Interactive Analysis of SDN-driven defence against Distributed Denial of Service attacks

Ralph Koning, Ben de Graaff, Cees de Laat, Robert Meijer, Paola Grosso
University of Amsterdam

Sec-VirtNet at NetSoft, June 10 2016, Seoul
This talk will:

• Show how visualisations can help with analyzing and understanding (DDoS) attacks.
• Elaborate on what kind of actions an SDN/SDI provide that can increase security of the tenants network.
• Tell what actions people choose to defend a network.
• That more changes/actions don’t necessarily result in a better solution to an attack.
• Give some insights in how to determine effectiveness of a set of countermeasures.
Secure autonomous response networks

Example observables:

Traffic to service provider x must pass via link y
Services request to service x is only allowed from y
Response time of the application should be < 30ms
CPU load of system x should not exceed y
Network bandwidth on link x cannot exceed 1 gb/s
Background: Control Loop

Detection phase: Detect, Classify, Analyze
Decision phase: Risk, Decide
Response phase: Respond, Adjust, Measure
Learn phase: Learn (with input form other phases)
Platform: ExoGENI

Source: exogeni.net (2014)
Platform: ExoGENI

2015 functions
- Create slice
- Delete slice

2016 functions
- Create slice
- Modify slice
 - add, remove
 - host, links
- Delete slice

Source: exogeni.net (2014)
SuperComputing 2015
VNET stack

- Multitouch Table or Web browser
- VNET-visualization UI
- UI controller
- VNET
- Infrastructure controller
- Monitoring system
- Network controller
- uva-nl
- ExoGENI rack
- VNET-agent
- Network Functions
- Virtual machines
Attack scenario
Attack scenario
Networks
What did we build:
Metrics: Revenue

- **Revenue**: transactions per second
 - Clients 1-10 make transactions to S1 and S2
 - The amount of transactions are summed together as revenue
Metrics: Network cost

\[
\text{cost} = b \frac{\sum r_i}{2} + f \sum a_i
\]

Where:

\(i \) is an active (enabled) interface
\(b \) is bandwidth cost in $ per megabit, we used \(b=10 \)
\(f \) The cost of placing and activating a filter in $; we used \(f=500 \)
\(r_i \) is the maximum bandwidth on interface \(i \)
\(a_i \) is the amount of activated filters on interface \(i \), we used \(a_i = \{1, 0\} \)
Actions vs Costs (scenario 1)
Actions vs Costs (scenario 2)
Solution cost and revenue recovery
Solution cost and revenue recovery

Revenue gain!
Solution cost and revenue recovery

Full revenue recovery without (much) extra costs
Conclusion:

- Visualisations can help with analyzing and understanding (DDoS) attacks.
- To defend, People choose the naïve options based on:
 - Their prior experience
 - What information is presented
- More changes/actions don’t necessarily result in a better solution to an attack
- Actions are limited by the functions the underlying SDI exposes.
Future work

• We need to look at other variables to determine effectiveness of a solution besides cost and revenue:
 • Time of implementation
 • Temporary impact on current or other solutions
• Calculate the optimal solution for current and future attack scenarios
• What functions can be provided by the SDI to assist in enhancing the security of the overlay network.
UNIVERSITY OF AMSTERDAM

https://sarnet.uvalight.net/