

Leibniz Center for Law

Faculteit Natuurkunde, Wiskunde en Informatica Leibniz Center for Law

What is going on: Utility-based Plan Selection in BDI Agents

Ameneh Deljoo¹, Tom van Engers², Leon Gommans^{1,3}, Cees de Laat¹

¹Institute of Informatics University of Amsterdam, Amsterdam The Netherlands

²Leibniz Center for Law University of Amsterdam, Amsterdam The Netherlands

³Air France-KLM, Amsterdam The Netherlands

X

SARNET Alliance

We use an ABM approach to study collective behavior and the effectiveness of policies

- Collaborative network of organizations are bounded by collaborative rules.
- Complex relationships and dependencies.
- Need to act in open, dynamic, and unpredictable environment.
- Demand for selecting an appropriate plan.
- Bounded rationality.

"How to integrate uncertainty/probabilities in the agent model to take an appropriate action and keep the system within acceptable boundaries."

Goal of the subproject presented

- Development of an extended version of the BDI agent model
- Integration of utility and the probability in the agent planner component
- Extension of the BDI control loop
- Enabling us to study CAS effects of the adaptation behavior of agents

Decision Theory and Expected Utility

Decision theory

Expresses as a set of mathematical techniques for making decisions about which action to take when the outcomes of the various actions are not known.

Writing S (S refers to states) for the set of all S_n reads:

 $\Pr(Si) \in [0 \ 1],$

Where,

```
Pr(S1)+Pr(S2)+Pr(S3)+\&+Pr(Sn) = 1
```

Expected Utility

A utility represents the value that the agent places on that state of the world (or environment).

It also provides a convenient means of encoding the agent's preferences. $EU(P) = \sum_{si \in Si} \Pr(Si|P) \times U(Si)$

And the agent selects a plan with: $P^* = \arg \max_{p \in P} \sum \Pr(Si|P) \times U(Si)$

Approach to Extend the BDI agent model

A plan: $pi^* \in Pi \{pi, A_{pi}, Contribution value\}$

Plan Utility:
$$PU(pi) = \sum_{pi \in Pi} \Pr(Si|pi) \times U(Si)$$

Where: $U(Si) = Pr(Si) \times Contributionvalue(Gi,Si)$

Plan Expected Utility Preference:

$$\Pr ef(Pi,Si) = \arg \max \sum_{pi \in Pi} \Pr U(Pi,Si)$$

Modified Control Loop

Divided an agent planner component in two sub-components:1. Planner to generate plans based on the agent preferences2. Select the most appropriate plan based on the plan utility

Algorithm 3: Modified control loop for the extended BDI agent, (1-6) are referring to Figure 2. In the extended BDI model, 6 and 6' are executed simultaneously. *i* is the current state of the agent.

Plan Selection Algorithm

•	A planner receives the current state S_i where S_i
	\subseteq S and produces the states S_1, S_2, \dots, S_i ;

- For each state we generate the probability value $Pr \in [0,1]$, which is assigned to S_1, S_2, \dots, S_i .
- The utility function applies to these states and the preferred plan *Pre f*_P regarding that states is chosen.

Algorithm 2: Select Planinput : (sub)Goal, Set of plans $(p_i \in P_i)$, the Probability of each planoutput: Selected P_i , Plan that has the best utility.SelectedPlan $(P_i) := null;$ for $p_i \in P_i$ do $U(p_i) := Pr(p_i) \times U(s_i);$ $PU(P_i) := setofPU(p_i);$ endPref $P_i := argmaxPU(P_i);$ SelectedPlan $(P_i) := Pref P_i;$ return SelectedPlan (P_i)

Scenario

- Alice is looking for a way to collaborate with
 Bob.
- Alice and Bob are not part of a collaborative group.
- Each agent needs to plan its actions and estimate risks and benefits.
- Bob's Plans:
 - Den A: Give overall access
 - D Plan B: Request a certificate
 - Den Plan C: Deny Alice's

Goal: Share with Alice Sub-goals: Estimate Benefits and calculate Risk

•

Assumption

- Alice and Bob have not collaborated before.
- Each plan has a unique **probability**.
- Each plan consists of different **sub-plans** with different **contribution values** and **probabilities**.
 - Each plan is associated with a particular **response time** and requires a different **amount of work**.

Simulation Setup

<i>Step1</i> : Generate probability for each event	
randomly in the interval [0,1].	

Step2 : Instantiate ascribed scenario for each plan, according to the given probability of events.

Step3 : Compute the utility for each plan. And, select a plan in three different situations:

- 1. Utility-based plan selection.
- 2. Randomly plan selection
- 3. Constantly plan selection.

	Plans and sub plans	Probabilities (Pr [0,1])	Contribution Values* ([0,1])
Plan A	Give overall access	0.35	0.06
	Start to share data	0.65	0.0
	Request a certificate	0.95	1.0
Plan B	Check the certificate	0.05	0.08
	Deny Alice's request	0.40	0.05
Plan C	Use the resources for own purpose	0.60	0.0
*The from	data for the contributio	on value for each goal 1)	is adopted

Results

Accumulated Satisfaction by Plan Selector (n = 1000). Ask for a Certification (AskCTA) and Share everything are based on the utility plan selection algorithm. Deny plan is the constant plan that agent chooses as a current plan without considering the utility. Randomly plan selection when the agent selects a plan it randomly from a set of possible plans.

Plans	М	SDV	Min	Max
Randomly	0.38	1.59	0.0001	0.44
AskCTA	0.93	0.54	0.0001	0.98
Share everything	0.41	0.72	0.0002	0.21
Deny	0.53	2.76	0.0001	0.60

Satisfaction by Plan Selector (n = 1000). Ask for a Certification (AskCTA) and Share everything are based on the utility plan selection algorithm. Deny plan is the constant plan that agent chooses as a current plan without considering the utility.

Future work

We use ABM to understand CAS

- Multi-agent system: Focus is on the individual agents and how they reason about and adapt to their environment
- Complex Adaptive Systems: Focus is on the dynamic aspects of the society of agents

Modeling Social Reality

- Requires the identification of social roles, their intentions, beliefs, plan operators and plans
- Requires us to think about who have a position to know and what the interests of these agents are and how that may impact trustworthiness of the information
- Requires us to think about the costs of providing/collecting the information and the proportionality/subsidiarity of that.

UNIVERSITEIT VAN AMSTERDAM

Example of complementary IR & SR

Typically today...

- Organizations don't have explicit models of Institutional Reality linked to sources of norms
- Organizations don't have a set of (non-)compliance scenarios (dynamic models of Social Reality) nor an idea about a method to check the completeness of the set of scenarios.
- There is no method yet to systematically categorize these scenarios and model specific scenarios as subsumed canonical ones (what is a useful abstraction? How could we describe it in such way that we know what we know?)

Our research addresses the interaction between IR and SR in CAS with multiple group memberships

We have come from far and still have a long way to go...

- Want to know more?
- Our next paper will be even better!

Questions?

vanEngers@uva.nl www.LeibnizCenter.org