

Research update; 3rd SARNET meeting

Ralph Koning

Scenario

SARNET demo

Control loop delay:

By using SDN and containerized NFV, the SARNET agent can resolve network and application level attacks.

From this screen, you can choose your attack and see the defensive response.

Traffic layers

Toggle the visibility of the traffic layers:

Physical links Traffic flows

Choose your attack

Start a Distributed Denial of Service attack from all upstream ISP networks:

UDP DDoS

Start a specific attack originating from one of the upstream ISP networks:

Origin: UNSELECTED -- CLICK ON A CLOUD

CPU utilization Password attack

nfv.services.as100

KIND	nfv
TE#DISKIMAGE	8d8d8a23-c112-421b-baba-49383679dc0b#img-nfv
E#SPECIFICCE	exogeni#XOLarge
ORKERNODEID	uva-nl-w1
#HASRESER	request#Active
ST#INDOMAIN	uvanlvmsite.rdf#uvanlvmsite/Domain/vm
IONEYPOT.PWS	[yamaha enter johnson]
IDS.CPU	0
IDS.PW	[10.100.4.100 10.100.4.101 10.100.4.102]
NFV-CHAIN	[ids honeypot:4.100:4.101:4.102]
CPU-PCT	13

Normal operation

Sampling

- Sampling
 - Ringbuffer with n values (Default: n=10)
 - New samples arrive asynchronously at about every 0.8 seconds (per metric)
 - Samples for sales from two services are added together, worst case this takes about 1.6 seconds.
- Detect: 30 percent of the samples in the window are below or above treshold.
- Recover: if 70 percent of the samples in the window are above or below treshold.

Scenario 2

S E ×

Secure Autonomous Response Network SARNET agent metrics

Network metrics

Bandwidth:

Utilized: 492Mbit/s

Flows:

TCP: 1663 UDP: 0

Application metrics

CPU:

Webshop 1: 76% Webshop 2: 32%

Successful transactions:

Login attempts:

DETECT

ANALYZE

Known crackers: 10.100.4.100, 10.100.4.101, 10.100.4.102

Latest password attempts: * star * little * chevy

DECIDE

Deploy IDS to gather additional data Deploy honeypot to divert and capture attack

RESPOND

Deployed NFV chain: * ids * honeypot:4.100:4.101:4.102

Observables

- DDoS attack
 - Detected if: Abnormal UDP, Sales < thresh(200)
 - Recover if: Sales > thresh
- CPU attack
 - Detected if: CPU > thresh(85)
 - Recovered if: CPU < thresh, Sales > thresh
- PWD attack
 - Detected if: failed > ok OR failed > thresh(20)
 - Recovered if: failed < thresh
- How to determine the right thresholds and observables?
 - ML might help though has its caveats
 - Determining what observables are needed and which ones are important cannot really be automated, unless we have all the data.

Effectiveness

Determining effectiveness

- Take the samples for a observable
- Subtract the threshold for that observable
- Invert the samples when needed (for sales)
- Set all negative values to 0
- Use trapezoidial rule to determine integral
- Maybe normalize by dividing by baseline?

Partial recovery

Partial recovery

- Current method: when variability does not exceed <insert arbritrary value> from the mean.
- Better? Regression line in sample window and look at the slope..
- How long should we wait to call partial recovery.
 - It can still fully recover... eventually?

UDP filter

Password attack

Captcha recovery

← Faster recovery

Timeout and scalability

• Timeout: After 120 seconds the chosen countermeasure fails.

- Scalability issue?
 - If it takes 2 minutes to try a single solution iterating over 30 solutions takes about an hour (worst case).
 - How about combined solutions.

https://sarnet.uvalight.net/

mailto: r.koning at uva.nl

N

innovation for life

Netherlands Organisation for Scientific Research

AIRFRANCE KLM