
Future Generation Computer Systems 19 (2003) 1017–1029

Microscopic examination of TCP flows over transatlantic links

Antony Antonya,∗, Johan Blomb, Cees de Laatb, Jason Leeb, Wim Sjouwb

a NIKHEF, 409 Kruislaan, 1098 SJ Amsterdam, The Netherlands
b Universteit van Amsterdam, 403 Kruislaan, 1098 SJ Amsterdam, The Netherlands

Abstract

Much of the recent research and development in the area of high-speed TCP is focused on the steady state behavior of TCP
flows. However, our experience with the first research only transatlantic 2.5 Gbps Lambda link clearly demonstrates the need
to focus on the initial stages of TCP. The work we present here examines the behavior of TCP flows at microscopic level
over high-bandwidth long delay networks. This examination has led us to study the influence of the minute properties of the
underlying network on bursty protocols such as TCP at these very high speeds combined with high latency. In this paper we
briefly describe the requirements for such an extreme network environment to support high-speed TCP flows. We also present
results collected using transatlantic links at iGrid2002 where we tuned various host parameters and used modified TCP stacks.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:HSTCP; High-speed long-latency TCP; iGrid2002; Long fat networks

1. Introduction

Grid applications in general can be demanding in
terms of bandwidth requirements.

A typical large scale scientific experiment involves
at least two parties: a data producer and a data con-
sumer. Many of the large High Energy Physics (HEP)
experiments coming online in the near future such as
LHC [16], D∅ [12], CDF [11] and BaBar[10] are
all excellent examples of this model of computing. In
these large experiments the data is mostly produced
at a few locations (the data producers) and then many
researchers analyze this data at their home institutes
and universities (the data consumers). Often the re-
searchers are geographically separated by large dis-

∗ Corresponding author.
E-mail addresses:antony@nikhef.nl (A. Antony),
jblom@science.uva.nl (J. Blom), delaat@science.uva.nl
(C. de Laat), jason@nikhef.nl (J. Lee), wsjouw@science.uva.nl
(W. Sjouw).

tances. The throughput requirements for these exper-
iments are high.

For example, the European Data Grid (EDG)
roughly estimates the peak bandwidth of the network
traffic that will flow over it in the year 2005 to be
8000 Mbps from a single project (D∅), and that this
link will have to be shared among several different
HEP projects, all wishing to disseminate their data.
Not only does this data need to be collected from the
experiment but a large part of it needs to be trans-
ferred to various locations over the network. Network
architectures are evolving to meet this unprecedented
demand. Herein we present research on the scalability
of protocols to allow these kinds of applications to
reach the required high-bandwidths on new network
architectures. One way to provide this bandwidth is
by provisioning end-to-end paths, called Lambdas[5],
up to several Gbps. In the fall of 2001 SURFnet[18]
provisioned a 2.5 Gbps Lambda between Amsterdam
and Chicago to be used only for research. Initial
tests showed that only increasing the speed of links,

0167-739X/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0167-739X(03)00079-7



1018 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

switches and routers in the path was not sufficient
to obtain a throughput at or near the available band-
width. We conducted extensive experiments on this
transatlantic link both to understand how transport
protocols behave and what additional requirements
high-speed flows, such as TCP, impose on optical
networks. One architectural shift in our high-speed
networking experiments was to minimize the number
of routers (devices which process packets at layer
3 and above), and instead delegate packet forward-
ing to switching devices at layer 2 or below. Initial
throughput measurements of a single TCP stream
over such an extreme network infrastructure (i.e. the
SURFnet Lambda) showed surprisingly poor results.
This led us to further examination of the dynamics of
TCP at the microscopic level to better understand its
behavior. The primary motivation of this work is the
demand from HEP community to obtain maximum
throughput over long distance links using a single
or utmost a few TCP streams. Currently in the HEP
community there are several projects underway to
try to over come these limitations. However, these
projects focus primarily on increasing some of the de-
fault parameters of TCP (SSThreash[7], etc.). Simply
increasing network capacity does not always improve
end-to-end performance. The exclusive availability of
the SURFnet Lambda for research has allowed us to
investigate this problem.

The performance issues of TCP/IP for large data
transfers over high-bandwidth long-latency path is a
well known problem[6]. The problem is to discover
the bottleneck of a TCP flow (the slowest link in a
chain of networks) between two PCs connected using
a long-latency high-bandwidth path. There are several
issues related to this problem: network characteristics
(router, switches, slow links), the implementation of
the TCP stack and specific parameters passed to the
TCP algorithm by the hosts. InSection 2we examine
the characteristics of the equipment and how this in-

Fig. 1. Initial network setup. Two hosts connected back via two TDM switches interconnected at OC48 Link (96 ms RTT), subchanneled
into an OC12.

fluences TCP and what requirements TCP imposes on
the network.Section 3briefly discusses some of the
problems with the TCP algorithm on high-bandwidth
long delay paths. InSection 4we discuss the effect
of host and operating system parameter tuning on per-
formance.Section 5shows test results from different
modifications to the TCP/IP algorithms and particular
those of HSTCP[4] implemented by the Net100[17]
project.

In the following sections we broadly classify the
various stages of a TCP session into: bandwidth dis-
covery phase (aka slow start), steady state[4], and
congestion avoidance. In this work we focus mostly
on the initial phase of a TCP flow, the bandwidth dis-
covery, as we believe that this phase most influences
the bandwidth obtained using TCP.

2. Properties of underlying network
infrastructure

The initial configuration used for the SURFnet
Lambda (2.5 Gbps) is shown inFig. 1. Two high-end
personal computers (PCs) were connected using Gi-
gabit Ethernet via two Time Division Multiplexer
(TDM) switches and a router. The TDM switches are
capable of encapsulating Ethernet packets in SONET
frames up to the rate of the specific SONET channel.
The hosts were connected at 1 Gbps to a first version
of the TDM switch. The linecard to backplane in-
terface posed a 622 Mbps limitation on the datapath.
In a subsequent version this bottleneck was allevi-
ated. The Round Trip Time (RTT) of the network
was about 100 ms and thus a very high-bandwidth
delay. Initial TCP tests conducted over this link
between Amsterdam and Chicago with the first ver-
sion of the TDM switch showed rather poor results.
Throughput obtained using a single stream TCP ses-
sion was an order of magnitude less (about 80 Mbps)



A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1019

than the bottleneck capacity. Tuning the TCP stack
showed only marginal improvements (110 Mbps).
On the other hand, a multi-stream TCP session be-
tween the same two hosts achieved a throughput of
about 520 Mbps. Also a UDP stream using (iperf)
obtained a throughput a little higher than that of a
multi-stream TCP session. Note that this path was
exclusively used for research so there was no possi-
bility of background traffic to influence the results.
Before shipping one of the TDM switches to Chicago
we had tested a setup locally (back-to-back) with a
negligible round trip time and the throughputs were
also close to linespeed (622 Mbps). This led us to the
conclusion that the problem lay in the large RTT.

The approach we took to understand the perfor-
mance problem was to examine TCP at a microscopic
level. A quick look at the traces showed that TCP
is very bursty in nature during the initial phase. We
believe that the TDM switch could not cope with
the large bursts and therefore was dropping packets.
Since there is an intrinsic bottleneck of 622 Mbps
for the TDM switch and the PCs are connected at
a higher speed than the bottleneck, it is evident that
the host will be able to overflow the switch’s mem-
ory on the input linecard. In the tested configurations
(hardware) flow control was not operational. This is
discussed in great detail inSection 3. For the rest of
this section we used streams of UDP packets to sim-
ulate the behavior of a TCP burst during the initial
phase.

Fig. 2. Relative arrival time (in�s) at the receiver vs. packet number, for 5000 UDP packets sent usingUDPMon, from Amsterdam to
Chicago.

In order to estimate the maximum possible burst
size which does not cause packet loss in the switch,
we used a tunable UDP stream. The assumption here
is that the burst is similar to what occurs in a TCP
flow during its initial phase.

Our setup is shown inFig. 1. Two personal com-
puters one configured as the sender (Amsterdam) and
the other configured as the receiver (Chicago), were
connected to the TDM switches using a Gigabit Ether-
net link. The switches were then interconnected over
a high-bandwidth delay product link. The RTT of the
link was about 100 ms and the provisioned capacity of
the link was 622 Mbps (STS12). If the sender sends a
continuous stream of packets as fast as it can (about
900 Mbps, limited by PC) eventually a fraction of the
packets will be dropped at the 622 Mbps bottleneck in
the TDM switches.

UsingUDPMon [20], we sent 5000 numbered UDP
packets, each with a length of a 1000 bytes, as fast as
possible from the sender to the receiver.Fig. 2 shows
the result. The horizontal axis shows packet numbers,
and the vertical marks arrival times. Dropped pack-
ets get an arrival time of zero. Therefore, the shaded
area under the curve indicates lost packets. The first
loss occurs after 1500 packets. From then on approx-
imately one out of every three packets is dropped.
This points at the bottleneck mentioned earlier since
the ratio of dropped packets agrees with the band-
width ratio. The curve also shows that a continuous
block of about 150 packets is lost after this point. We



1020 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

assumed that these packets are dropped by the receiver.
Studying the packet counters of the switches in the
path supported this assumption. We believe that this
is due to the limitations of the receiver. The receiving
PC is overwhelmed by the rate and it drops a series of
packets from its input buffer. We assume the packets
are being dropped while they are being copied from
the memory of the Network Interface Card (NIC) to
the memory of the receiver process. A similar kind of
receiver limitation is also discussed inSection 3.2. In
the rest of this section we focus on an intrinsic bottle-
neck, namely the sender side TDM switch.

The number of packets dropped by the switch,Nd,
during a burst is related to the number of packets in
the burst,Nb. The speed of the incoming interface
(fast),f , the speed of the outgoing interface (slow),s,
and the buffer memory available at the output port of
the bottleneck link,M. We assume for simplicity an
average packet length of size,l. The loss can then be
expressed as

Nd = Nb
f − s

f
− M

l
(1)

Using Eq. (1), we setNd = 0 andNb = 1500 as
that is the maximum burst which got through, and
computed the available memory on the TDM switch
to be approximately 0.5 MB.

Once we know the memory of the bottleneck and
the size of burst of packets that can pass through the
TDM switch we can then calculate the possible band-
width a TCP flow can achieve during the initial phase
without packet loss. We assume there are no other bot-
tlenecks in the end-to-end path and the TCP has not
encountered a congestion event.

To first order, the throughput TCP can obtain is
approximated by

B = f

f − s

M

R
(2)

whereB is the throughput that a TCP flow can achieve
andR is the round trip time.

If we assume that TCP will try to reach a stable
state where the throughput will be equal to the speed
of the slowest interface, we can then substituteB = s

into Eq. (2). This leads to a memory requirement to
support a high-bandwidth delay product TCP flow as

M = f − s

f
sR (3)

For the network shown inFig. 1to support a 622 Mbps
end-to-end TCP flow the minimum memory required
is 3.1 MB (f = 1 Gbps,s = 622,R = 100 ms). From
our understanding of the currently available Ethernet
to TDM encapsulation devices, they do not have the
required memory.

From preliminary discussions with a few vendors,
we understand these devices are primarily designed
for high-speed Local Area Networks (LANs) and
Metropolitan Area Networks (MANs), where the RTT
is small (<20 ms), thus negating the bursty nature
of TCP flows during the bandwidth discovery phase.
The problem arises when these LANs and MANs are
interconnected to other high-speed long-latency net-
works and the traffic flows from these larger networks
traverse the equipment in these smaller networks
that were designed with LANs and MANs in mind,
causing them to become bottlenecks. The buffer re-
quirements for any device which has traffic flows
over it that are high-bandwidth high-latency, and has
disproportional interface speeds, should have enough
buffer space to accommodate the difference of the
input speed and the output speed of the interfaces for
some large fraction of the RTT of those flows. See
Eq. (3) for how to compute the required buffer sizes
for these network devices.

Fig. 3 shows the memory required in the switches
to support various end-to-end speeds (for TCP) for
a given RTT (R = 100). If we solve the quadratic
equation (3)for s we can compute the TCP through-
put for various values RTT for given values ofM

andf under the assumption there are no other bottle-
necks present and the TCP flow do not encounter any
other congestion event during the bandwidth discov-
ery phase:

s = f

2

(
1 +

√
1 − 4M

fR

)
(4)

The result is plotted inFig. 3.
For example, using our TDM switch and a 150 ms

RTT (Amsterdam to California) link, the end-to-end
throughput will be about 45 Mbps. The area inside the
curve is aforbiddenarea for TCP flows as packet loss
may occur. The values we get using this formula also
matched with the throughput obtained in TCP tests
usingiperf (Fig. 4).



A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1021

Fig. 3. Required memory at a bottleneck for an incoming speed of 1 Gbps and various output speeds for a RTT of 100 ms.

Fig. 4. Forbidden (shaded) area shows where packet loss may occur in single stream TCP flows for a given memory size of 0.5 MB and
an incoming speed of 1 Gbps. Horizontally is the round trip time of the desired destination and vertically the provisioned “slow” speed at
a TDM switch.

3. TCP

TCP is a sender-controlled slidingwindowprotocol
[2]. New data up to “window size” is sent when old
data has been acknowledged by the receiver. The win-
dow size is limited by the host and application param-
eters such as socket buffer size andCwnd [1]. TCP
adjusts theCwnd dynamically using different algo-
rithms depending on which phase the flow is currently
in. We will focus here on understanding the slow start

phase. We have tested various modifications to the
congestion avoidance algorithm and presented some
of the results here.

3.1. Bandwidth discovery phase (slow start)

This is the initial phase of a TCP flow. After the
protocol handshake[8] the sender will try to discover
what the available bandwidth is so that it can compute
the correct value forCwnd. This discovery is done by



1022 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

injecting data into the network until a congestion event
occurs. Fast convergence and accuracy of bandwidth
discovery has a large influence on all three phases of
TCP. TheCwnd size determines how fast a flow can
reach a steady state and the stability of the flow once
it has reached steady state.

If during this initial phase no congestion events are
generated, theCwnd effectively doubles every RTT.
Thus a flow should only be limited by an intrinsic
bottleneck (i.e. packet loss). If the limiting bandwidth
between two hosts is the speed of the sending host
(i.e. slow NIC, slow CPU) then the bandwidth discov-
ery phase will always work correctly. However, if the
connection between the hosts is limited by some other
factor (i.e. router buffer, network capacity, etc.) then
the bandwidth discovery phase will fail due to the fact
that the doubling of the congestion window can over-
run the bottleneck buffer by a large number of packets
[3], thus causing large packet loss. The packet loss can
be computed usingEq. (1) if we know the bottleneck
speed and buffer size at the bottleneck. Using limited
slow start is a good solution to avoid buffer over run
problems during bandwidth discovery. Limited slow
start works by stopping the doubling of the congestion
window after the window reaches a predefined thresh-
old. After the congestion window reaches this thresh-
old, it continues to open up, but at slower rate that

Fig. 5. TSG showing initial phase and congestion event after 10 RTTs.

is based on the size of the congestion window. This
stops TCP from overshooting the bottleneck buffer by
a large margin, and reduces packet loss that occurs
when it does overflow the bottleneck buffer. Unfortu-
nately this requires some sort of a priori knowledge
of the bottleneck speed.

In Fig. 5 we show our observation of large packet
loss caused by a bottleneck. Note that after 9 RTT a
burst of 512 packets leave the PC; at 10 RTT this is
doubled to 1024 and this amount overruns the buffer,
causing large packet loss.

The HSTCP extensions may be an excellent alter-
native. We believe that proposed algorithm[4] is a
good starting point. In an over-provisioned network
one could use a faster algorithm to increaseCwnd.
The requirement of such an algorithm is to do band-
width discovery as fast as possible with minimum or
no packet loss.

3.2. Receiver limitations

Typically most PC hardware exhibits the property
that the receiver capacity is less than the sender for
identically configured machines. This is due to the
difference in overhead of sending a packet versus re-
ceiving a packet. Take, for example, two identical PCs
connected back-to-back, one configured as the sender



A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1023

Fig. 6. TSG showing instantaneous speed of flow.

and other as the receiver. If the sender sends data as
fast as possible, the receiver may not be able to keep
up. When receiver is overloaded in this manner, it will
start to drop packets, which in turn cause a TCP con-
gestion event.

Fig. 6shows the instantaneous speed of a flow dur-
ing slow start using a time sequence graph (TSG).
Notice that after 8 RTTs 512 packets leave the host.
The sending host sends this data as IP packets as

Fig. 7. Combined traces from sender and receiver.

fast as it can. In this case the 512 packets are sent
in about 4 ms, yielding an instantaneous speed close
to 1 Gbps, which is linespeed. This overruns the re-
ceiver buffer and causes the flow to fall out of the
bandwidth discovery phase into congestion avoidance
phase. Therefore, this case is similar to that of a buffer
overflow at the TDM switch as discussed in the pre-
vious subsection. A solution would be to pace out
the packets in such manner that the average speed



1024 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

approximately equals that of the bottleneck in the
path.

Fig. 7 shows the combined TSG of packets leav-
ing the sender and the receiver. It clearly shows that
the inter-packet delay is very small at the receiving
process. This may be due to the effects of interrupt
coalescing on the NIC.

4. Host parameters

Implementations of the TCP algorithms vary
between operating systems. The behavior of TCP
depends on the particular implementation and archi-
tecture of the PC, such as host bus speed, devices
sharing the bus, Network Interface Card (NIC), in-
terrupt coalescing, inter-packet delay[20], etc. Thus
using the same values as described in[19] on two dif-
ferent configurations can still produce varying results,
especially during the bandwidth discovery phase.
These differences may become less noticeable if we
average these values over long periods of time.

We refer to values specific to a configuration of
a PC asthe host parameters. This also includes the
TCP implementation. From our experience it has been
observed that some seemingly slower hosts, in terms
of CPU and bus speed, are not necessarily the slowest
for TCP transfers. We assume this is due to the fact
that the slower hosts pace out the packets better than

Fig. 8. TXQ in MSS vs. throughput in Mbps. Steps used 32 using Net100 kernel capable of AIMD.

a faster PC, hence there is less chance for overflowing
bottleneck queues in the path. The TSG inFig. 10
shows a comparison between Mac OS X and Linux
2.4.19 as sender. The data was captured at the receiver
side, Linux, usingtcpdump. It clearly shows the Mac
sends packets better paced than Linux.Section 5.1
discusses the advantages of pacing the packets.

4.1. Results from tuning TXQ length

Tuning the length of the Transmit Queue (TXQ)
of the sending device had a noticeable effect on the
high-bandwidth high delay path. This parameter can
be adjusted using the Linux commandifconfig
with the optiontxqueuelen<length>, though
one should keep in mind that the device is limited by
the amount of available memory. We found that even
though tuning of this variable can improve the per-
formance of TCP by several factors, the results are
not very predictable and there does not seem to be an
easy way to precompute what the length should be.
Fig. 8 shows the results of testing throughput over a
high-bandwidth high-delay network with several hun-
dred different queue lengths. The default queue length
is around 100 packets, while, as shown in the graph,
we continued to get increased performance until about
1500 packets. Having a large transmit queue is very
helpful during the bandwidth discovery phase in ab-
sence of a congestion event since it allows one to reach



A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1025

Fig. 9. Bandwidth vs. time using HSTCP and IFQ modifications using Net100 kernel between Amsterdam and EVL, Chicago. Congestion
was introduced at 60 s by overloading receiver.

the maximum throughput very quickly. If a conges-
tion event does occur, the flow will fall back into the
congestion avoidance phase. This is the same reaction
as if it was in steady state. The stream will then act as
it normally would over a long-latency link and it will
take many RTTs to recover.

Fig. 10. TSG comparing initial phase of Linux and Mac OSX (red is Linux, and blue is Mac OS X).

In Fig. 8 it can be seen that through adjusting
the transmit queue one can clearly obtain improved
throughput, but the throughput is not always very
predictable. By monitoring the WEB100 variable
BytesRetrans during the tests we tried to iden-
tify packet loss to see if a failure in the bandwidth



1026 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

discovery phase was occurring. This was done to test
if the oscillations in throughput were due to packet
retransmission. However, it turned out that there were
no retransmissions during the tests. We now assume
that the variances may be due to the dynamics of
TXQ which causes an early congestion event (i.e.
premature end of the bandwidth discovery phase) and
low throughput.

Net100 has coded a workaround in the Linux TCP
implementation to obtain an effect similar to tuning
the transmit queue. This is done by brute force, where
the influence of TXQ on TCP’sCwnd computation
is removed from the TCP stack. Results using these
modifications are shown inFig. 9.

To test if host behavior varies between architectures
a few tests were done using an Apple laptop (used as
sender) connected at 1 Gbps. Initial results look very
promising. In one case we were able to get 354 Mbps
between Amsterdam and Chicago. A closer look at the
traces captured from the receiver is shown inFig. 10.
It clearly shows that the Apple host behaves differ-
ently than the Linux host during the bandwidth dis-
covery phase of TCP. Apparently OSX on the Apple
paces the packets better than Linux, putting a larger
inter-packet delay between the packets. This could be
due to slightly different implementation of TCP or
differences in hardware architecture such as the NIC,
motherboard, CPU, etc.

5. Modifications to TCP/IP algorithm

5.1. Pacing out packets at device level

From the discussions in the preceding sections it is
clear that some sort of pacing of the packets should
improve performance. We implemented a delay at the
device driver level, i.e. a blocking delay of 0 (�)s. Re-
sults are shown inFigs. 11 and 12. From the results we
conclude that the sender should not burst packets, but
try to shape the flow according to a leaky bucket algo-
rithm. Though this may be hard to implement in the
OS since it requires that the OS maintain a timer per
TCP flow with �s resolution, which could incur lots
of overhead. Our initial suggestion is that future OS
kernels should delegate the task of pacing the packets
to NICs and allow the NIC to implement this feature
at the hardware level.

5.2. HSTCP modification

The HSTCP modifications[4] discussed here are
still in the development stage. Most HSTCP extensions
are aimed at improving performance for steady state
congestion avoidance, yet it appears that the band-
width discovery phase may also benefit indirectly from
this work. This is because if the bandwidth discov-
ery phase ends prematurely (i.e. before full utiliza-
tion of the resources), the bottleneck utilization will
be low, and then HSTCP modifications will improve
utilization by ramping back up faster then traditional
TCP algorithms. From the discussions above it is clear
that in many cases initial stages end prematurely be-
fore completing bandwidth discovery. Using HSTCP
modifications,Cwnd increases more slowly instead of
doubling. In effect TCP flow continues to discover
bandwidth more quickly, without overrunning the net-
work buffers.

Fig. 9shows the results using HSTCP. We have run
aniperf session for 180 s and created a congestion
event at the receiver after 60 s. Congestion was cre-
ated by sending approximately 800 Mbps UDP from
another host to the receiver. In the first case (red line)
no IFQ modifications and no AIMD[4] modifications
were enabled. Due to the short transfer queue length
the flow exits the bandwidth discovery phase very
early, at about 80 Mbps, and then continue in steady
state where it increasesCwnd at a rate of 1 MSS
per RTT. After 60 s the flow encounters the induced
congestion and drops to about 40 Mbps and recovers
from it at the rate of one MSS per RTT. In the sec-
ond (green line) case Net100 was used to turn off the
transmit queue congestion detection. This improves
the bandwidth discovery phase, which now quickly
enters high-speed steady state at about 618 Mbps.
After the induced congestion event at 60 s it enters
normal congestion avoidance phase and drops down
to about 35 Mbps and recovers at the rate of 1 MSS
per RTT. In the third case (pink) Net100 was again
used to disable the transmit queue congestion detec-
tion of the NIC and turned on AIMD modifications
in the kernel. The bandwidth discovery phase is same
as in the previous test. After the induced conges-
tion event at 60 s the flow drops to about 40 Mbps.
While recovering from this AIMD comes into effect
causingCwnd to increase based on the factor AI
computed using values specified in[4]. Effectively



A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1027

Fig. 11. Bandwidth vs. delay usingiperf for a duration of 5 s for varying socket sizes.

the flow recovers from the congestion event much
quicker. The recovery response time is dependent on
the characteristics of the TCP flow, see[4] for a full
description.

The fourth and last case (blue) was with the trans-
mit queue congestion detection on the NIC enabled
and AIMD turned on. Again the bandwidth discovery
phase ends prematurely as in case one. Since AIMD
is active and there are no more congestion events the
Cwnd increases by the factor specified by AI. Note that

Fig. 12. Bandwidth vs. socket buffer size usingiperf, with delay (5�s) and without delay.

there are some dips in the curve. Our understanding
is that this is due to the poor default interface queue
management.

HSTCP modifications and better control of IFQ
clearly improves available bandwidth utilization.
Fig. 13shows the bandwidth utilization (2 s average)
of a long running (3000 s) flow between Amsterdam
and Chicago, USA. This test was running over a
622 Mbps transatlantic VPN with a background traffic
at about 35 Mbps. The cumulative average is about



1028 A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029

Fig. 13. Bandwidth vs. time for a long-termiperf session between NIKHEF and ANL over 622 Mbps VPN.

405 Mbps, while the 2 s average oscillates between
320 and 460 Mbps showing that HSTCP improves the
utilization by responding to congestion events faster
than traditional non-AIMD enabled TCP.

6. Conclusion

We have shown that tuning the host parameters
and HSTCP are very important when trying to make
best use of available bandwidth over high-bandwidth
long-delay networks. The maximum throughput ob-
tained over the transatlantic link (96 ms RTT) was
730 Mbps using a single TCP stream. Initial tests show
that these modifications do not adversely affect other
flows, but this still needs closer examination in an
isolated environment with a large number of hetero-
geneous flows. Also we have shown that for the cur-
rent Linux TCP implementation the specifications of
the underlying network infrastructure in terms of (ar-
tificial) bottlenecks, provisioned long haul forwarding
paths, queue lengths and shaping properties define the
upper limit of the single stream throughput no matter
how well tuned the host parameters are.

Uncited references

[9,13–15,21].

Acknowledgements

The transatlantic links used for conducting this
research are provided to us by SURFnet, TYCO and
LEVEL3. Antony Antony and Hans Blom are funded
by the IST Program of the European Union (grant
IST-2001-32459) via the DataTAG project. Jason
Lee was supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing
Research and Mathematical, Information and Com-
putational Sciences Division under US Department
of Energy Contract No. DE-AC03-76SF00098. The
authors would like to thank Richard Hughes Jones,
Brian Tierney and the Net100/WEB100 collaboration
for instrumenting TCP with modifications. We espe-
cially thank the iGrid2002 organizers for providing
an excellent and exciting test bed.

References

[1] M. Allman, et al., TCP Congestion Control, RFC2581.
[2] T. Dunigan, M. Mathis, B. Tierney, A TCP Tuning Daemon.

http://www.sc2002.org/paperpdfs/pap.pap151.pdf.
[3] S. Floyd, Limited Slow-Start for TCP with Large Congestion

Windows.http://www.icir.org/floyd/hstcp.html.
[4] S. Floyd, S. Ratnasamy, S. Shenker, Modifying TCP’s Con-

gestion Control for High Speeds, 2001.http://www.icir.org/
floyd/hstcp.html.

[5] C. de Laat, E. Radius, S. Wallace, The rationale of the current
optical networking initiatives, in: Special Issue on iGrid2002,

http://www.sc2002.org/paperpdfs/pap.pap151.pdf
http://www.icir.org/floyd/hstcp.html
http://www.icir.org/floyd/hstcp.html
http://www.icir.org/floyd/hstcp.html


A. Antony et al. / Future Generation Computer Systems 19 (2003) 1017–1029 1029

Amsterdam, The Netherlands, 2002, Fut. Gen. Comput. Syst.
19 (6) (2003) 999–1008.

[6] J. Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J.
Bresnahan, S. Tuecke, Applied techniques for high bandwidth
data transfers across wide area networks, in: Proceedings of
the Computers in High Energy Physics 2001 (CHEP 2001),
LBNL-46269, Beijing, China.

[7] J.P. Martin-Flatin, S. Ravot, TCP congestion control in fast
long-distance networks, Technical Report CALT-68-2398,
California Institute of Technology, July 2002.

[8] RFC 793, in: J. Postel (Ed.), Transmission Control Protocol.
[9] 10 Gbps, OC192 link to iGrid2002.http://www.startap.net/

starlight/PUBLICATIONS/news-level3support.html.
[10] BaBar.http://www-public.slac.stanford.edu/babar/.
[11] CDF. http://www-cdf.fnal.gov/.
[12] D∅. http://www-d0.fnal.gov/.
[13] EU DataGrid.http://www.eu-datagrid.org.
[14] EU DataTag.http://www.datatag.org.
[15] iGrid2002.http://www.igrid2002.org/.
[16] LHC. http://lhc-new-homepage.web.cern.ch/.
[17] Net100.http://www.net100.org.
[18] SURFnet 2.5 Gbps Lambda to Chicago, Press release.http://

www.surfnet.nl.
[19] TCP Tuning Guide.http://www-didc.lbl.gov/TCP-tuning/.
[20] UDPMon. http://www.hep.man.ac.uk/rich/net/.
[21] WEB100.http://www.web100.org.

Antony Antony is researcher at the
NIKHEF, The Netherlands. Antony re-
ceived his Bachelor of Engineering in
Electrical Engineering from University
of Bombay. Over the past years he has
been involved in several advanced net-
working projects. Current projects include
DataTAG and NetherLight. His current
research interests are dynamics of trans-
port protocols over long fat networks,
inter-domain routing protocols such as
BGP and GMPLS.

Johan Blom graduated at Utrecht Uni-
versity with a thesis entitled “Topolog-
ical and Geometrical Aspects of Image
Structure” in 1992. After that period he
worked at the same university in the
field of particle tracking using a Radon
transform embedded in a multi-resolution
structure. In 1996 the subject changed to
computer guided education in a collabora-
tion between the Universities of Amster-

dam and Utrecht. Applications were developed that combined the
Maple computer algebra application with educational groupware
packets and a Web interface for grading, submitting documents
and storage in a relational database. After that period he worked in
the field of Network monitoring and testing. First in Utrecht and
since 2001 in Amsterdam. A host oriented network monitor pack-
age had been developed with a Web based interface to view the

results. Scripts were developed for automated testing of Gigabit
networks, using many hosts running standard TCP/UDP genera-
tor applications, that were modified when required, and combined
with SNMP monitoring of the network interfaces.

Cees de Laat is senior scientific staff
member of the Informatics Institute at the
University of Amsterdam. He received a
PhD in physics from the University of
Delft. He has been active in data ac-
quisition systems, heavy ion experiments
and virtual laboratories. Over the past
7 years he has been investigating appli-
cations for advanced research networks.
Current projects include optical network-

ing, lambda switching and provisioning, policy-based networking
and Authorization, Authentication and Accounting Architecture
Research. He participates in the European DataGrid project and
the Dutch ASCII DAS project. He is responsible for the research
on the Lambda switching facility (“NetherLight”), which is cur-
rently being built in Amsterdam as a peer to StarLight in Chicago.
He implements research projects in the GigaPort Networks area
in collaboration with SURFnet. He currently serves as Grid Fo-
rum Steering Group member, Area Director for the Peer to Peer
area and GGF Liaison towards the IETF. He is co-chair of the
IRTF Authentication, Authorization and Accounting Architecture
Research Group and member of the Internet Research Steering
Group (IRSG).http://www.science.uva.nl/∼delaat.

Jason Lee is a computer scientist cur-
rently on sabbatical with the Univer-
sity of Amsterdam’s Advanced Internet
Research Group from his research at
Lawrence Berkeley National Laboratory
where he has worked for the last 10 years
in the Data Intensive Distributed Com-
puting Group on high-speed networking.
Jason has many varied interests that in-
clude, but are not limited to the following:

distributed computing, Gigabit networking, chaos theory, neural
networks and security.

Wim Sjouw after graduating in physics
(1971) with specialization in “medical
physics” he joined a research group of
physiological psychologists at the Utrecht
University to study “evoked responses”.
Introducing computer in this field resulted
in very exiting results on relating hu-
man behavior with (mal)functioning of
the brain on the single trial level. In 1987
a reorganization cause him to make the

switch to designing and implementing LANs, the most exciting
being the network of the Utrecht University (>10 000 connections).
This led to doing research on innovative developments in network-
ing. In 1999 he joined the Advanced Internet Research Group at
the University of Amsterdam.

http://www.startap.net/starlight/PUBLICATIONS/news-level3support.html
http://www.startap.net/starlight/PUBLICATIONS/news-level3support.html
http://www-public.slac.stanford.edu/babar/
http://www-cdf.fnal.gov/
http://www-d0.fnal.gov/
http://www.eu-datagrid.org
http://www.datatag.org
http://www.igrid2002.org/
http://lhc-new-homepage.web.cern.ch/
http://www.net100.org
http://www.surfnet.nl
http://www.surfnet.nl
http://www-didc.lbl.gov/TCP-tuning/
http://www.hep.man.ac.uk/rich/net/
http://www.web100.org
http://www.science.uva.nl/delaat

	Microscopic examination of TCP flows over transatlantic links
	Introduction
	Properties of underlying network infrastructure
	TCP
	Bandwidth discovery phase (slow start)
	Receiver limitations

	Host parameters
	Results from tuning TXQ length

	Modifications to TCP/IP algorithm
	Pacing out packets at device level
	HSTCP modification

	Conclusion
	Uncited references
	Acknowledgements
	References


