Car security: remote keyless “entry and go”

Dick Visser and Jarno van de Moosdijk

June 2009
Mechanical key

- Ignition locks since 1919
- Door locks since late 1920s
 - RFID immobiliser since 1993
Remote keyless entry (RKE)

- Remote control for doors
- Since 1983
- 315 / 433.92 / 868 MHz
- Keys have to be associated to the car
- Encryption
 - KeeLoq cipher
Passive keyless entry (PKE)

- Doors open/close without user intervention
- Since 1990
- Same frequencies
- Same encryption
 - Often combined with “keyless go”
Future systems

- Lots of development
- Mostly flashy concept car stuff
- Integration is the “key”
 - Payment systems, multimedia, user prefs
Research questions

- What requirements should RKE/PKE adhere to?
- Which systems are available and do they meet these requirements?
Research questions

- What requirements should RKE/PKE adhere to?
- Which systems are available and do they meet these requirements?
- What requirements should the key order procedure adhere to?
- What are current order procedures and do they meet these requirements?
Method

- Defining requirements & threats analysis
- Interviewing car dealers, importers, key manufacturers
- Examining car key fobs
- Assessing current systems and procedures
System architecture

Parts of the car access process
System architecture

Parts of the new/spare key order procedure
CIA Triad

Confidentiality

Availability

Integrity
STRIDE threat model (Microsoft)

- Spoofing identity
- Tampering with data
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privilege
CIA vs STRIDE

<table>
<thead>
<tr>
<th></th>
<th>Confidentiality</th>
<th>Accountability</th>
<th>Authenticity</th>
<th>Authorisation</th>
<th>Data integrity</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoofing identity</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampering with data</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repudiation</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information disclosure</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denial of service</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation of privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Dick Visser and Jarno van de Moosdijk

Car security: remote keyless "entry and go"
Threat demo

Real world DoS demo
Establishing requirement sets

Apply CIA/STRIDE to car access procedure items

Examples:

▶ Key/car should use authentication (S car/key)
▶ Cars should log all lock status changes (R - car)
▶ Key-car communication should not leak information (I - medium)
Establishing requirement sets

Applied CIA/STRIDE to key order procedure
Examples:
- Keys should be shipped to static address (S)
- Four-eye principle (R)
- Online key learning (R,E)
Highlights

General:

- Huge amount of different systems (brand/model/version/year...)
- Smaller set of chipset manufacturers
- Kerckhoffs‘ principle is used by no one
"If everything, except the key, is known, a car would become unsecure very soon due to the fast growing computing power of IT technology compared to automotive technology and their life cycle."

Dick Visser and Jarno van de Moosdijk
Highlights

General:

▶ Huge amount of different systems (brand/model/version/year...)
▶ Smaller set of chipset manufacturers
▶ Kerckhoffs‘ principle is used by no one
▶ Investigating order procedures was less problematic
Highlights

Car access process:

- All use proprietary black box systems
- No one uses key authentication/authorisation
- Majority of ECUs do not log which key changed lock status
Highlights

Key order/learning procedure:
- All dealers require ID + proof of ownership
- None of them use four-eye principle
- Only few brands use online learning/logging
- Third party key manufacturers all use plain text HTTP
Recommendations

1. Car industry should honour Kerckhoffs‘ principle
2. Keys should use authentication
3. Cars and keys should use logging
4. All manufacturers should use online learning/logging
5. Third parties should use HTTPS
Further research

1. Relay attack PoC
2. Security certification
3. Cryptanalysis/reverse engineering
4. DoS/User awareness test
Questions?