Multiple GIGAbit Networks for Research Applications

Cees de Laat
Computational Physics department
Utrecht University
Contents

- Structure and research topics FYI
Contents

- Structure and research topics FYI
- Rise and Fall of ATM
Contents

- Structure and research topics FYI
- Rise and Fall of ATM
- GIGAport, QBone
Contents

- Structure and research topics FYI
- Rise and Fall of ATM
- GIGAport, QBone
- FYI initiatives
Contents

- Structure and research topics FYI
- Rise and Fall of ATM
- GIGAport, QBone
- FYI initiatives
Computational Physics

Located in Minnaert Building 3th floor

- 1 Professor
- 3 staff
- 1 secr
- ± 6 on projects
- ± 10 stud
- 3 stag
- 2 industry
Research subjects - 1, 2

- Computational Physics
 - Ocean and weather modeling
 - Solid State physics
 - Supercomputing massive parallel system
 - Code distribution and optimization

- Computer based learning systems
 - SENS project
 - Computer and network based college
 - WEB based (Java, HTML, Db, Groupware)
EU project REMOT / DYNACORE
- Collaboratories, virtual control rooms
- Support science at the home institutes
- Groupware, Videoconference tools point to point and point to multipoint
- Corba services, distributed object db
- www.phys.uu.nl/~dynacore
Research Subjects - 4

- Networking
 - Focus on applications for Physics
 - QoS networks for computing, collaboratories and telelearning
 - Distributed systems topics:
 - Modeling
 - Optimization
 - Simulation
 - Emulation
SURFnet

- Network backbone for University's
- 4 cluster leaders, ~ 14 POP’s
- 155 Mbit/s to USA
- Services <-> research
- TF-Ten - Quantum project
- SURFnet 4 -> move to 155 Mbit/s ATM
- 1999 -> SURFnet 5, the gigaport project
History
1994 SURFnet and PTT choose ATM
- Data, voice and video mixed on backbone
- Call for proposals on Applications
History

- 1994 SURFnet and PTT choose ATM
 - Data, voice and video mixed on backbone
 - Call for proposals on Applications
- 1995 Utrecht - Amsterdam tests
History

- 1994 SURFnet and PTT choose ATM
 - Data, voice and video mixed on backbone
 - Call for proposals on Applications
- 1995 Utrecht - Amsterdam tests
- 1996 All universities and research labs
1994 SURFnet and PTT choose ATM
- Data, voice and video mixed on backbone
- Call for proposals on Applications
1995 Utrecht - Amsterdam tests
1996 All universities and research labs
1997 TF-TEN European pilot network
History

- 1994 SURFnet and PTT choose ATM
 - Data, voice and video mixed on backbone
 - Call for proposals on Applications
- 1995 Utrecht - Amsterdam tests
- 1996 All universities and research labs
- 1997 TF-TEN European pilot network
- 1998 Abandon the ATM ship, what has happened?
History

- **1994** SURFnet and PTT choose ATM
 - Data, voice and video mixed on backbone
 - Call for proposals on Applications
- **1995** Utrecht - Amsterdam tests
- **1996** All universities and research labs
- **1997** TF-TEN European pilot network
- **1998** Abandon the ATM ship, what has happened?
The train model

- ATM looks so simple
 - Fixed size cell’s with address information
 - Audio and video mixed with data
 - Seems very deterministic and predictable
Switches got complex
Switches got complex

- Switched Virtual Connections
Switches got complex

- Switched Virtual Connections
- Call Admission Control
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
- Shaping
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
- Shaping
- Policing
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
- Shaping
- Policing
- Flow Control
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
- Shaping
- Policing
- Flow Control
- Leaky Bucket
Switches got complex

- Switched Virtual Connections
- Call Admission Control
- VBR, ABR
- Shaping
- Policing
- Flow Control
- Leaky Bucket
- Leaky as the pest
The swamp

- AAL, ABR, ATM, AvCR, CAC, CBR, CDV, CLP, CLR, CLR0, CRM, CTD, DSP, DTL, EPD, ES, ESI, GCAC, IAS, ICR, IISP, ILMI, LGN, MIB, NNI, NSAP, PG, PGL, PPD, PTSE, PTSP, PNNI, PVC, PVCC, PVPC, QoS, RCC, SVC, SVCC, UBR, UNI, VBR, VCC, VCI, VP, VPC, VPI, ...
The swamp

- AAL, ABR, ATM, AvCR, CAC, CBR, CDV, CLP, CTR, CTD, DSP, DTL, EPD, ES, ESI, GCAC, IAS, ICR, IISP, ILMI, LGN, MIB, NNI, NSAP, PG, PGL, PNNI, PQ, PVC, PVC, QoS, RCC, SVC, SVCC, UBR, UNI, VBR, VCC, VCI, VP, VPC, VPI, ...
The three scenarios
The three scenarios

- Bureaucracy
 - Long turnaround (rtt \approx \text{days})
 - Expensive rented lines system
The three scenarios

- **Bureaucracy**
 - Long turnaround (rtt \(\approx\) days)
 - Expensive rented lines system

- **Complexity**
 - Automatic call setup
 - Needs probably also bureaucracy
The three scenarios

- **Bureaucracy**
 - Long turnaround (rtt ≈ days)
 - Expensive rented lines system

- **Complexity**
 - Automatic call setup
 - Needs probably also bureaucracy

- **Throw Bandwidth at the problem**
 - Might go wrong at bottlenecks
 - Easiest solution (UBR).
Positive remarks on ATM

- European PTT’s learned to talk \((n^2) \)
- Using CBR makes it a flexible leased lines system
- Can indeed give guaranteed RTT’s and QoS
Positive remarks on ATM

- European PTT's learned to talk (n²)
- Using CBR makes it a flexible leased lines system
- Can indeed give guaranteed RTT's and QoS
Positive remarks on ATM

- European PTT's learned to talk (n^2)
- Using CBR makes it a flexible leased lines system
- Can indeed give guaranteed RTT’s and QoS
Positive remarks on ATM

- European PTT's learned to talk \((n^2) \)

- Using CBR makes it a flexible leased lines system

- Can indeed give guaranteed RTT's and QoS
Positive remarks on ATM

- European PTT's learned to talk (n^2)
- Using CBR makes it a flexible leased lines system
- Can indeed give guaranteed RTT’s and QoS
Positive remarks on ATM

- European PTT's learned to talk (n^2)
- Using CBR makes it a flexible leased lines system
- Can indeed give guaranteed RTT's and QoS
European PTT’s learned to talk (n^2)

Using CBR makes it a flexible leased lines system

Can indeed give guaranteed RTT’s and QoS

Positive remarks on ATM
The remaining problem
The remaining problem

- The big common sausage is not acceptable for everybody
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
- Balance resources
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
- Balance resources
- Ways to go:
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
- Balance resources
- Ways to go:
 - Higher layer (ATM, ETH, POS, ... -> IP)
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
- Balance resources
- Ways to go:
 - Higher layer (ATM, ETH, POS, ... -> IP)
 - RSVP, intserv
The remaining problem

- The big common sausage is not acceptable for everybody
- Need for differentiated services
- Balance resources
- Ways to go:
 - Higher layer (ATM, ETH, POS, ... -> IP)
 - RSVP, intserv
 - TOS bits in IPv4 and IPv6, diffserv
The management domains
Physics-UU to IPP-FZJ => 8 kingdoms
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
 - PTT
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
 - PTT
 - Deutsche Telecom
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
 - PTT
 - Deutsche Telecom
 - WINS/DFN
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
 - PTT
 - Deutsche Telecom
 - WINS/DFN
 - FZJ-ZAM
The management domains

- Physics-UU to IPP-FZJ => 8 kingdoms
 - Physics dept
 - ACCU
 - SURFnet
 - PTT
 - Deutsche Telecom
 - WINS/DFN
 - FZJ-ZAM
 - FZJ-IPP
End user motivation

- End users don’t want to pay
 - Decentralization places bills at end user
 - Users have a different “core business”
 - Internet is perceived as free and it works

- We must move forward

- Applications are the key
End user motivation

- End users don’t want to pay
 - Decentralization places bills at end user
 - Users have a different “core business”
 - Internet is perceived as free and it works
- We must move forward
- Applications are the key
End user motivation

- End users don’t want to pay
 - Decentralization places bills at end user
 - Users have a different “core business”
 - Internet is perceived as free and it works
- We must move forward
- Applications are the key
New cost model
New cost model

- Networks are expensive resources
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8E12$ mks
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8E12$ mks
 - Dynacore needs: $1 \times 20 \times 400 \times 80\times8\times3600 \approx 1.8E10$ mks
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8E12$ mks
 - Dynacore needs: $1 \times 20 \times 400 \times 80 \times 8 \times 3600 \approx 1.8E10$ mks
 - DAS needs: $24 \times 10 \times 100 \times 50 \times 24 \times 3600 \approx 1.0E11$ mks
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8E12$ mks
 - Dynacore needs: $1 \times 20 \times 400 \times 80 \times 8 \times 3600 \approx 1.8E10$ mks
 - DAS needs: $24 \times 10 \times 100 \times 50 \times 24 \times 3600 \approx 1.0E11$ mks
- Establish a program advisory commission
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8E12$ mks
 - Dynacore needs: $1 \times 20 \times 400 \times 80 \times 8 \times 3600 \approx 1.8E10$ mks
 - DAS needs: $24 \times 10 \times 100 \times 50 \times 24 \times 3600 \approx 1.0E11$ mks
- Establish a program advisory commission
- Use ecash on virtual bank to account
New cost model

- Networks are expensive resources
- Borrow from supercomputer era
- New unit: megabit/s kilometer second (mks)
 - SURFnet has: $10 \times 155 \times 200 \times 31536000 \approx 9.8\times10^{12}$ mks
 - Dynacore needs: $1 \times 20 \times 400 \times 80 \times 8 \times 3600 \approx 1.8\times10^{10}$ mks
 - DAS needs: $24 \times 10 \times 100 \times 50 \times 24 \times 3600 \approx 1.0\times10^{11}$ mks
- Establish a program advisory commission
- Use ecash on virtual bank to account
- Use chipcards with certificates to do CAC
Possible architecture

- POLICY
- LDAP
- ECASH
- SSR
- SSR
- SSR
- SSR
- Remote service
- End user
SURFnet5 - GIGAport
SURFnet5 - GIGAport

- 80 gigabit backbone
SURFnet5 - GIGAport

- 80 gigabit backbone
- 20 gigabit pops
SURFnet5 - GIGAport

- 80 gigabit backbone
- 20 gigabit pops
- 2 megabit to every SURFnet user@home
 - Videostreaming
 - Telelearning
 - The usual app’s
SURFnet5 - GIGAport

- 80 gigabit backbone
- 20 gigabit pops
- 2 megabit to every SURFnet user@home
 - Videostreaming
 - Telelearning
 - The usual app’s
- Internet2 connectivity
SURFnet5 - GIGAport

- 80 gigabit backbone
- 20 gigabit pops
- 2 megabit to every SURFnet user@home
 - Videostreaming
 - Telelearning
 - The usual app’s
- Internet2 connectivity
- QBone
SURFnet5 - GIGAport

- 80 gigabit backbone
- 20 gigabit pops
- 2 megabit to every SURFnet user@home
 - Videostreaming
 - Telelearning
 - The usual app’s
- Internet2 connectivity
- QBone
Playing ground: GIGAcluster

- SUN/Pc
- 1 Gb/s eth
- SSR L4 switch
- Workstations/Pc's
- ATM
- GIGANet
Playing ground: GIGAcluster

- SUN/Pc
- 1 Gb/s eth
- SSR L4 switch

Workstations/Pc's ATM GIGAnet
GIGAcluster applications

- REMOT/DYNACORE, collaboratory
- Objectivity, distributes db’s
- Corba, object and message passing
- Qbone, Quality of Service on WAN
- MCU’s, scalable video distribution
- SURFnet 5, GIGAbit producer/sink
- DAS - Computing
- LLT (LFAP, CAC, COPS, IPSEC, …)
Thanks

More info:
http://www.phys.uu.nl/~delaat
http://www.phys.uu.nl/~wwwfi
http://www.phys.uu.nl/~dynacore