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a b s t r a c t

Software Defined Networks (SDN) and Network Function Virtualisation (NFV) provide the basis for
autonomous response andmitigation against attacks onnetworked computer infrastructures.Wepropose
a new framework that uses SDNs and NFV to achieve this goal: Secure Autonomous Response Network
(SARNET). In a SARNET, an agent running a control loop constantly assesses the security state of the
network by means of observables. The agent reacts to and resolves security problems, while learning
from its previous decisions. Two main metrics govern the decision process in a SARNET: impact and
efficiency; these metrics can be used to compare and evaluate countermeasures and are the building
blocks for self-learning SARNETs that exhibit autonomous response. In this paperwe present the software
implementation of the SARNET framework, evaluate it in a real-life network and discuss the tradeoffs
between parameters used by the SARNET agent and the efficiency of its actions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Crime directed to network infrastructures and network proto-
cols is increasing [1]. The economic and societal consequences of
such attacks are reaching front pages in the news leading society to
question their trust in the Internet [2–4]. Not surprisingly, an entire
industry emerged to create an ecosystem of tools and devices that
are marketed to prevent, stop, or to mitigate the negative effects
of such malicious behaviour. We can install off the shelf Intrusion
Detection Systems (IDS) to identify the existence of attacks andwe
can deploy specialised firewalls to prevent malicious traffic from
entering a specific network domain.

A major development in the networking landscape of the past
years is the emergence of SoftwareDefinedNetworks (SDNs). SDNs
allow computer networks to be controlled from one or more soft-
ware controllers using a common interface. These controllers have
the ability to monitor and dynamically reconfigure the network,
redirect traffic flows and adapt the network to the situation on
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demand. The question that then arises naturally is whether SDNs
can provide novel methods to counteract attacks.

Another emerging technology in computer networking is Net-
work Function Virtualisation (NFV). NFV allows the instantiation
and placement of Virtual Network Functions (VNF) in the network
on the fly [5]. On demand placement of VNFs at the right place in
the network and using the SDN to redirect the traffic through the
placed VNFs can save resources and their costs. It is immediately
clear that NFV has a great potential for network security, especially
if we consider that firewalls, IDS, traffic scrubbing facilities can all
be deployed flexibly where most needed.

We are convinced that SDNs and VNFs are suitable for attack
responsemechanisms. In case of attacks on network infrastructure,
SDNs and VNFs bring three benefits; (1) detection and counter-
measure placement are not tied to the network ingress/egress
points but can be anywhere in the network; (2) unused network
capacity can dynamically be assigned to handle attack traffic for
short amounts of time; (3) deploying countermeasures based on
demand brings a reduction of resources that can be assigned to
other processes, reducing overall cost.

In this paperwewill use our architecture for SecureAutonomous
Response Networks (SARNET) [6]. We will show how SDN-based
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Fig. 1. The SARNET control loop.

countermeasures can be adopted for protection of networks and
ultimately for guaranteed delivery of services. We argue that the
most useful element of our, or for thatmatter any other SDN-based
network solution, is a proper characterisation of the countermea-
sures efficiency. In this article we will, therefore, lay the founda-
tion for a generic manner to define and measure the efficiency
of SDN-based mitigations against computer infrastructures. The
impact and efficiency metrics presented in this paper can be used
as features in Artificial Intelligence (AI) approaches to improve
autonomous response against attacks and to coordinate the actions
of VNFs and SDNs, ultimately without external intervention.

The rest of this article is organised as follows: Section 2 presents
the conceptual operation in a SARNET and Section 3 discusses the
impact and efficiency metrics. Section 4 describes the software
prototype that implements a SARNET and Section 5 lists the sce-
narios in which we have tested its performance. Sections 6, 7,
and 8 present and discuss the experimental setup and the results
of our evaluation. Finally, we frame our efforts in the context of
existing work in Section 9 and summarise in Section 10 the cur-
rent status and future steps towards SARNET adoption in real-life
networks.

2. Secure autonomous response networks

Nowadays, software can efficiently support the instantiation of
network topologies as an overlay network on physical devices. Vir-
tual switches, virtual links and virtual network functions, together,
are the building blocks for software-defined overlay networks.
Companies increasingly rely on overlay networks for both the
delivery of services to their customers, or for the establishment
of inter-company services. An example is the creation of virtual
networks between instances of cloud based virtual machines or
containers. While these virtual networks are technically feasible
their robustness during attacks has not yet fully evaluated. Novel
approaches to both the detection of attacks as well as the im-
plementation of defence strategies are key elements to achieve
sufficient robustness.

In the SARNET project we are researching how to ultimately
enable autonomy of network response to attacks. SDN-based tech-
niques are promising components in this vision as they provide the
flexibility and means to autonomously deploy countermeasures
when attacked. A SARNET uses control loops to monitor andmain-
tain the desired state required by the security observables. The
SARNET control loop is similar to the OODA loop (observe, orient,
decide, and act). Lenders et al. [7] successfully applied the OODA
loop to cyber security. The SARNET loop, shown in Fig. 1, has an
added step, compared to the OODA loop, namely the learn phase.
In this phase data on the attack characteristics as well as data on
the defence adopted are collected and stored to improve response
times during future attacks.

The SARNET control loop traverses the following steps:

Detect —the default state of a SARNET during normal operation.
Whenever the SARNET detects an anomaly on the network
it triggers the control loop.

Analyse —analyses the characteristics of the particular attack.
Analyse determines where the attacks originate, which path
they take in the network and what the target is.

Decide —evaluates past decisions and policies and determines the
suitable countermeasure for the attack.

Respond —executes the countermeasure.

Learn —stores data containing results and execution parameters
for future reference.

The various steps in the control loop are carried out in the
SARNET-agent component. This component receives information
from one or more external monitoring systems for Detect; it relies
on a network controller for the execution of the Respond stage. The
SARNET-agent, monitoring system and network controller work
closely together to maintain the network’s security state.

2.1. Attack detection and analysis

Several techniques exist to detect known attacks. The first tech-
nique relies on intrusion detection systems; these systems can,
when updated regularly, detect most known attacks. Flow analysis
is another established way of detecting anomalies in the net-
work. Flow analysis can help to detect both known and unknown
attacks, but requires security experts to identify the anomalies
and to collect attack details. Finally, machine learning can be ap-
plied for attack detection. Sommer et al. [8] researched the use
of machine learning in intrusion detection systems and identified
some challenges. They stated that Machine learning is much better
at detecting similarities than detecting outliers. To use machine
learning one needs to train the algorithmwith network data during
under normal operation aswell as during attacks. The latter dataset
is often difficult to obtain since this requires to collect facets of
network behaviour during such anomalous events. Furthermore,
even if one manages to train the algorithm with sufficient data,
there is a risk of registering false positives, so further investiga-
tion by a security expert is necessary when the network under
attack is critical to the business. False positives can be reduced by
correlating events in the dataset to events from other detection
methods. These events can be collected and correlated in Security
Information and Event Management (SIEM) systems or correlated
using an attack correlation pipeline such as the one we developed
for CoreFlow [9].

Existingmethods, such as the one described in [10], can be used
to classify an attack. The author proposes to use a cascading chain
of elements to formally describe an attack, starting from the tools
used by the attackers, the vulnerability they exploit, the action they
perform, the intended target and the results they accomplish. This
approach seems promising andwewill investigate its suitability in
the SARNET context. When the attack is classified, the exact char-
acteristics of the attack need to be analysed. Analyse obtains the
additional information such as: origin, target, entry points, traffic
type and other characteristics. Analyse also provides information
on the scale of the attack which can then be used to calculate the
risk of the attack.

2.2. Decide

Decide looks at the cost and efficiency of the possible reactions.
Tomake a decisionDecide takes the following aspects into account:

• Attack class
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• Attack characteristics
• Risk of applying the countermeasure
• Knowledge of the network
• Costs of executing responses
• Efficiency of the countermeasure in similar situations (previ-

ous results from Learn)

Effective reaction depends on the flexibility of the SARNET un-
der attack, e.g. whether the SARNET is redundant or multi-homed,
and depends on the location in the network to apply the coun-
termeasures. In some cases machines or network elements can be
added and link capacity can be increased. Dynamically changing
link properties are possible thanks to NFV and the cloud services
available to the SARNET. A modification will have monetary costs,
dependent on the service provider the infrastructure is running on,
as well as costs in implementation times, e.g. VM startup times.
These costs are parameters that Decide accounts for.

2.3. React and learn

SDNs provide the flexibility required for SARNET to change traf-
fic flows and re-route important traffic away fromoverloadedparts
of the network towards other parts dedicated to traffic analysis.
Combining the flexibility of SDNs with both NFV and machine
virtualisation enables deployment of countermeasures where re-
quired. Service Function Chaining (SFC), an emerging standard for
network control plane operations [11], provides a suitable solution
to connect these NFVs together. By using SFC one can specifically
target and re-route suspicious traffic towards network functions
that do more intensive processing e.g. deep packet inspection, fil-
tering, or sanitation. Exclusively processing suspicious flows low-
ers the cost of the response and is less disruptive to regular traffic.
Once the reaction is in place, the network evaluates whether or not
the applied countermeasure has the desired effect. The Decide step
in the next run will evaluate whether the countermeasure is still
required and sufficient. It will take care of initiating removal or ap-
plying an additional or new defence based on updated information
from the Learn step.

The Learn step records the effect of the chosen actions. The data
recorded by learn can be used to respond more quickly to similar
attacks in the future. It is essential to properly define the efficiency
of a countermeasure. One possible way to express efficiency is
using themonetary costs of the response; efficiency is, in this case,
the difference between revenue recovered thanks to the reaction
and cost of the reaction itself. We will elaborate on this efficiency
definition in Section 3. What constitutes an effective countermea-
sure depends on this efficiency metric but will differ between
SARNETs because of differences in network topology, rules and
policies. When the attack characteristics and efficiency values are
recorded and learned by an algorithm they will be used next time
to optimise the Respond phase. Nevertheless, it may be desirable
to override the automatic execution of a specific countermeasure
from the ones recorded previously. Therefore, we provide a way to
override learned behaviour and implement a self defined response
during Respond.

3. Towards an estimate of efficiency

Given a system like SARNET, determining the efficiency of coun-
termeasures is crucial to estimate how well the system functions
and to learn how to automatically apply the best response. Prior to
formally defining efficiency, we define a system recovery and the
impact of an attack.

In any given SARNET there will be one or more observables that
allow assessing the state of the system: normal or attacked. Each

Fig. 2. Here, a recovery takes place. Impact: the amount of the lost revenuebetween
the detection time and the recovery time (blue area). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. No recovery takes place. Impact: the amount of the lost revenue between
the detection time and the end of the time window.

observable monitors a metric in the system and signals a perfor-
mance degradation when one or more metrics cross a threshold,
which could indicate the presence of an attack. The threshold is
set according to the outcome of baseline measurements that were
performed when the system was under normal operation.

For illustration purposes, we will focus in the following on
monetary revenue as our observable, but all our discussion is
generalisable to other SARNETswith their relevant observables. For
example, if the observable would be the number of failed log in
attempts, then being above the threshold would mean an attack,
and we would use the same definitions and theory as described
below, but adjusted to the new setting.

3.1. Impact

The impact of an attack can be defined with respect to the
chosen observable, such as the revenue. First, having set a time
window [0, T ], we define the system to have recovered if the
revenue attains the threshold within the time window. This does
not have to occur. It is, in fact, possible that even after the imple-
mentation of countermeasures there is no recovery. In this case,
the system achieves a state where the revenue is stable, but still
below the threshold.

We now define impact as the integral of the lost revenue be-
tween the detection time and the recovery time. If no recovery
takes place before the timeout time T , let impact be the integral
from the detection time until time T . Fig. 2 shows a simplified
graphical representation of this concept, when a recovery takes
place. Fig. 3 illustrates a case without recovery.

The moment at which the threshold is passed defines the de-
tection time. The revenuemay continue decreasing until the coun-
termeasures are in place; then, the revenue starts moving towards
the threshold and it either ultimately fully recovers, defining the
recovery time, or never recovers, at least not within the time
window [0, T ]. The exact shape of the revenue function during the
recovery period depends on the attack characteristics.

In this example,we evaluate the systemoperationswith respect
to the revenue and we can calculate the impact by integrating the
revenue when it is below the threshold. The revenue is lower-
bounded at zero, as we cannot have a negative revenue; conse-
quently, we do not need to specially introduce an (upper or lower)
bound. However, there could be cases, in which the observable
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for which we evaluate the impact can potentially grow/decrease
indefinitely, thus requiring the definition of an upper bound. In
such cases, we can use an artificial ceiling of twice the threshold,
thus setting the scale to be a 100% deviation from the threshold.
Implementing such a ceiling causes, as a side effect, the impossi-
bility to distinguish which countermeasure performs worse, if the
revenue repeatedly exceeds the ceiling. Therefore, it is important
to let the user adjust the ceiling when necessary.

If no recovery occurs within our timewindow, one could decide
to fine-tune or alter the response, until the recovery is achieved.
However, in some cases, the actual recovery is not sufficient to
pass the threshold, and thus the system will not fully recover. In
these cases we have defined impact as the integral until the end of
the time window. Alternatively, we could consider the difference
between the actual recovery and the threshold.

3.2. Efficiency

In order to assess the quality of our defences relatively to their
total costs and to be able to automatically pick the best defence
method by machine learning, based on past experience, we now
define efficiency. The total cost of a defence is defined as the
integral of the cost from the attack detection time till the recovery,
or until the end of the time window, if no recovery has taken
place till then. We emphasise that the definition below and all
the theoretical basis for it are fully applicable to any definitions
of impact and total cost, as long as the bounds on the values of the
impact and the total cost are appropriately defined (they are B · T
and C · T in the settings of this section, but can be anything).

Weneed to define efficiency as a function ofwhether the system
has recovered (within the time window), of the impact the attack
has had despite our defence and of the total cost of the defence.

Let C be an upper bound on the cost during the period [0, T ],
and let B be the threshold (or baseline). We require the efficiency
function to satisfy at least the following basic properties:

1. Monotonously decreasingwith impact I , where I ∈ [0, B ·T ].
In another setting, B · T should be substituted by the upper
bound on I .

2. Monotonously decreasing with total cost Ct , where Ct ∈

[0, C · T ]. In another setting, C · T should be substituted by
the upper bound on Ct .

3. If no recovery takes place, the efficiency is always smaller
than if a recovery does take place, regardless of anything
else.

4. All the values between 0 and 1 are obtained, and only
they are. In the functional notation, efficiency is a function
E: {recovered, not recovered} × R+ × R+ → [0, 1].

From the infinitely many definitions of efficiency that fulfil all
the above properties, we propose the following one. We define the
efficiency as

E(recovered or not, I, Ct) ∆
=⎧⎪⎪⎪⎨⎪⎪⎪⎩

β + α B·T−I
B·T + (1 − β − α) C ·T−Ct

C ·T
= 1 −

α
B·T I −

1−β−α

C ·T Ct Recovered,
α( β

1−β
) B·T−I

B·T + (1 − β − α)( β

1−β
) C ·T−Ct

C ·T

= β − α
β

(1−β)(B·T ) I − (1 − β − α) β

(1−β)(C ·T )Ct otherwise,

(1)

where parameter β defines the cutoff between recovery and no
recovery (we allocate β of the total [0, 1] scale to the case of no re-
covery, and the rest is given to the case of recovery), and parameter
α ∈ [0, 1−β] expresses the relative importance of the impactw.r.t.
the total cost. The idea is to combine the relative saved revenue
B·T−I
B·T with the relative saved cost C ·T−Ct

C ·T , and shift the recovered

case in front of the non-recovered one. The multiplication by β

1−β

normalises the efficiency of no recovery to fit to [0, β].
We now ensure that this function satisfies all the above re-

quirements. The monotonicity in I and in Ct is by definition. The
expression B·T−I

B·T can obtain all the values in [0, 1], as I is in [0, BT ].
The expression C ·T−Ct

C ·T obtains all the values in [0, 1], as Ct ∈

[0, C · T ]. Therefore, the defined efficiency obtains the values in
[β + 0, β + (1 − β)] = [β, 1] if a recovery takes place, and the
values in [0, β] otherwise. The continuity of the efficiency function
implies that all the values in these segments are obtained.

To make a compelling argument for this efficiency function, we
strengthen the above requirements and prove that the stronger set
of requirements actually characterises Eq. (1).

Theorem 1. Let Ct obtain values in [0, C · T ]. Then, Eq. (1) is
the unique definition of efficiency that satisfies the following set of
properties:

1. Linearly decreasing with impact I, where I ∈ [0, B · T ].
2. Linearly decreasing with total cost Ct, where Ct ∈ [0, C · T ].
3. The ratio of the linear coefficient of the impact to the linear

coefficient of the total cost is the same, regardless whether the
recovery takes place or not.

4. If no recovery takes place, all the values between 0 and β and
only they can be obtained; if a recovery does take place, then
all the values between β and 1 and only they can be obtained.

We remark that condition 3 implies that the ratio of the linear
coefficient of the impact to the linear coefficient of the total cost
expresses their relative importance, regardless whether recovery
takes place.

Proof. Eq. (1) is linearly decreasing with impact and with total
cost and condition 3 holds in a straight-forward manner. We have
shown after the definition of Eq. (1) that condition 4 is fulfilled as
well. It remains to prove the other direction.

Let the formula for the case when a recovery is attained be a−b ·

I − d · Ct , for positive b and d. This form follows from conditions 1
and 2. For theminimum impact and total cost, I = Ct = 0, we have
the maximum possible efficiency of 1, implying that a−b0−d0 =

1 ⇒ a = 1. For the maximum impact and total cost, I = B · T and
Ct = C · T , we have the minimum possible efficiency of β , which
means that 1 − b · BT − d · CT = β ⇒ bBT + dCT = 1 − β . Let
α be bBT . The nonnegativity of dCT and bBT + dCT = 1 − β imply
together that bBT ≤ 1−β , as required from α in Eq. (1). Moreover,
bBT + dCT = 1 − β implies that dCT = 1 − β − α. To conclude,
the efficiency is 1− b · I − d · Ct , where b =

α
BT and d =

1−β−α

CT , for
α ∈ [0, 1 − β], as in Eq. (1).

In the case of no recovery, let the formula be a′
− b′

· I − d′
· Ct .

By substituting I = Ct = 0 we conclude that a′
= β . By

substituting I = BT and Ct = CT , we obtain β − b′BT − d′CT = 0,
i.e. b′BT + d′CT = β . From condition 3 we have

b
d

=
b′

d′
⇐⇒

b
b′

=
d
d′

.

These two equations, together with the proven above equality
bBT + dCT = 1 − β , imply that each coefficient gets multiplied
by β

1−β
, yielding b′

= b β

1−β
and d′

= d β

1−β
. Together with the

expression above for a′, we obtain Eq. (1). □

Since in our model we assume that there are no costs for
applying countermeasures,wewill omit the total cost part by using
α = 1−β . Instead of directly calculating the efficiency of the non-
recovered runs, we use the success rates from Table 1 to weigh the
successful vs. the unsuccessful runs, so we allocate all the range
[0, 1] for the recovery case by setting β = 0. After setting β = 0
and α = 1 − β we have an equation for the efficiency of a single
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observable (revenue): Em(Recovered, I)
∆
= 1−

I
B·T , obtaining values

in [0, 1].
In order to combine several observables (say, revenues of vari-

ous kinds), we define the total efficiency as

ESARNET
∆
=

n∑
i=1

γiEm,i

and wemultiply ESARNET by the success rate. Here, the nonnegative
parameter γi describes the importance of ith revenue. By taking
normalised γis, such that the combination is convex, meaning that∑n

i=1 γi = 1, we ensure that E is in [0, 1], because all the Eis are
there.

A limitation of defining thresholds and ceilings is that if the
thresholds or ceilings are modified over time, the previous values
for efficiency and impact have to be recalculated using the new set-
tings to make them comparable to one another. This requires the
system to store the full time data of the impact per an observable
of each attack. Therefore, it is important to set the threshold and
the ceiling carefully before the measurements commence.

We have suggested a natural efficiency function that is charac-
terised by a set of reasonable properties, and then we have simpli-
fied it for our usage. Therefore, these efficiency considerations are
not relevant purely for our SARNET architecture; the results are
generalisable to other SDN-based systems as well. These results
can, in essence, provide the basis for a standardised and agreed
upon set of metrics when comparing various SDN-based response
systems.

4. The SARNET prototype

To perform our evaluation of SARNETs we further developed
our VNET environment. VNET provides an orchestration and vi-
sualisation system for a SARNET; it displays network topology
information, flows and application metrics in an intuitive way.
Additionally, it allows the creation of observables based on the
current state of the network.

In our previous paper [12] we described in detail the major
components of VNET as depicted in Fig. 4. Here we provide a short
summary thereof:

• Infrastructure controller talks to the IaaS platform to instan-
tiate the virtual infrastructure; in our case, we use Exo-
GENI [13] a cloud platform that provides good network level
isolation.

• Monitoring system receives monitoring information from the
virtual infrastructure.

• Network controller controls the network and hosts in the
virtual infrastructure.

• VNET-agent collects monitoring data on the network ele-
ments and sends them to the monitoring system and to
the network controller for dynamic configuration of the el-
ements.

• VNET coordinates the interaction between the different com-
ponents.

• UI controller and VNET visualisation UI display the network
information and handle user interactions with VNET.

For autonomous defence we developed a SARNET-agent (Sec-
tion 4.4) that receives real-time monitoring data and observable
states from VNET and instructs VNET to alter the virtual net-
work infrastructure when action is required. VNET provides the
SARNET-agent with the information and the tools it requires for
autonomous network defence.

In order to better evaluate our automated defences and support
richer responses we updated the initial VNET prototype. First, we

Fig. 4. Software components in the VNET prototype.

added support for VNFs and introduced the infrastructure ele-
ments needed to create VNFs that perform certain countermea-
sures, namely an SDN switch and an NFV host.

Secondly, we added support for the processing of network flow
information. Network flow information is collected by all network
routers and SDN switches in the virtual infrastructure using host-
sflow1 and subsequently sent to the VNET monitoring system.

Finally, we updated and refined the SARNET-agent and the User
Interface.

The next sections will describe these new components in more
detail.

4.1. Containerised virtual network functions

Three different containers were made to run on the Docker
host: an IDS, a CAPTCHA function, and a honeypot.

The IDS container performs packet inspection using PCAP to
capture packets. A rule-based engine reports back attacker IP ad-
dresses based on known attack signatures.

The CAPTCHA network function acts as a proxy between the
external user and the web service. It will inject a web page con-
taining a mandatory challenge which needs to be solved before
the session is allowed through to the web service it protects. This
challenge prevents automated clients from submitting a poten-
tially malicious request. These CAPTCHAs are normally easy to
solve by humans but expensive to solve by automated processes.
This effectively blocks automated requests, such as attacks, to
pass through. Because in this simulation all clients are fully auto-
mated, we implemented CAPTCHA by using cookies that only non-
malicious clients set.

The honeypot function simulates a legitimate version of the
web service. However, any interaction with this honeypot will not
affect the actual service. The honeypot can be used to capture
additional details during an attack. For example, in the case of
a password brute force attack, the honeypot captures the failed
password attempts on the attacked account.

1 host-sflow: https://github.com/sflow/host-sflow.

https://github.com/sflow/host-sflow
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4.2. SDN switch

The VNET prototype uses software defined networking in order
to apply virtual network functions on traffic entering the domain
it protects.

The network component that provides the SDN functionality
is a Linux host that provides switching through a Linux Ethernet
bridge.

In order to redirect traffic flows on this switch, ebtables2 is used
to rewrite destination MAC addresses on incoming packets. For
example, the destination MAC address on all traffic coming from
the switch interface connected to the local router can be rewritten
to be destined for a VNF, cluster, or host, for further processing.
After processing the packets can then be returned to the switch
with the original destination MAC address restored. This results
in ‘external’ packets being redirected through the NFV host, while
leaving all other local area network communication unmodified.

4.3. Network function virtualisation host

NFV allows VNET to deploy specific security functions on traffic
flows as needed. The network function virtualisation host is cur-
rently implemented as a Linux host with a number of Docker3 con-
tainers. Each container implements a specific network function. A
Docker Registry instance is used to store a catalogue of container
images.

All containers on the NFV host are attached to a Linux bridge.
Using ebtables traffic to rewrite the destination MAC address,
traffic can be forced into a specific container. By redirecting traffic
leaving a container towards a next container various network
functions can be chained together. This chaining can be limited to
specific IP addresses or IP ranges, allowing only specific traffic to
be manipulated.

4.4. SARNET-agent

The SARNET-agent implements the SARNET control loop de-
scribed in Section 2 which, based on the topology and the data
streamed from the monitoring controller, can make autonomous
decisions on how to best defend the network. This data is gathered
during the detect phase.

During the analyse phase any changes in service and network
state are processed. For example, service transactions per second,
CPU usage, and the number of successful and failed logins are
monitored. If any of the predefined thresholds for these values are
violated a flag is raised.

In the next phase a decision is made based on the currently
active flags and any other additional data (e.g. the presence of
certain network flow types, data from an IDS, et cetera). Specific
combinations of flags and data indicate certain attack signatures
for which a set of predefined solutions can be applied. If there
is insufficient information about the attack, e.g. the attacking IP
address or origin domains are not known, an IDS can be deployed
dynamically to gather this information. In addition to applying
new solutions, the decide phase also determineswhether currently
active solutions need to be retained or removed.

In the final phase, the chosen response is applied to the network.
Possible responses include introducing traffic filters at cooperating
upstream routers to block attack traffic, re-routing traffic to the
NFV host using an SDN switch, and choosing the chain of network
functions to apply to the traffic.

2 ebtables: http://ebtables.netfilter.org.
3 docker: http://www.docker.io.

4.5. SARNET-agent UI

To show the state of the SARNET-agent and the information it
uses to make its decisions we use a visualisation UI (Fig. 5) besides
the one that is provided by VNET. The first column (not shown in
the figure) shows networkmetrics such as network flows and total
bandwidth usage. The second column shows application metrics
such as CPU usage, transaction rate, and successful versus failed
login attempts. The final column shows the control loop itself. Each
stage of the control loop is highlighted as it is executed, and any
decision or result produced by such a phase is displayed in an
information block.

5. Simulated scenarios

To illustrate the SARNET operation of our prototype we have
identified three attack scenarios and executed them in a virtual
network.

• UDP DDoS attack.
• CPU utilisation attack.
• Password attack

Fig. 6 shows the topology of the virtual network on which we
execute the attack scenarios. On the virtual network, traffic passes
the virtual routers R1–R4 and the SDN switch S2 switch described
in the previous section. Under normal circumstances simulated
users in the network domains D1–D3 send regular requests to the
web services W1–W2 containing a mix of high and low resource
pages as well as correct and incorrect logins using random in-
tervals. The number of successful requests will generate the sales
value we use in our measurements. In our attack scenarios, attacks
originate from the external domains D1–D3 and target the web
services W1–W2.

This virtual network is under constant monitoring. Wemonitor
the following metrics: (1) sales, the number of successful transac-
tions to theweb services, (2) logfail, the number of failed logins, (3):
cpu, the CPU load on the web services, and (4) traffic_mix, the ratio
between TCP and UDP traffic on the network. New data for these
metrics are asynchronously collected by the SARNET-agent with a
sample rate of approximately 1 s. From thesemetricswe define the
following observables that are monitored for health:

• ddos_observable; failswhen themetric salespasses its thresh-
old and traffic_mix shows excessive UDP traffic.

• bruteforce_observable; fails when themetric logfail passes its
threshold

• load_observable; fails when both metric cpu and sales passes
their threshold

When one of these observables fails the SARNET-Agent launches
the associated countermeasure.

5.1. UDP attack

In the UDP attack scenario a number of attackers residing in the
same domains (D1–D3) as legitimate users send large amounts of
UDP traffic towards the servers in order to starve the legitimate
connections by congesting the network links. To generate the
attacks, we use Iperf24 to send non spoofed UDP traffic from all
of the domains at a rate specified by the attack size.

The SARNET-agent recognises the type of attack due to the
excessive amount of UDP traffic and the simultaneous drop in sales.
The SARNET has two possible countermeasures to apply: udp-
rateup and udp-filter. In the former we increase the bandwidth

4 iperf2 website: https://iperf.fr.

http://ebtables.netfilter.org
http://www.docker.io
https://iperf.fr
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Fig. 5. Top right part of user interface of the SARNET-agent, it visualises the metrics the agent uses, the control loop and the decisions taken.

Fig. 6. Topology of the virtual network: Three domains (D1–D3) are connected via
multiple routers (R1–R4) and a switch (S2) to two web services (W1–W2). NFV is a
host that runs our security VNFs.

of the core links using the tc traffic control utility; in the latter
we filter the malicious traffic at the edges (routers R2–R3) using
iptables.

5.2. CPU utilisation attack

In the CPU utilisation attack, malicious users in one of the
domains D1–D3 request content from the servers W1–W2. Gener-
ating content requires computation on the server’s side before the
request can be satisfied. By requesting computationally expensive
pages at a high frequency, the attackers increase the CPUutilisation
on the servers. This increase, in turn, affects the server’s capabil-
ity to answer legitimate requests. Since these resource requests
happen at the application layer, the network layer does not clearly
show indication of an attack.

To generate the attack, we change the behaviour of our regular
client to CPU attackmode. Thismodemakes the clientmalicious by
removing delays and by only requesting computational expensive
pages. Attack size depends on the number of attack domains and
the number of workers per domain that can be specified, each
worker having its own IP address.

In this scenario SARNET first deploys an IDS that performs Deep
Packet Inspection in the same domain as the servers to classify and
further analyse the requests and to identify attack sources. As sec-
ond step, it redirects all requests from the domains where the bad
traffic originates, i.e. IP ranges, to a container running a CAPTCHA.
The attack requests cannot set the CAPTCHA cookie, preventing the
attackers from being proxied to the server. The error returned by

Fig. 7. Themixed (red) traffic (attack +normal requests) fromD1 is redirected to the
NFV host which has two VNFs chained, first an IDS that monitors the traffic, finally
an CAPTCHA blocker that prevents malicious requests to pass and normal traffic
(green) to continue to web services (W1–W2). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

the CAPTCHAproxy is computationally cheap, allowing it to handle
many more requests than the computationally expensive page on
the server. Since the attacks do not pass the proxy, the load on the
server returns to normal allowing the server to use its resources
for legitimate requests.

Fig. 7 shows how the traffic is redirected by S2 to the NFV host
NFV which runs both the IDS and CAPTCHA VNFs. After filling in
the CAPTCHA, regular traffic is redirected to the web servers while
the automated malicious traffic gets blocked.

5.3. Password attack

In the Password Attack scenario malicious users are trying to
log in on the servers using dictionary generated passwords. This
attack, as the previous one, takes place at the application layer. It
is generated by changing the client to password attack mode. In
this mode the client tries to login with incorrect passwords, from a
predefined list, without any delays. This results in many incorrect
logins. Similar to the CPU attack, the attack size is determined by
the amount of attacking domains and the amount of workers per
domain.

As can be seen in Fig. 8, similar to the CPU utilisation attack,
the SARNET again responds by first deploying an IDS on the NFV
host to identify the attackers in D1. Additionally, the SARNET
starts a honeypot VNF in the container host. The SARNET-agent
uses the intelligence information gathered from the IDS to let the
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Fig. 8. Themixed (red) traffic (attack +normal requests) fromD1 is redirected to the
NFV host which has two VNFs chained, first an IDS that monitors the traffic, finally
a honeypot that can monitor attack behaviour. In this case normal requests (green)
pass through untouched to (W1–W2). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

SDN switch S2 only redirect the identified malicious users to the
honeypot.

Now that the attackers are routed to the honeypot, the web
servers W1–W2 can resume normal operations. In principle, the
honeypot provides the possibility to further analyse the passwords
that the attackers use and to gain additional intelligence. Currently
we do not use this to improve the SARNET detection systems; we
consider this future work.

6. Test setup

To evaluate whether our efficiency definition is suitable to rank
the countermeasures applied in the response phase, we stop the
control loop after implementing the countermeasure and export
the data.We refer to each combination of a (predefined) attack and
a (predefined) response as a scenario and to each execution of such
a scenario as a run. The experiments are performed on a virtual
network in a slice on the uva-nl ExoGENI rack with the topology
shown in Fig. 6. Each time we start a new scenario, we reset the
virtual network to the default state and wait for the network to
stabilise.

Section 5 described the attack scenarios: DDoS, CPU, and pass-
word attack and the four countermeasures used for the experi-
ments: udp-filter and udp-rateup, honeypot, CAPTCHA. Note that
we consider the deployment of an IDS as a transitory
(counter)measure, as it does not provide any resolution to the pre-
defined attacks, but it only provides extra intelligence information
used for a subsequent countermeasure.

In all our runs we define a sample window of 10. We determine
that an attack has occurred after more than 30% of the samples of
the monitored metrics within the window violate the set thresh-
old. Likewise, we define that the system has recovered when,
after the countermeasures have been implemented, more than
70% of the samples within the sliding window pass the predefined
threshold in the opposite direction. If there is no recovery within
the set amount of time in seconds from detection we time-out and
end the run. The ratio of successful runs and failed runs provides
the success rate.

Apart from the basic experiment described above, we also de-
fine runs where we use a time window of 20, 30 and 40 s; these
correspond to increase of 2, 3, and 4 times the window size of 10
s. To experiment with the success rates, we will allow a relaxation
of the recovery threshold. We use recovery threshold relaxations
of 0, 5, 10, and 20 percent.

Scenarios are executed 50 times for each combination of attack
size, time window size, or threshold relaxation and then we aver-
age the times needed for Detection and Recovery; we calculate the
Impact following the procedure described in Section 3; addition-
ally, we calculate the success rate.

We use the results to rank countermeasures, and for each at-
tack/defence combination we compute the impact and efficiency.

7. Simulation results

We will now present the results of running a number of at-
tack/defence scenarios on the SARNET infrastructure.

7.1. Time evolution of the SARNET

It is illustrative to view the behaviour of the system as the
time that passes from the start of an attack, the detection and the
application of the countermeasures, to the (possible) recovery.

Figs. 9 and 10 illustrate two scenarios when we have only one
observable governing the state of the SARNET. This is the case in
the DDoS scenario and the password attack; in the former the only
threshold considered is the revenue, in the latter the threshold is
the number of unsuccessful logins.

In both plots the horizontal lines indicate the value of the
observable as timepasses and the value of the baseline. The vertical
lines show the detection times, the implementation times imple-
ment1 and implement2, and the start end of the recovery window
when the recovery criteria are met. The plots show two different
implementation times: implement1 indicates when the agent re-
quests the implementation of a countermeasure and implement2
signals, in case of the filter countermeasure the confirmation that
the implementation is applied and active. In multi-stage defences,
IDS-honeypot or IDS-captcha, implement2 is used to indicate the
request time of the second stage (honeypot or captcha).

In Fig. 9 a DDoS attack is mitigated and the sales climb back up
above the set threshold after the implementation of the counter-
measure.

Fig. 10 shows an unsuccessful mitigation of a password attack.
After recording three samples where the number of logins exceeds
the threshold, the agent will implement the chosen countermea-
sure. We see a vertical dotted blue line indicating that the system
has implemented the countermeasure but the number of failed
logins does not fall back below the acceptable value within the
allotted time.

For theCPUattack recoveryneeds to happenonmultiple thresh-
olds, namely revenue and CPU load. Figs. 11 and 12 illustrates
two runs in which the systems does not recover. In the first case
the sales do not pass again the set threshold, while the CPU load
does; in the second case both metrics do not fall back within the
acceptable range.

7.2. Success rate

We can expect that the success rate of a countermeasure de-
pends on the size of the attack. We distinguish between light,
medium or high impact attacks. This characterisation is specific
to each attack. For DDoS we define light as an attack where the
throughput of the attackers is 75% of the bottleneck link, medium
is 100% and heavy is 200% of the bottleneck link. For both the CPU
and the password attacks we define them light when we have a
scenario with 5 attackers, medium with 10 attackers and heavy
with 15 attackers.

Table 1 list the success rates of the scenarios. Each variation of
the scenario is executed 50 times. An execution is successful when
the metrics cross the threshold and we observe a recovery within
the set amount of time which is 30 s by default.

Success rate indicates whether countermeasures are suitable
against a specific attack. As we can read from Table 1 captcha is
clearly less effective than a honeypot in case of a CPU
attack.

However, to further distinguish between successfully recovered
runs, we use recovery time. Table 2 shows the average recov-
ery time for the scenarios across the same 50 runs as the attack
intensity increases. From this table we see that the attack size does
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Fig. 9. Successful run with one threshold (DDoS attack). Note: The implement1 line is plotted on top of the detect line since the events occurred at the same time.

Fig. 10. Failed run one threshold (password attack).

Fig. 11. Failed run with only one threshold recovered other not (CPU attack).

not affect the recovery time. There is a 1 s fluctuationwhich is close
to the interval at which we sample the metrics (0.8 s).

A system parameter that impacts the success rate of a counter-
measure is the time that the system is given to recover before the
agent moves on to try the next defence measures. We repeated
experiments for three different recovery times 20, 30 and 40 s
(or 2, 3, and 4 times the window size of 10 s) during a Medium
sized attack. Table 3 shows the success rate of the experiments;
as expected success rate goes up when the time set for recovery is
increased.

Many of the failed recoveries are due to the expectation that
after application of the countermeasures the system will return to
its original state. As we discussed in Section 3 there are cases in
which we can only realistically expect partial recovery. To account
for this, we repeated the experiments applying threshold relax-
ation;we lower the threshold for recovery by a fixed percentage by
5%, 10% and 15%. Table 4 shows how the success rate improves as
we have relaxed thresholds for various medium attacks; the effect
of relaxation is evident in the case of a captcha defence for a CPU
attack.
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Fig. 12. Failed run where both thresholds do not recover (CPU attack).

Table 1
Success ratio of recovery for the various attacks intensities as function of the applied
countermeasure.

% attacks recovered

Size Light Medium Heavy
Attack Defence
cpu captcha 42% 8% 0%

honeypot 100% 100% 100%
udp-filter 0% 0% 0%
udp-rateup 0% 0% 0%

pwd captcha 100% 100% 100%
honeypot 100% 100% 100%
udp-filter 0% 0% 0%
udp-rateup 0% 0% 0%

udp captcha 0% 0% 0%
honeypot 4% 0% 0%
udp-filter 93% 100% 100%
udp-rateup 56% 0% 0%

Table 2
Recovery time for successful runs for the various attacks intensities as function of
the suitable countermeasures.

Recovery time (in seconds)

Attack size Light Medium Heavy
Attack Defence
cpu captcha 11 10 fail

honeypot 2 2 3
pwd captcha 2 2 2

honeypot 2 2 2
udp honeypot 12 fail fail

udp-filter 6 6 5
udp-rateup 10 fail fail

Table 3
Recovery success ratio for a medium attack with the suitable countermeasures, as
the time boundaries are relaxed and the recovery threshold is not relaxed.

∼2x win (20 s) ∼3x win (30 s) ∼4x win (40 s)
Attack Defence
cpu captcha 4% 8% 10%

honeypot 96% 100% 100%
pwd captcha 100% 100% 100%

honeypot 100% 100% 100%
udp udp-filter 100% 100% 100%

7.3. Impact and efficiency

Section 3 showed how we determine impact and efficiency of
various countermeasure to an attack. Table 5 reports on the impact

Table 4
Recovery success ratio for a medium attack with the suitable countermeasures, as
thresholds are relaxed and the recovery time is the set to 20 s.

0% 5% 10% 15%
Attack Defence
cpu captcha 8% 16% 52% 90%

honeypot 100% 100% 100% 100%
pwd captcha 100% 100% 100% 100%

honeypot 100% 100% 100% 100%
udp udp-filter 100% 100% 100% 100%

Table 5
Impact of the countermeasures for the various attacks intensities as function of the
applied countermeasure.

Impact

Attack size Light Medium Heavy
Attack Defence Type
cpu captcha cpu 5.64 10.03 fail

captcha sales 158.19 199.51 fail
honeypot cpu 5.61 12.14 12.62
honeypot sales 91.47 119.87 162.57

pwd captcha logfail 22.97 24.17 24.92
honeypot logfail 24.08 25.57 23.51

udp honeypot sales 41.57 fail fail
udp-filter sales 0.26 9.08 25.16
udp-rateup sales 50.86 fail fail

of the attack as function of the size of the attack. Not surprisingly,
we see that the impact of the attack on the system increases as
the attack size increases. However in the case of the combination
pwd-honeypot we see a decreased impact when going from a
Medium to Heavy attack. This is due to the artificial ceiling (2x
baseline) that we used as a maximum to keep the impact of each
measurement within a range. This procedure was described in
Section 3.1. When we remove this limit, the values for login
failures give us the expected increase.

The effect of the ceiling is not an issue when comparing two
different responses within the same attack category; on the other
hand, it is not possible anymore to rank the effect of the same
countermeasures for various attack intensity, as the ceiling makes
us rank all the countermeasures as equally good.

Table 6 shows how efficient the countermeasure is in solving
the attack; this is the outcome of our efficiency calculation when
combined with the success rate. Based on this metric, we can rank
the countermeasures, as we did in the last column; we can then
use this as the input for the decision phase the next time a similar
attack occurs to pick the most optimal solution.
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Table 6
Efficiency of the countermeasures for the various attacks intensities as function of the applied countermeasure.

Efficiency Efficiency × Success rate

Size Light Medium Heavy Light Medium Heavy
Attack Defence Rank

cpu captcha 0.98 0.97 0.00 0.56 0.08 0.00 2
honeypot 0.99 0.99 0.98 0.99 0.99 0.98 1

pwd captcha 0.96 0.96 0.96 0.96 0.96 0.96 1
honeypot 0.96 0.96 0.96 0.96 0.96 0.96 1

udp honeypot 0.99 0.00 0.00 0.04 0.00 0.00 3a

udp-filter 1.00 1.00 1.00 1.00 1.00 1.00 1
udp-rateup 0.99 0.00 0.00 0.60 0.00 0.00 2a

aThese rankings are only used in case of Light attacks.

8. Discussion

Despite the fact that our experiments covered only a limited
set of attacks and defences, the method we defined to determine
countermeasure efficiency can be universally applied. The only re-
quirement is the availability of time series data on metrics directly
associated with the attack class to compute the impact.

We showed that efficiency of the defence depends on the type
of attack, therefore comparing the efficiency of different counter-
measures only make sense within the same attack class. Besides
attack class there other factors that influence efficiency:

• the thresholds set to identify attack;
• the time spent on risk analysis deciding which countermea-

sure to implement;
• the time allowed for a countermeasure to succeed before

going to the next best countermeasure;
• the scale or size and characteristics of the attacks;
• and finally the execution time of the selected countermea-

sure.

Because the configuration of the SARNET sets the thresholds
and timeouts and the risk analysis and decision are common for all
countermeasures, the only variables changing is the attack scale
and characteristics. To get a good measurement for the counter-
measure efficiency, the attacks scale and characteristics needs to be
constrained. In this paper we used three categories, Light, Medium
and Heavy. Table 6 showed that there are indeed different values
for efficiency as the scale changes; this implies for example that
the efficiency of a countermeasure during a light attack is not
necessarily representative when under heavy attack; generally a
heavy attack has less effective countermeasures because of limited
resources (e.g. bandwidth).

In Section 7 we mentioned that the artificial ceiling we use to
limit excessive values skewed some measurements. Currently, we
made this dependent on the threshold by limiting the values to a
maximum of 2 × threshold, this scales the maximum with the ex-
pected value of the metric. Normalising by the maximum amount
may give a more sensible image but to compare to new individual
runs the number has to be the same across runs. This limitation
also applies to the threshold; one can only compare effectiveness
of the runs with the same threshold set. In environments with
dynamic thresholds, e.g. self learning, or based on time of day, one
has to keep the individual data points of all runs and recompute
effectiveness of the runs one wants to compare to.

The countermeasure analysis in this paper was done after com-
pleting all runs. However, the goal is to perform such an analysis
after each run and update the ranking and average measurements
immediately. This increases the accuracy of the average after each
measurement. Eventually, the best solution will be picked first
all the time, leaving limited or no experience with subsequent
solutions or new solutions that have no efficiency metric yet. This
can be solved by forcing new solutions to be tried first, however

this is not always desirable in a production environment since
running unknown, potentially impacting, or sub-optimal solutions
first will negatively impact the restoration time of the service.
Keeping the time limited to execute a new countermeasure and
immediately backing it up with the top ranked defence when the
new countermeasure fails can however be an acceptable strategy.
Another approach is to first test the effects and efficiency of the
countermeasure in a similar staging environment and to imple-
ment it later in the production system initialised with the metrics
from the staging environment.

Finally, we have to remark that the implementation time per
countermeasure is currently constant, because the countermea-
sures are implemented locally. Implementation times will become
more diverse when countermeasures become more sophisticated
by relying on information coming in from other sources, or in case
of multi-domain defence scenarios when communication times
start to play a role.

9. Related work

Our work presents defence mechanisms against cyber attacks
that rely on both SDN mechanism as well as VNFs in containers.
Our ultimate goal is to achieve autonomous response to such
attacks.

Defence mechanisms against network attacks have been thor-
oughly compared against each other in the literature. In particu-
lar approaches for the mitigation of DDoS attacks have received
significant attention. Surveys have been conducted, for example
by Chang et al. [14] or more recently by Zargar et al. [15]. These
surveys provide an extensive evaluation of various techniques but
they do not provide quantitative ways to define efficiency as we do
in this paper. Such definitions are crucial to support the learning
and decision making required an autonomously reacting systems,
and our approach provides that.

Granadillo et al. [16] describe how countermeasures can be
ranked using the RORI index [17] which includes several factors,
such as infrastructure costs, risk assessment and attack surface.
Our paper focuses on a subset of the factors considered in RORI.
Instead of using an estimative approach our ranking is based on
empirical data on how well a countermeasure performed in the
past. The way we measure efficiency and impact could be used
alongside the RORI model to improve the estimations of future
countermeasure performance.

Recentwork focuses on the role of SDNs in both providing coun-
termeasures to attacks as well as identifying unexplored vulnera-
bilities in SDNs and SDN techniques themselves. Yan et al. [18] ad-
dress these aspects, and point to the need of extensive evaluation
of SDN-based solutions and SDN networks themselves. We believe
that our proposal to evaluate countermeasures by efficiency will
facilitate the assessment of software based responses.

Our work has shown that some of the components in a coun-
terattack are easily delivered using VNF. In our case these VNFs
are delivered via the deployment of containers at the appropriate
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locations in the network. Existing work so far has mainly focused
on the survey of available techniques and discussing their appli-
cability in various scenarios, particularly in data centres [19] and
mobile environments [20,21]. Previous work has often relied on
simulation to assess SDN use as mitigation to attacks, e.g. in the
work of Wang et al. [22]. Our application and use of containerised
VNFs in a real network that is driven by autonomous responses
is, to the best of our knowledge, a first step to show the actual
usability and the effect of such techniques.

Autonomy of responses will ultimately rely on machine learn-
ing techniques. It has been argued by Sommer and
Paxson [23](2010) that machine learning could be successfully
applied to the area of intrusion detection. Recent patents such as
the one from Google on botnet detection [24] show the applica-
bility of this type approach for identifying attacks. Our ultimate
goal of using machine learning to assess efficiency and adopt the
most effective set of countermeasures is, therefore, a novel and
promising application of such techniques.

10. Conclusions and future work

This paper shows the first steps towards autonomous response
to cyber attacks using SDN and NFV. We introduce the SARNET
control loop, elaborated on the phases of the control loop and
discussed how to implement them. We also showed a first imple-
mentation of this control loop as a continuation of the VNET work,
which after including novel SDN and NFV capabilities, was able to
exhibit autonomous response to a selection of attacks.

We introduced amethod to compute the impact of an attack and
the efficiency of the countermeasure. We evaluated this method
by applying it to the attacks and countermeasures implemented
on SARNET and showed how this approach allows us to rank
countermeasures based on efficiency.

Our measurements show that detection and response times are
dependent on the attacks characteristics as well as the parameters
used in the detection and defence system.

We conclude thatmetrics for impact of the attack and efficiency
of a countermeasure can be applied universally and are valuable
inputs in selecting the most suitable countermeasure to an attack.

A first next step is to include cost in our impact and efficiency
evaluation. Afterwardswe plan to build a learning system based on
such efficiency metric; this will allow us to automatically update
the ranking of countermeasures every time new attacks occur such
that a SARNET can ultimately exhibit efficient recovery.

Finally, we showed that is it possible to develop and deploy
countermeasures as containers. We believe that containers have
the potential to be used for sharing security VNFs such as detection
mechanisms, and other possible countermeasures in a reusable
manner. Therefore, our current effort is to investigate container
based intelligence sharing in multi domain collaborations such as
SARNET Alliances [25].
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