SARNET: Operational update

Ralph Koning

SNE Research Group
University of Amsterdam
SuperComputing 2017

service101.as101.sarnet-sc17-dev

Observables

SARNET log
11:17:05 | service101: Attack password bruteforce resolved
11:17:05 | service101: Observable traffic_rate.rx.eth2 became healthy
11:17:05 | service101: Observable sales_rate@service64 became healthy
11:17:05 | service101: Observable logfail_rate@service64 became healthy
11:17:05 | service101: Attack DDoS resolved
Technical details

- **SARNET Agent** defends attacks autonomously.
- **Multi** domain.
- Technologies: Alpine, `mqtt`, `ddos-tools`, quagga, BGP, docker.
- Attacks: DDoS, **Reflect**, Password.
- Defences: rate, filter, nfv.
- **VM** types: **domain**.
- **Containers**: client, service, honeypot, reflector.
- iPad + extra screen.
Results

- Increasing level of collaboration increase *effectiveness*.
- Collaboration does not necessarily increase *efficiency*.
- Successful response to reflection attack by catching *attackers*.
- The domain agent is tested on physical domains (SURF, Ciena).
Current work

- UI client that can iterate through and repeat scenario.
- Support more collaboration levels.
- Implemented efficiency calculation in UI client.
- Per domain costs (fixed, periodic).
- Per domain behaviour (delay, success rate).

```bash
$ ./vnet-cli -v results
: prepared 2 scenarios, timeout 60. max runtime 900s
: stopping all running attacks
: cleanup: start
: cleanup: done
: learning: start
: learning: ended
: start: pw(service101,['client15', 'client12'],local)
: cleanup: start
: cleanup: done
: runner: start attacks (level=local)
: client: broadcasting domain behaviour parameters
: attack detected at: 3
: runner: victim reports attacked
: timeout at: 63, 60
: runner: timeout occurred
: attack duration: 63s
: runner: waiting a bit
: runner: stopping attacks
: runner: end
```

Figure 1: Sample output of CLI based UI running a scenario
Preliminary results

Efficiency for each collaboration level **light** attack.

Efficiency for each collaboration level **heavy** attack.

Figure 2: Collaboration levels
Future work

- Moving efficiency calculation to domain agents.
- Managing initialization of local state for domain agents.
- Multi domain experiments.
- Implementation of per domain social trust (benevolence, integrity, competence).
- Switching to more scalable observable framework?
- See if we can use OPTOSS AI for AI based detection.
Papers:

- FGCS submission Measuring the Efficiency of SDN Mitigations Against Attacks on Computer Infrastructures. (minor revision)

Student supervision:

- E. Kooistra: Hardening virtual environments against cache based side channel attacks.
- T. Carpay: Using AI to detect successful web application exploits over https.