Create, collect, test network-tools to cope with the extreme Lambda environment (high RTT, BW)
- measure basic properties and establish a baseline performance benchmark
- Task 3.2 End user performance validation/monitoring/optimization
 - Use "out of band" tools to measure and monitor what performance a user in principle should be able to reach
- Task 3.3 Application performance validation, monitoring and optimization
 - Use diagnostic libraries and tools to monitor and optimize real applications to compare their performance with task 3.2 outcome.

WP3 achievements t3.1

- v Performance Test Tools
 - http://carol.science.uva.nl/~jblom/datatag/wp3_1/tools/test_tools.html
- Lambda's are a Layer 1-2(-3) environment
 - $_{\nu}$ $\,$ use end to end traffic generating tools
 - v not ICMP based tools since those need routers in the path
 - $_{\nu}$ tools must work in Gigabit environment
- v Netperf
 - v TCP bulk transfer, UDP unusable (no shaping)
 - v modifications made to enhance IPv6 support
- v Iperf
 - v TCP and UDP shaped bulk transfer
 - v lightweight multiple streams test support
 - v IPv6 support
 - w modifications made to introduce TCP shaping, debugging

Understand Lightpath

TCP is bursty due to sliding window protocol and slow start algorithm. Window = BandWidth * RTT & BW == slow

Forbidden area, solutions for s when f = 1 Gb/s, M = 0.5 Mbyte AND NOT USING FLOWCONTROL

SCTP Performance

- Stream Control Transmission Protocol:
 TCP-lite
- v Few versions support Linux
- LK-SCTP not optimized for performance:
 Not currently usable for Grids
- v Feedback to SCTP protocol designers
- v Results put on the Web:
 - $_{\nu}\,$ one of the pages with the greatest hit rate

Protocol Testbed

- v Non Goal
 - v To come up with yet another protocol
- v Goal
 - To test new and supposedly aggressive protocols mixed with many vanilla streams in controlled environments
- v How
 - Use gridcluster to generate #100^{ths} of shaped flows background and monitor those small flows
 - v Start special protocol stream
 - v As function of RTT!

Test of UDT

Test of **RBUDP**

RBUDP Data Size: 32 MByte; Shaped Iperf BW: 10000 Kbits/s; # Iperf Flows: 121 RBUDP Sum Iperf ⊢ ⊟ ₽₽₽₽₽₽₽₽₽₽₽₽₽ Bandwidth [Mbits/s]

End user performance validation / monitoring / optimization t3.2

• Overview of tools (continuously updated)

- v http://carol.science.uva.nl/~jblom/datatag/wp3_1/ tools/monitor_tools.html
- v Homebrew:
 - v rTPL(end user performance monitoring):
 - v http://carol.science.uva.nl/~jblom/rtpl/
- v Current monitors (Amsterdam):
 - v <u>http://195.169.124.34/monitor/index.html</u>
- v TraceRate
 - $_{\nu}$ next slides in more detail

Tools: Trace-Rate Hop by hop measurements

- A method to measure the hop-by-hop capacity, delay, and loss up to the path bottleneck
 - Not intrusive
 - Operates in a high-performance environment
 - Does not need cooperation of the destination
- Based on Packet Pair Method
 - Send sets of b2b packets with increasing time to live
 - For each set filter "noise" from rtt
 - Calculate spacing hence bottleneck BW
- Robust regarding the presence of invisible nodes

- L is a packet size
- C is the capacity

Examples of parameters that are iteratively analysed to extract the capacity mode

 Capacity measurements as function of load in Mbit/s from tests on the DataTAG Link:

	tracerate	pathchar	pathrate	
	0% 25% 50%	0% 25% 50%	0% 25% 50%	
Hop #1	165 170 165	92 92 93	N/A N/A N/A	
Hop #2	*162 *165 *162	996 977 832	N/A N/A N/A	
Hop #3	933 862 862	N/A N/A N/A	981-986 760-776 927-947	
Duration	2'40 2'40 2'40	N/A N/A N/A	25" 5'30 5'40	

Comparison of the number of packets required

	pathchar	clink	pchar	nettimer	tracerate
4 hops path	11,562	6,002	11,732	982	4,000
11 hops path	31,782	16,400	32,417	6,663	11,000

- v Validated by simulations in NS-2
- Linux implementations, working in a high-performance environment
- Research report: http://www.inria.fr/rrrt/rr-4959.html
- Research Paper: ICC2004 : International Conference on Communications, Paris, France, June 2004. IEEE Communication Society.

Gigabit Network Monitoring

- v Tested non-intrusive monitoring techniques:
 - $_{\nu}$ Complement 2002 work on intrusive techniques
- Use performance data available in network devices and hosts:
 - v SNMP MIBs
- v Investigated usefulness of Web Services:
 - $_{\nu}~$ UDDI is not appropriate for service discovery

- v Tested integration of NetLogger (LBNL) and GridFTP (Argonne):
 - Detailed information about the performance of Grid applications
- v Integration is difficult
- v Few versions interoperate smoothly
- v Detailed how-to on the Web

