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Abstract. We study the problem of fully mitigating the effects of denial
of service by filtering the minimum necessary set of the undesirable flows.
First, we model this problem and then we concentrate on a subproblem
where every good flow has a bottleneck. We prove that unless P = NP,

this subproblem is inapproximable within factor 2log1−1/ log logc(n)(n), for
n = |E|+ |GF | and any c < 0.5. We provide a b(k+1)-factor polynomial
approximation, where k bounds the number of the desirable flows that
a desirable flow intersects, and b bounds the number of the undesirable
flows that can intersect a desirable one at a given edge. Our algorithm
uses the local ratio technique.
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1 Introduction

Denial of Service (DoS) and Distributed DoS [18] are widespread network at-
tacks. These attacks negatively impact functionality, especially when the system
needs to be quick (soft real time, for example) [17]. Consequently, fighting the
problem is highly important [22]. Filtering the attacking flows [16] is one of the
main ways to fight the problem. Filtering is also preferred among practitioners
and network operators, rather than, for example, the more complicated and ex-
pensive link addition or removal. If we properly select a flow we want to filter,
filtering always succeeds, but the required efforts depend on the filtered flow. For
example, defining in the firewall which flows to filter is sometimes simple (say,
filter all the UDP), but sometimes contrived (e.g., no simple pattern of what to
filter exists) [11]. Unlike admission control, here we do not decide whether to
allow a connection, but rather how to handle an existing one.

A similar problem is having less important but not malicious flows in the
network. We then remove the less important flows to allow the more important
ones to optimally utilize the network, and we want to incur the least possible
cost from removing the less important flows. This pertains to both computer
networks and transportation networks. In computer networks, streaming video
to prioritized customers may be contractually binding, forcing flows to the other
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Fig. 1. Consider the network represented by the path graph with the 3 vertices
V1, V2, V3. We have a bad flow, b, and a good one, denoted by g.

customers to give space to the prioritizes ones. In transportation, for example,
a less important freight connection may be removed in favor of the more crucial
ones [19].

We define a flow as a single path from the source to the sink and consider a
system with some desirable (call them good) and undesirable (name them bad)
flows. Undesirable flows can either model malicious flows or, alternatively, legiti-
mate but dispensable flows. In particular, we model DoS as a set of bad flows that
take up the available bandwidth. We study filtering as a coping method, possi-
ble within traffic engineering [1, 2]. If we filter some bad flows, we can allocate
the good flows more value because of the freed capacity. We aim to maximally
increase the good flows, while spending the minimum necessary filtering effort,
or losing the least from filtering the less important flows. Indeed, in the con-
text of DoS, minimizing the filtering effort is practically important: Koning et
al. [16] show that the filtering cost can have a significant effect on the overall
effectiveness of the response. Therefore, we should not simply filter everything:
Example 1 demonstrates that filtering all the bad flows can take arbitrarily more
effort than the minimum effort necessary to maximally increase the good flows.
In order to autonomously decide which flows to filter, as suggested in [16], we
need an algorithm to find which bad flows to filter. In order to cope with large
instances in real time, the algorithm has to be polynomial.

Example 1. In Figure 1, assume the capacity of edge (V1, V2) is 2c and the capac-
ity of (V2, V3) is c. Let the original flows have the value of c each: v(b) = v(g) = c,
and let w(b) be positive. Because of the saturated edge (V2, V3), filtering b would
not allow increasing g. Therefore, the optimal set to filter is ∅ and it costs zero,
infinitely smaller than filtering anything.

We assume we know which flows are good and which are bad, either because
we know all the flows, they are all good, and we decide which are dispensable and
which are not, or, when malicious flows exist, we can identify them by frequent
access trials from the same IP group.

Take a look at the following example of using an algorithm that decides which
bad flows to filter.

Example 2. In a system where the flows belong to the same organization and
carry equally important traffic, assume that our intrusion detection system dis-
covers a DoS attack, and determines which flows are attacking. We need to
respond quickly and efficiently. Having determined which flows are desirable,
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which are attacking and how large the flows are, we first estimate how hard
filtering each attacking flow would be. Now, we run our algorithm to obtain an
(approximately) easiest set of attacking flows to filter, such that the desirable
flows will be able to fully utilize the system.

To pose the problem, we first model it in Section 2 and define k as the
largest number of good flows that any good flow intersects in a network. We
will also need b, defined as the largest number of bad flows that flow through
an edge where a good flow also flows. The measures k and b will be used later
on. Section 2.1 provides a short primer to the local ratio technique, which we
employ to approximate the subproblem where every good flow has a bottleneck.
At the outset, we prove in Section 3 that for any k ≥ 0, the problem is NP-
hard, using a reduction from Set Cover. Even when no bad edges intersect one
another, we prove by reduction from Minimum-Monotone-Satisfying-Assignment

that the problem is not even approximable within 2log1−1/ log logc(n)(n), for n =
|edges in the network| + |desirable flows| and any c < 0.5, unless P 6= NP . In
Section 4 we provide a polynomial approximation of the problem, with the tight
approximation ratio of b(k+ 1). The algorithm uses the local ratio technique [4,
3, 5]. We conclude and suggest further research directions in Section 5.

Our approximation can facilitate remedying the distributed DoS and similar
congestion scenarios.

1.1 Related Work

We are not aware of any theoretical flow filtering approximations, but there is
literature studying related flow problems. First, we aim to maximize the desirable
flows, each flow being on a given path, while the famous max-flow – min-cut
problem [8, Chapter 26] aims to maximize the total flow from source to sink,
without predefined paths. There exist many famous generalizations of max-flow,
such as maximum circulation [15, Chapter 7] and multi-commodity flow [10].
Regarding the allowed actions, we study filtering, thereby completing the studies
of network design: edge addition [14], edge deletion [21, 13], etc. In particular,
deleting edges that can disconnect all the flows from a source to a sink is a famous
problem, and Menger’s theorem [7, Chapter 3.2] characterizes the minimum
number of edges one has to remove in order to disconnect the source from the
sink. Of course, finding a minimum cut mentioned above and disconnecting it is
an optimal algorithm for this problem.

2 Model

We model the flow network as a directed graphG = (N,E) with (edge) capacities
c : E → R+. A flow f from node a to node z in this network is a path from
source a to sink z, each of which edges carries the value of the flow. Formally,
f = (v(f), P (f)), where v(f) ∈ R+ is the value of the flow and P (f) is the set of
the edges of the path that the flow takes from a to z. Flow in this paper are not
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splittable, which meanings that a flow takes a single path. This can also model
a splitting flow as separate flows with partially overlapping paths. All the flows
together fulfill the capacity constraint, meaning that for every edge e ∈ E, all
the passing flows together are bounded in their values by the capacity of the
edge, i.e. ∑

f :e∈P (f)

v(f) ≤ c(e).

Let us define the basic problem we are considering.

Definition 1 The Bad Flow Filtering problem (BFF) receives the input
(G = (N,E), c : E → R+, F,GF,BF,w : BF → R+). Here, G = (N,E) is a ca-
pacitated network with capacities c and flows F = {fi}, where some flows, de-
noted GF = {gi} ⊆ F , are marked as good (desirable), and the rest, denoted

BF = {bi}
∆
= F \ GF , are bad (undesirable). The values of the good flows are

not given in the input. Every bad flow f is endowed with a weight w(f), desig-
nating how hard filtering that flow would be, or how important the bad flow is,
if bad flows model dispensable but legitimate flows.
A solution S is a subset of bad flows to filter.
A feasible solution is a solution such that the good flows can be allocated values
such that the total value of the good flows is the maximum possible (i.e. equal to
the total value that can be allocated if all the bad flows are removed).
We aim to find a feasible solution with the minimum total weight. Intuitively, we
aim to optimize the total good flow while investing the minimum filtering effort,
or while losing the minimum of the less important flows, depending on what bad
flows model.

BFF is monotonic with respect to inclusion, in the sense that filtering more
bad flows after having filtered a feasible solution preserves feasibility.

We now define a constrained version of BFF, such that the algorithm can
always provably approximate the solution. We need to avoid a situation when
decreasing the value of a good flow can allow multiple good flows increase. Intu-
itively, we achieve this by always having a bottleneck that connects all the good
flows that intersect one another, so that decreasing one of them will never be
used multiple times to increase others. Formally,

Definition 2 For any good flow g ∈ GF , define a bottleneck of g be a set of
edges S(g) ⊆ P (G) such that every other good flow g′ that intersects g contains
all these edges, and for every edge i where g intersects another good flow and
for every solution BF ′ ⊆ BF , there exists an edge e ∈ S(g) such that c(e) −∑

b∈BF\BF ′:e∈b v(b) ≤ c(i)−
∑

b′∈BF\BF ′:i∈b′ v(b′).
A BFF problem where every good flow has a bottleneck is called a Bottleneck-
BFF (BBFF).

We prove BBFF, and therefore, BFF, is hard and approximate BBFF. Let us
now present two cases that fall under BBFF.
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Common Narrow Link. If every good flow g and all the flows that it inter-
sects pass through an edge of a much smaller capacity than the other edges
on the path of this flow, then this edge constitutes a bottleneck of g. This
happens in practice when the flows pass through a physically common link.

Uniform Intersection. Intuitively, we require that a set of intersecting good
flows all intersect each other at the same edges.

Definition 3 The Uniform Intersection Bad Flow Filtering problem
(UIBFF) is a restriction of BFF where every g ∈ GF has a set of edges
on its path, E(g) ⊆ P (g), such that every other good flow g′ that intersects
g shares with g exactly the edges of E(g), i.e. P (g) ∩ P (g′) = E(g).

Since the defined E(g) is a bottleneck of g, UIBFF is a subproblem of BBFF.
This uniformity can happen, for instance, if the intersecting flows share a
source or a destination, and intersect only near those nodes.

We now define the parameters which we will use to express the approximation
ratio of our algorithm.

Definition 4 Given an instance of BFF, let k be the largest possible number of
good flows that a given good flow intersects. Formally,

k
∆
= max {|{g′ ∈ GF \ {g} : P (g′) ∩ P (g) 6= ∅}| : g ∈ G} .

Definition 5 For a BFF instance, let b be the largest number of bad flows that
intersect a good flow at any given edge. Formally,

b
∆
= max {|{f ∈ BF : e ∈ P (f)}| : g ∈ G, e ∈ P (g)} .

2.1 Local Ratio Approximation

A typical local ratio r-approximation algorithm for minimization [4, 5] is easier
to formulate recursively, though practical implementations are usually iterative.
It works by manipulating the weights as follows.

1. If a trivial solution (often, the empty set) is feasible, return it.

2. Otherwise, if zero weight elements exist, we remove them, solve the problem
without them and add them back afterwards.

3. Otherwise, decompose the weight function w = w1 +w2 such that every fea-
sible solution would be an r-approximation with respect to w1. We call such
a w1 weight function r-effective and finding it is the main challenge. Then,
recursively invoke the algorithm with w2. The returned feasible solution is an
r-approximation w.r.t. w2, by induction. Since it also is an r-approximation
w.r.t. w1, by the way we decomposed w, the following theorem implies that
this solution is also an r-approximation w.r.t. w, as required.
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Theorem 1 (Local Ratio Theorem [4]). Let us have a feasible set D ⊆ Rn.3

Assume we have weight vectors w = w1 + w2 and that a feasible solution x ∈ D
is r-approximate w.r.t. w1 and w.r.t. w2. Then, x is r-approximate w.r.t. w as
well.

We also require from w1 that at least one element will have the zero weight in
w−w1, so that the instance will shrink at the next invocation. Finding a suitable
r-effective w1 for a small r is the crux of the method, requiring an insight about
all the feasible solutions of the problem.

3 Hardness

We prove that the decision version of BBFF is NP-complete, and even NP-hard

to be approximated within 2log1−1/ log logc(n)(n), for n = |E| + |GF |, thereby mo-
tivating the need to seek an approximation instead of an exact solution.

We first prove that the problem is NP-hard not merely to optimize exactly,
but even to approximate.

Theorem 2. UIBFF (and, therefore, BBFF) is not approximable within

2log1−1/ log logc(n)(n), for n = |E| + |GF | and any c < 0.5, unless P 6= NP . This
holds even if no bad edges intersect one another.

Proof. We prove the hardness of approximation by reducing the Minimum-
Monotone-Satisfying-Assignment of depth 3 (MMSA3) problem to UIBFF. Let
us remind the definition of MMSA3 [9].

Definition 6 The input of the MMSA3 problem is a monotone (with no negative
literals) Boolean formula, which is a conjunction (AND) of disjunctions (OR),
every such disjunction being a disjunction of conjunctions. The goal is finding a
satisfying assignment that minimizes the number of variables that are assigned
1.

An example of an MMSA3 is ((x1 AND x3 AND x5) OR (x2 AND x3)) AND
((x2 AND x4 AND x5 AND x6) OR (x1)).

Given an instance of MMSA3, our reduction defines the following UIBFF. For
each variable x in conjunction c, which is, in turn, a part of disjunction d, define
edge ex,c,d of capacity 1. Define also a bad flow bx of value 1 and weight 1 that has
all the edges {ex,c,d|x appears in c, a part of d} on its path, and no others of the
above edges. The rest of the edges, if any, are arbitrary and unique for each bad
flow. For each conjunction c of variables, which is a part of disjunction d, define
a good flow gc,d that flows through the edges {ex,c,d|x appears in c, a part of d}
and perhaps arbitrary other edges of capacity 1 without any bad flows that pass
through them. For each disjunction d of conjunctions, let the respectively defined

3 In our case, these are the incidence vectors of the bad flows that, if filtered, would
allow assigning the good flows the maximum possible total value. Thus, we have
D ⊆ Nn.
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MMSA3

conjunction (AND)

disjunction (OR)

conjunction (AND)

variables x

UIBFF

bad flows bx

Edges of a good flow

A set of food flows intersecting at an edge

All the sets of intersecting good flows

Fig. 2. The approximation preserving reduction from MMSA3 to UIBFF.

good flows {gc,d|c appears in d} intersect at a single edge ed where no bad flows
pass. Let these be the only intersections of good flows among themselves. The
reduction is illustrated in Figure 2.

First, since we define the BFF instance such that every good flow intersects
all the other good flows at a single edge, it is indeed a UIBFF. To prove validity
of the reduction, note that the MMSA3 instance is satisfied if and only if the
main conjunction holds, which holds if and only if at least one conjunction in
every disjunction holds. The last statement is equivalent to at least one good
flow in all the intersecting sets of good flows has all its edges free and can thus
be given the value of 1. Therefore, feasibility is transferred by the reduction.
Since the costs are equivalent as well, the reduction preserves approximation.

Since MMSA3 is not approximable within 2log1−1/ log logc(n)(n), for any c < 0.5,
as shown in [9], we infer that UIBFF is not approximable within the same ratio,
when n = |E|+ |GF |. This is because the size of the MMSA3 formula translates
to |E|+ |GF |. �

We now prove that the decision version is indeed NP-complete. We first define
the decision version of BBFF.

Definition 7 The Decision-BBFF receives (x, l) in its input, where x is an
instance of BBFF and l is a natural number. The question is whether there
exists a feasible solution for BBFF with weight at most l.

We finally prove that

Theorem 3. Decision-BBFF is NP-complete, for any k ≥ 0.

Proof. First, we show that Decision-BBFF is in NP. Indeed, for a candidate
solution S, filter all the flows there and maximize the good ones in the remaining
network. The maximization can be done polynomially by solving the Linear
Program (LP):

max
∑
i∈GF

xi (1)

such that

∀e ∈ E :
∑

i∈GF :e∈P (i)

xi +
∑

b∈BF\S:e∈P (i)

v(b) ≤ c(e) (2)

∀i ∈ GF : xi ≥ 0 (3)
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Remark 1. This LP does not require an LP solver, since we assume that any
good flow has a bottleneck set of edges which always is the constraint to any
intersection. This property means that it is not important how the good flows
divide a common edge, since their sum will remain the same. Consequently, we
can effectively reduce the capacity taken by the bad flows in O(|BF | |E|) time,
storing the effective capacities for each edge, and subsequently maximize each
good flow one after another, by checking the bottlenecks of each good flow in
O(|E|) time and storing the effectively remaining capacities, amounting to the
total time of O((|GF |+ |BF |) |E|) = O(|F | |E|).

By comparing the maximum of this LP with the maximum when all the bad
flows are filtered, i.e. when S = BF , we check whether S is feasible. If it is,
then it constitutes a certificate if and only if w(S) ≤ l. Therefore, the problem
belongs to NP.

To prove the NP-hardness, notice that our reduction from MMSA3 is also
a Karp reduction for the decision versions, and since Decision-MMSA3 is
NP-hard [9], so is Decision-BBFF. However, to claim the NP-hardness for any
k ≥ 0, we now present a reduction from the decision version of Set Cover
(SC) [12]. Let us remind the definition of SC.

Definition 8 SC receives as input a universe U , a collection of its subsets
{S1, S2, . . . , Sm}, such that ∪mi=1Si = U and a natural number d. A solution
is a subset of {S1, S2, . . . , Sm}, while a solution C ⊂ {S1, S2, . . . , Sm} is called
feasible or a cover if ∪S∈CS = U . The question is whether there exists a cover
C such that |C| ≤ d.4

Our reduction takes an input of SC, which is U, S1, S2, . . . , Sm, d, and returns
the following instance of Decision-BBFF (even Decision-UIBFF). First, we define
a bad flow bi for each set Si, with v(bi) = 1. For each element x ∈ U , let gx be

a good flow with a path consisting of the two edges: e
(1)
x and e

(2)
x . We set the

c(e
(1)
x ) to be the number of sets Si that contain x and we set c(e

(2)
x ) = 1. For

every Si that contains x, let bi intersect gx at e
(1)
x . Besides these intersections,

no more flow intersections take place. The weight of every bi is defined to be 1.5

The parameter l of the constructed Decision-UIBFF instance is defined to be d.
The reduction is exemplified in Figure 3.

We now prove that this reduction is valid. Indeed, for every element x ∈
U , any set cover includes at least one set that contains x, say Si and this is
transformed to filtering the corresponding bad flow bi. This allows the good
flow gx to increase till it uses up all the capacity it can, i.e. 1. Note, that if more
covering sets are selected as well, then the corresponding bad flows are filtered

as well, but the value of flow gx remains 1 because c(e
(2)
x ) = 1; one filtering is

enough to maximize v(gx), guaranteeing feasibility to Decision UIBFF.

4 We use the unweighted set cover, where each set has the same importance, because
it has the same hardness results as the weighted version.

5 Did we reduce the weighted SC, we would define it to be the weight of the respective
set.
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Fig. 3. The Karp reduction from Decision-SC to Decision-UIBFF.

In the other direction, a feasible solution to Decision UIBFF maximizes the
sum of good flows. This requires filtering at least one bad flow from those that
intersect every gx, which means that a feasible solution to the constructed in-
stance of Decision-UIBFF is obtained from a set cover. This completes the proof
of the NP-hardness. �

4 Approximation

Consider the local ratio approximation Algorithm 1 for BBFF. We explain it
now in the terms of Section 2.1. Line 1 finds the maximum total good flow that
is available at the current invocation. The recursion basis appears at line 2 and
line 3 removes the zero weight bad flows. We abuse notation by writing w in
the recursive call, while we actually mean the restriction of w to BF \ BF0.
The central scene of the algorithm occurs at line 4. There, we pick a good flow
that would benefit from filtering bad flows at line 4a and construct the set of all
the bad flows we may need to filter at line 4b. This serves us to decompose the
weights at line 4c.

When choosing the flows in H at line 4a and 4b, we take the minimum
possible flow each time. The idea is to select all the possible good flows that can
increase, to cover all the possibilities, and a smaller flow has more chances to
increase.

We now prove that in polynomial time, this algorithm returns a feasible
solution approximating the optimum within b(k + 1). This means, for example,
that if any good flow intersects at most 1 another good flow (k = 1), and at most
one bad flow contains a given edge of a good flow (b = 1), then the algorithm
approximates the optimal solution within 1 · (1 + 1) = 2. And in case the good
flows do not intersect one another (k = 0), the algorithm is optimal.

Another interesting particular case is the result of the reduction of Set Cover
to BBFF from Theorem 3. In the outcome of the reduction, b is the maximum
number of sets that can include a given element, and k = 0. Therefore, Algo-
rithm 1, acting like the Algorithm 15.2 from [20], approximates set cover within
the b(0 + 1) = b, which is the maximum number of sets that can include an
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ALGORITHM 1: MinFilter(G = (N,E), c, F,GF,BF,w)

1. Solve LP Eq. (1)–Eq. (3) and let (xi)i∈GF be the obtained result (the current
maximum). Note that these flow values are not necessarily unique, since we can
sometimes change several intersecting good flows one on the other’s expense,
preserving the sum.

2. If no good flow in (xi)i∈GF can increase by filtering the bad flows that intersect
it (without changing other flows), return ∅.

3. Else, if there exist bad flows with zero weight BF0,
(a) S′ ←MinFilter (G = (N,E), c, F \BF0, GF,BF \BF0, w).
(b) Return S ← S′ ∪BF0.

4. Else,
(a) Pick any g ∈ GF that can be increased (without changing other flows) if we

filter the bad flows that intersect it.
This should be done by taking the minimum v(g) that can be in a maximum
total good flow. (Maximize the good flows that intersect g on g’s expense.)

(b) Consider all the other good flows g1, g2, . . . , gp (by the definition of k, p ≤ k)
that intersect g and would grow after filtering some bad flows, if we take the
minimum possible v(gi) in a maximum total good flow. Let H be the set of

the considered good flows, i.e. H
∆
= {g, g1, g2, . . . , gp} and let D(H) be the set

of their respective saturated edges, chosen one from a flow (may choose the
same saturated edge from several good flows, so |D(H)| ≤ |H|). Denote all
the bad flows that contain edge(s) from D(H) as B(D(H)).

(c) Let δ > 0 be the minimum total weight in B(D(H)),
i.e. minb∈B(D(H)) {w(b)}. Define the weight function on the bad flows:

w1
∆
=

{
δ if b ∈ B(D(H)),

0 otherwise.

.
(d) Return MinFilter (G = (N,E), c, F,GF,BF,w − w1).
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g3
g1

b1
g2

b2

Fig. 4. Flow g1 can grow if we filter b1 and if g3 decreases. Since decreasing g3 can also
help increasing g2, if b2 is filtered, the total good flow will increase.

element. Of course, the general BBFF is much harder than SC, being not eas-
ier than MMSA3, as we show in Theorem 2. Approximating the general BBFF
constitutes our main contribution.

First, we make a crucial observation, which guarantees that the algorithm
always finds a required good flow g. This property requires the restriction of
every good flow to have a bottleneck, introduced in Definition 2.

Observation 1 A solution for an BBFF instance is infeasible if and only if
in any maximal allocation of good flows for it there exists a good flow that can
increase if we filter some bad flows that intersect it, without changing other flows.

Proof. If a good flow can increase, the solution is infeasible by definition.

In the other direction, let S be an infeasible solution. This means that any
allocation of good flows can increase if we filter some more bad flows. The only
option where “no good flow exists that would increase if we filtered some bad
flows that intersect it” needs good flows that can grow only at the expense of
other good flows, like, for example, in Figure 4. However, since any good flow
in BBFF has a bottleneck, where all the intersecting good flows pass, (unlike
shown in Figure 4), increasing good flows at the expense of others would never
increase the total good flow. �

As in any correctness proof for a local ratio algorithm, we show that the
weight function w1 is fully b(k + 1)-effective, meaning that any feasible solution
S is a b(k + 1) approximation to the optimum.

Lemma 1. Let S be any feasible solution to the instance of the problem at some
invocation of Algorithm 1. Then, w1(S) ≤ b(k + 1) · w1(S∗), where S∗ is an
optimal solution at that invocation.

Proof. Any feasible solution will either allow g to grow by filtering at least one
bad flow that contains its chosen saturated edge, or it will allow at least one of
the good flows that intersect it to grow by filtering at least one of the bad flows
that contain their respectively chosen saturated edges. Therefore, with respect
to w1, any feasible solution will cost at least δ. On the other hand, any solution
costs at most b(k+ 1) · δ. Therefore, any feasible solution costs at most b(k+ 1)
times the minimum cost. �

We are finally set to prove the correctness and the approximation ratio of
the algorithm.
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Theorem 4. Algorithm 1 always returns a feasible solution that approximates
the optimal solution within the ratio of b(k + 1).

Proof. We prove by induction on our recursive algorithm.
In the basis (line 2), the good flow is optimal and therefore, the empty set of

bad flows is feasible. Since the empty set weighs zero, it is also optimal.
At a non-final stage, we need to prove that line 3 and line 4 both return

feasible b(k + 1)-approximation. In the case of line 3, S′ is a feasible b(k + 1)-
approximation for the instance after removing BF0, by induction on the algo-
rithm. Now, a feasible solution for the instance after removing the flows in BF0

remains feasible w.r.t. the original instance if we add the removed flows to the
solution. Second, the approximation ratio keeps holding, since the optimum stays
the same after this operation, and the solution cost remains the same as well.

Having said that, let us show that line 4 returns a feasible b(k + 1)-
approximation. First, the recursive invocation at line 4d returns a feasible solu-
tion and a b(k + 1)-approximation with respect to the weight function w − w1,
by the induction hypothesis; call this solution Ŝ. Set Ŝ is also a b(k + 1)-
approximation with respect to w1, by Lemma 1. The Local Ratio Theorem 1
implies that Ŝ is also a b(k + 1)-approximation with respect to the sum of the
weight functions, i.e. (w − w1) + w1 = w. This completes the proof. �

We finally remark that

Remark 2. The algorithm terminates in time O(|BF | (l(S) + |E| |GF | |F |)),
where l(S) is the time taken to solve the LP that corresponds to instance S.
As we explain in Remark 1, l(S) = O(|F | |E|), implying the total running time
of O(|E| |BF | |GF | |F |).

Proof. The algorithm performs O(|BF |) iterations, since at least one bad flow
gets filtered at each invocation of line 4.

At each invocation of line 3, we filter the zero-weight bad flows and then add
them back in |BF | time.

At each invocation of line 4, we solve the LP in l(S) time. Next, we go over
all the good flows, checking for each good flow g in O(|P (g)| |F |) = O(|E| |F |)
time whether filtering bad flows can help increasing this flow, by passing through
all the edges of the path of the flow and checking whether the the good flows
can be increased if no bad ones existed. If yes, we construct the sets H and
D(H) in O(|E| |GF | |F |), construct B(D(H)) and define the weight function w1

in O(|E| |BF |). This takes together O(|E| |GF | |F |+ l(S)). Finally, we make the
recursive invocation.

Summing up the above time bounds and multiplying by |BF |, we obtain
O(|BF | (l(S) + |E| |GF | |F |)). �

Finally, we prove that the approximation ratio b(k + 1) is tight for our algo-
rithm, even on a UIBFF. To this end, we employ the following example, partially
inspired by Example 15.4 from [20].

Example 3. The general idea is to reduce Example 15.4 from [20] for Set Cover
by our reduction from Theorem 3 to UIBFF, while also translating the weights of
sets to be the weights of the corresponding bad flows. This would produce a tight
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example, but the parameter k would be zero. To allow for any k, we consider
several instances of such an example and make them intersect in a specific way.

Concretely, consider the following UIBFF instance, depicted in Figure 5.
We have the good flows g1, g2, . . . , gn+1, each gi with the path of two edges

e
(1)
i and e

(2)
i , where c(e

(1)
i ) = 2, for i = 1, . . . , n − 1, c(e

(1)
n ) = n, and

c(e
(1)
n+1) = 1. For all i = 1, . . . , n + 1, we have c(e

(2)
i ) = 1. We have the bad

flows b{1,n}, b{2,n}, . . . , b{n−1,n} with weight 1 each and the bad flow b{1,2,...,n+1}
with weight 1+ε for a positive ε. Every bad flow has the value of 1. A bad flow bS
intersects the good flows corresponding to the elements of S at their respective
first edges, and, for now, no more intersections exist.

Next, consider m + 1 copies of the constructed problem instance. Let the

distinct copies intersect only at the edges e
(2)
i , for i = 1, . . . , n+ 1, where all the

copies intersect.

Algorithm 1 can choose at its first recursive invocation any good edge that
can increase from filtering the bad ones. Assume it chooses gn of one of the m
copies. The weights of each of the bad flows in all the copies decrease by 1 and
in the next invocation we remove all the bad edges from all the copies, besides
the bad edges b{1,2,...,n+1}. Their weights will now also go to zero and in the
following invocation the empty set becomes feasible. In the unwinding of the
recursion, we will add all the bad flows to the solution, accruing the total weight
of m+ 1 times 1 + . . .+ 1︸ ︷︷ ︸

n−1

+1 + ε = (m+ 1)(n+ ε). Now, the optimal solution is

just b{1,2,...,n+1} of one of the copies, because the intersections among the good
flows let only values 1 in every intersecting set. Therefore, the optimal weight is
1 + ε, and we can obtain an arbitrarily close to n(m+ 1) ratio, for a sufficiently
small ε. This is exactly b(k + 1) = n(m + 1), demonstrating the tightness of
b(k + 1).

5 Conclusion

Aiming to optimally mitigate DoS or unintended congestion, we study the BBFF
problem of filtering the minimum number of undesirable (bad) flows so as to allow
the desirable (good) flows to maximally utilize the network. We demonstrate that
this practical problem is also very interesting theoretically. First, we reduce the
MMSA3 to BBFF while preserving approximation, proving that approximating

within 2log1−1/ log logc(n)(n), for n = |edges in the network| + |desirable flows| and
any c < 0.5 is NP-hard. We then provide a local ratio approximation algorithm
for BBFF.

An interesting variation of the problem would be to assume that the flows
are always allocated by a given protocol, for example, by the max-min fairness
algorithm [6, Section 6.5.2]. This would render the problem of filtering non-
monotonic with respect to inclusion, which would make many approximation
techniques fail. Another point is that we are given a continuous ranking of the
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gn

g1 g2 gn−1

gn+1

b{1,n}

b{2,n}

b{n−1,n}

b{1,2,...,n,n+1}

Fig. 5. The relevant part of the network. The bad flows are denoted by b with an index,
while the good ones are denoted by g with an index. An optimal solution would be to
filter b{1,2,...,n+1}, while our algorithm filters everyone.

bad flows by weight, but the distinction between the bad and the good is binary.
Exploring other rankings would allow modeling other congestion domains.

To summarize, we have modeled an important NP-complete problem, proven
it be not easier than MMSA3 and approximated it.
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