Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov

SNE University of Amsterdam & TNO
Supervisors: Marc X. Makkes & Robert J. Meijer

July 3, 2014
Imagine your banking website or application does not work!
Imagine your banking website or application does not work! **ANNOYING!!!
Imagine your banking website or application does not work! ANNOYING!!!

• A way for adopting the best countermeasures technologies which are available
• Support for very complex networks
• Easier organizing the security of company networks
• Faster response times
Introduction

- **Software Defined Networks (SDNs)** are out there...
- Implementing **Security as a Service (SaaS)**
- By using **control loops**
- **Share security modules** with other companies and organizations
Introduction

Security Autonomous Response Networks - Software Defined Networks that adjust themselves in order to take care of security threats and risks
Research Questions

How could a security control loop be implemented as a software solution?

- What properties should the implementation of a Security Autonomous Response Network have, in order to make it beneficial and effective against security threats?

- How can a Security Autonomous Response Network decide on which response will be better to execute in a given situation?
Attack Isolation Control Loop
Attack Isolation Control Loop
Attack Isolation Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attack Isolation Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Introduction

Research Questions

Proof of Concept

Results

Conclusions

Questions?

Attack Isolation Control Loop

- Creating topology
- Testing the Network
- Start Services
- Start Control Loop
 - Collect TCP Connections Statistics
 - Check Number Of Connections
 - (Determine Potential Attacks)
 - (Create New Server)
 - (Redirect Traffic To It)

```python
# check for attacks
if dos -- True :
    # Define attributes
    counter = 1
    print("Counter: ", counter)
    hosts[counter] = "nhs" & counter
    print("Host: ", hosts[counter])
    hostips[hosts[counter]] = "10.0.0.1" & (n-counter)
    print("IP: ", hostips[hosts[counter]])
    hostints[hosts[counter]] = ":0-eth0" & hosts[counter]
    print("Host interface: ", hostints[hosts[counter]])
    switchints[hosts[counter]] = ":0-switch" & (n-counter)
    print("Switch interface: ", switchints[hosts[counter]])

    # Create new host and redirect the old one
    print h1.cmd( "kill -9", fileserv1p1 )
    h = net.addHost( hosts[counter], cpu=1/8 )
    time.sleep(2)
    net.addLink( h, s1, **switchintopts )
    s1.attach( switchints[hosts[counter]] )
    print h1.cmd( "ifconfig", hostints[hosts[counter]] )
    print( "Redirecting now..." )
    print h1.cmd( "~/mininet/examples/redirect.py %s &" 
               % hostips[hosts[counter]] )
    print "Redirected!
    print h1.cmd( "cd ~/fileserv/"
    print h1.cmd( "python -m SimpleHTTPServer 8000 > /dev/null 2>\&1 &"
    # Test the newly created host
    print h2.cmd( 'cd -' )
    print "h2 wget http://\%s:8000/test_10K.jpg" % (h1.IP())
    print "h2 time curl http://\%s:8001/index.html" % (h1.IP())
```

Moving resources to new server
Attack Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attack Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks
Hristo Dimitrov
Attack Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attack Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attack Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attacks Limiting Control Loop

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov
Attack Limiting Control Loop
Attack Limiting Control Loop

- Creating topology
- Testing the Network
- Start Services
- Start Control Loop
 - Collect TCP Connections Statistics
 - Check Number Of Connections
 - (Determine Potential Attacks)
 - (Collect Bandwidth Statistics)
 - (Adjust Rate Limits)
 - (Implement New Rate Limits)

```python
print "Determining potential attack vectors..."
attsrcip = ""
attdstipport = ""
attsrcips = {}
attdstports = {}
if ncon > 10:
    for i in range(1, (ncon+1)):
        if results[i].split()[2] == "tcp":
            attdstipport = results[i].split()[3]
            attsrcip = results[i].split()[5].split(':')[0]
            if attsrcips.has_key(attsrcip):
                attsrcips[attsrcip] += 1
            else:
                attsrcips[attsrcip] = 1
            if attdstports.has_key(attdstipport):
                attdstports[attdstipport] += 1
            else:
                attdstports[attdstipport] = 1
print "Destinations:", attdstports
print "Sources:", attsrcips
asi = attsrcips.keys()
attsrcip = asi[0]
for i in range(1, len(asi)):
    if attsrcips[asi[i]] > attsrcips[attsrcip]:
        attsrcip = asi[i]
cdip = attdstports.keys()
attdstipport = cdip[0]
for i in range(1, len(cdip)):
    if attdstports[cdip[i]] > attdstports[attdstipport]:
        attdstipport = cdip[i]
```

Determine potential attacks vectors
Attack Isolation Results

Traffic to/from the server (only attack traffic)

- X Axis - Time
- Y Axis - Bytes/second
- Blue - Incoming Traffic (Requests)
- Red - Outgoing Traffic (Responses)
Attack Limiting Results

Traffic to/from the server (only attack traffic)

- **X Axis - Time**
- **Y Axis - Bytes/second**
 - □ - Incoming Traffic (Requests)
 - ■ - Outgoing Traffic (Responses)
(What properties should the implementation of a Security Autonomous Response Network have, in order to make it beneficial and effective against security threats?)

- **Software Modularity** - Scalability, Reusable and pluggable modules
- **Company Infrastructure Modularity** - Flexibility, More options for responses to security threats
(How can a Security Autonomous Response Network decide on which response will be better to execute in a given situation?)

Responses to security threats should be:

- **Classified** - based on which problems they can solve
- **Rated** - based on their effectiveness
Questions

Please ask your questions now, thank you!